未验证 提交 ecca6585 编写于 作者: T taixiurong 提交者: GitHub

1. fix elementwise ops'bug 2. fix softmax_with_cross_entropy_op 3. add biliner_interp_op (#29448)

Co-authored-by: Nroot <root@bjhw-sys-rpm0223.bjhw.baidu.com>
上级 03b42d9f
......@@ -4,7 +4,7 @@ endif()
INCLUDE(ExternalProject)
SET(XPU_PROJECT "extern_xpu")
SET(XPU_URL "https://baidu-kunlun-public.su.bcebos.com/paddle_depence/xpu_2020_11_30.tar.gz" CACHE STRING "" FORCE)
SET(XPU_URL "https://baidu-kunlun-public.su.bcebos.com/paddle_depence/xpu_2020_12_04.tar.gz" CACHE STRING "" FORCE)
SET(XPU_SOURCE_DIR "${THIRD_PARTY_PATH}/xpu")
SET(XPU_DOWNLOAD_DIR "${XPU_SOURCE_DIR}/src/${XPU_PROJECT}")
SET(XPU_INSTALL_DIR "${THIRD_PARTY_PATH}/install/xpu")
......
......@@ -28,9 +28,10 @@ class ElementwiseDivXPUKernel : public framework::OpKernel<T> {
};
template <typename DeviceContext, typename T>
class ElementwiseDivGradXPUKernel : public framework::OpKernel<T> {
class ElementwiseDivGradXPUKernel : public ElemwiseGradKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElemwiseGradKernel<T>::Compute(ctx);
XPUElementwiseGrad<T>(ctx, xpu::div_grad<T>, true);
}
};
......
......@@ -29,9 +29,10 @@ class ElementwiseMaxXPUKernel : public framework::OpKernel<T> {
};
template <typename DeviceContext, typename T>
class ElementwiseMaxGradXPUKernel : public framework::OpKernel<T> {
class ElementwiseMaxGradXPUKernel : public ElemwiseGradKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElemwiseGradKernel<T>::Compute(ctx);
XPUElementwiseGrad<T>(ctx, xpu::max_grad<T>, true);
}
};
......
......@@ -29,9 +29,10 @@ class ElementwiseMinXPUKernel : public framework::OpKernel<T> {
};
template <typename DeviceContext, typename T>
class ElementwiseMinGradXPUKernel : public framework::OpKernel<T> {
class ElementwiseMinGradXPUKernel : public ElemwiseGradKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElemwiseGradKernel<T>::Compute(ctx);
XPUElementwiseGrad<T>(ctx, xpu::min_grad<T>, true);
}
};
......
......@@ -27,9 +27,10 @@ class ElementwiseMulXPUKernel : public framework::OpKernel<T> {
};
// DEFINE_XPU_GRAD_KERNEL(Mul, mul, true);
template <typename DeviceContext, typename T>
class ElementwiseMulGradXPUKernel : public framework::OpKernel<T> {
class ElementwiseMulGradXPUKernel : public ElemwiseGradKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElemwiseGradKernel<T>::Compute(ctx);
XPUElementwiseGrad<T>(ctx, xpu::mul_grad<T>, true);
}
};
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/interpolate_op.h"
#ifdef PADDLE_WITH_XPU
namespace paddle {
namespace operators {
using framework::Tensor;
using DataLayout = framework::DataLayout;
inline std::vector<int> get_new_shape_xpu(
const std::vector<const Tensor*>& list_new_shape_tensor) {
// get tensor from
std::vector<int> vec_new_shape;
for (size_t i = 0; i < list_new_shape_tensor.size(); ++i) {
auto tensor = list_new_shape_tensor[i];
PADDLE_ENFORCE_EQ(
tensor->dims(), framework::make_ddim({1}),
platform::errors::InvalidArgument("shape of dim tensor should be [1]"));
if (platform::is_xpu_place(tensor->place())) {
framework::Tensor temp;
TensorCopySync(*tensor, platform::CPUPlace(), &temp);
vec_new_shape.push_back(static_cast<int32_t>(*temp.data<int32_t>()));
} else {
vec_new_shape.push_back(static_cast<int32_t>(*tensor->data<int32_t>()));
}
}
return vec_new_shape;
}
template <typename T>
inline std::vector<T> get_new_data_from_tensor_xpu(
const Tensor* new_data_tensor) {
std::vector<T> vec_new_data;
auto* new_data = new_data_tensor->data<T>();
framework::Tensor cpu_starts_tensor;
if (platform::is_xpu_place(new_data_tensor->place())) {
TensorCopySync(*new_data_tensor, platform::CPUPlace(), &cpu_starts_tensor);
new_data = cpu_starts_tensor.data<T>();
}
vec_new_data = std::vector<T>(new_data, new_data + new_data_tensor->numel());
return vec_new_data;
}
template <typename T>
class InterpolateXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input = ctx.Input<Tensor>("X");
auto* output = ctx.Output<Tensor>("Out");
auto input_dims = input->dims();
PADDLE_ENFORCE_EQ(
input_dims.size(), 4,
platform::errors::External("XPU Interpolate kernel only support 2d"));
const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
const DataLayout data_layout =
framework::StringToDataLayout(data_layout_str);
int n, c, in_d, in_h, in_w;
ExtractNCDWH(input_dims, data_layout, &n, &c, &in_d, &in_h, &in_w);
auto interp_method = ctx.Attr<std::string>("interp_method");
bool align_corners = ctx.Attr<bool>("align_corners");
int align_mode = ctx.Attr<int>("align_mode");
int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w");
auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
if (list_new_size_tensor.size() > 0) {
// have size tensor
auto new_size = get_new_shape_xpu(list_new_size_tensor);
out_h = new_size[0];
out_w = new_size[1];
} else {
float scale;
auto scale_tensor = ctx.Input<Tensor>("Scale");
if (scale_tensor != nullptr) {
auto scale_data = get_new_data_from_tensor_xpu<float>(scale_tensor);
scale = scale_data[0];
} else {
scale = ctx.Attr<float>("scale");
}
if (scale > 0) {
out_h = static_cast<int>(in_h * scale);
out_w = static_cast<int>(in_w * scale);
}
auto out_size = ctx.Input<Tensor>("OutSize");
if (out_size != nullptr) {
auto out_size_data = get_new_data_from_tensor_xpu<int>(out_size);
out_h = out_size_data[0];
out_w = out_size_data[1];
}
}
PADDLE_ENFORCE_GT(out_h, 0, platform::errors::InvalidArgument(
"out_h in Attr(out_shape) of "
"Op(interpolate) "
"should be greater than 0."));
PADDLE_ENFORCE_GT(out_w, 0, platform::errors::InvalidArgument(
"out_w in Attr(out_shape) of "
"Op(interpolate) "
"should be greater than 0."));
framework::DDim dim_out;
if (data_layout == DataLayout::kNCHW) {
dim_out = {n, c, out_h, out_w};
} else {
dim_out = {n, out_h, out_w, c};
}
output->mutable_data<T>(dim_out, ctx.GetPlace());
if (in_h == out_h && in_w == out_w) {
framework::TensorCopy(*input, ctx.GetPlace(), output);
return;
}
bool nearest = "nearest" == interp_method;
int trans_mode = (align_corners) ? (0) : ((align_mode == 0) ? (1) : (2));
auto& dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();
if (nearest) {
PADDLE_ENFORCE_EQ((data_layout == DataLayout::kNCHW), true,
platform::errors::InvalidArgument(
"XPU nearest is only support NCHW"));
}
int r = xpu::interpolate2d<float>(dev_ctx.x_context(), input->data<float>(),
output->data<float>(), n, c, in_h, in_w,
out_h, out_w, nearest, trans_mode,
(data_layout == DataLayout::kNCHW));
PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
platform::errors::External("XPU interpolate2d kernel "
"return wrong value[%d %s]",
r, XPUAPIErrorMsg[r]));
}
};
template <typename T>
class InterpolateGradXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto output_grad_dims = output_grad->dims();
PADDLE_ENFORCE_EQ(output_grad_dims.size(), 4,
platform::errors::External(
"XPU Interpolategrad kernel only support 2d"));
auto* input = ctx.Input<Tensor>("X");
const std::string data_layout_str = ctx.Attr<std::string>("data_layout");
const DataLayout data_layout =
framework::StringToDataLayout(data_layout_str);
int n, c, in_d, in_h, in_w;
ExtractNCDWH(input->dims(), data_layout, &n, &c, &in_d, &in_h, &in_w);
auto interp_method = ctx.Attr<std::string>("interp_method");
bool align_corners = ctx.Attr<bool>("align_corners");
int align_mode = ctx.Attr<int>("align_mode");
int out_h = ctx.Attr<int>("out_h");
int out_w = ctx.Attr<int>("out_w");
float scale;
auto scale_tensor = ctx.Input<Tensor>("Scale");
if (scale_tensor != nullptr) {
auto scale_data = get_new_data_from_tensor_xpu<float>(scale_tensor);
scale = scale_data[0];
} else {
scale = ctx.Attr<float>("scale");
}
if (scale > 0) {
out_h = static_cast<int>(in_h * scale);
out_w = static_cast<int>(in_w * scale);
}
auto out_size = ctx.Input<Tensor>("OutSize");
if (out_size != nullptr) {
auto out_size_data = get_new_data_from_tensor_xpu<int>(out_size);
out_h = out_size_data[0];
out_w = out_size_data[1];
}
auto list_new_size_tensor = ctx.MultiInput<framework::Tensor>("SizeTensor");
if (list_new_size_tensor.size() > 0) {
// have size tensor
auto new_size = get_new_shape_xpu(list_new_size_tensor);
out_h = new_size[0];
out_w = new_size[1];
}
framework::DDim dim_grad;
if (data_layout == DataLayout::kNCHW) {
dim_grad = {n, c, in_h, in_w};
} else {
dim_grad = {n, in_h, in_w, c};
}
input_grad->mutable_data<T>(dim_grad, ctx.GetPlace());
auto& dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();
int r = XPU_SUCCESS;
r = xpu::constant<T>(dev_ctx.x_context(), input_grad->data<T>(),
input_grad->numel(), static_cast<T>(0.0));
PADDLE_ENFORCE_EQ(r, XPU_SUCCESS,
platform::errors::External(
"XPU constant in interpolate2d_grad kernel return "
"wrong value[%d %s]",
r, XPUAPIErrorMsg[r]));
if (in_h == out_h && in_w == out_w) {
framework::TensorCopy(*output_grad, ctx.GetPlace(), input_grad);
return;
}
bool nearest = "nearest" == interp_method;
int trans_mode = (align_corners) ? (0) : ((align_mode == 0) ? (1) : (2));
if (nearest) {
PADDLE_ENFORCE_EQ((data_layout == DataLayout::kNCHW), true,
platform::errors::InvalidArgument(
"XPU nearest is only support NCHW"));
}
r = xpu::interpolate2d_grad<T>(dev_ctx.x_context(), output_grad->data<T>(),
input_grad->data<T>(), n, c, in_h, in_w,
out_h, out_w, nearest, trans_mode,
(data_layout == DataLayout::kNCHW));
PADDLE_ENFORCE_EQ(
r, XPU_SUCCESS,
platform::errors::External("XPU interpolate2d_grad kernel return "
"wrong value[%d %s]",
r, XPUAPIErrorMsg[r]));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(bilinear_interp, ops::InterpolateXPUKernel<float>);
REGISTER_OP_XPU_KERNEL(bilinear_interp_grad,
ops::InterpolateGradXPUKernel<float>);
#endif
......@@ -70,7 +70,8 @@ class SoftmaxWithCrossEntropyXPUKernel : public framework::OpKernel<T> {
r));
} else {
Tensor labels_int32;
labels_int32.mutable_data<int32_t>(context.GetPlace(), labels->numel());
labels_int32.mutable_data<int32_t>(context.GetPlace(),
labels->numel() * sizeof(int32_t));
r = xpu::cast_v2<int64_t, int32_t>(
dev_ctx.x_context(), labels->data<int64_t>(),
labels_int32.data<int32_t>(), labels->numel());
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
import sys
sys.path.append("..")
from op_test_xpu import XPUOpTest
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
import time
paddle.enable_static()
def bilinear_interp_np(input,
out_h,
out_w,
out_size=None,
actual_shape=None,
align_corners=True,
align_mode=0,
data_layout='NCHW'):
"""bilinear interpolation implement in shape [N, C, H, W]"""
if data_layout == "NHWC":
input = np.transpose(input, (0, 3, 1, 2)) # NHWC => NCHW
if out_size is not None:
out_h = out_size[0]
out_w = out_size[1]
if actual_shape is not None:
out_h = actual_shape[0]
out_w = actual_shape[1]
batch_size, channel, in_h, in_w = input.shape
ratio_h = ratio_w = 0.0
if out_h > 1:
if (align_corners):
ratio_h = (in_h - 1.0) / (out_h - 1.0)
else:
ratio_h = 1.0 * in_h / out_h
if out_w > 1:
if (align_corners):
ratio_w = (in_w - 1.0) / (out_w - 1.0)
else:
ratio_w = 1.0 * in_w / out_w
out = np.zeros((batch_size, channel, out_h, out_w))
for i in range(out_h):
if (align_mode == 0 and not align_corners):
h = int(ratio_h * (i + 0.5) - 0.5)
else:
h = int(ratio_h * i)
h = max(0, h)
hid = 1 if h < in_h - 1 else 0
if (align_mode == 0 and not align_corners):
idx_src_h = max(ratio_h * (i + 0.5) - 0.5, 0)
h1lambda = idx_src_h - h
else:
h1lambda = ratio_h * i - h
h2lambda = 1.0 - h1lambda
for j in range(out_w):
if (align_mode == 0 and not align_corners):
w = int(ratio_w * (j + 0.5) - 0.5)
else:
w = int(ratio_w * j)
w = max(0, w)
wid = 1 if w < in_w - 1 else 0
if (align_mode == 0 and not align_corners):
idx_src_w = max(ratio_w * (j + 0.5) - 0.5, 0)
w1lambda = idx_src_w - w
else:
w1lambda = ratio_w * j - w
w2lambda = 1.0 - w1lambda
out[:, :, i, j] = h2lambda*(w2lambda*input[:, :, h, w] +
w1lambda*input[:, :, h, w+wid]) + \
h1lambda*(w2lambda*input[:, :, h+hid, w] +
w1lambda*input[:, :, h+hid, w+wid])
if data_layout == "NHWC":
out = np.transpose(out, (0, 2, 3, 1)) # NCHW => NHWC
return out.astype(input.dtype)
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestBilinearInterpOp(XPUOpTest):
def setUp(self):
self.use_xpu = True
self.out_size = None
self.actual_shape = None
self.data_layout = 'NCHW'
self.init_test_case()
self.op_type = "bilinear_interp"
input_np = np.random.random(self.input_shape).astype("float32")
if self.data_layout == "NCHW":
in_h = self.input_shape[2]
in_w = self.input_shape[3]
else:
in_h = self.input_shape[1]
in_w = self.input_shape[2]
if self.scale > 0:
out_h = int(in_h * self.scale)
out_w = int(in_w * self.scale)
else:
out_h = self.out_h
out_w = self.out_w
output_np = bilinear_interp_np(input_np, out_h, out_w, self.out_size,
self.actual_shape, self.align_corners,
self.align_mode, self.data_layout)
self.inputs = {'X': input_np}
if self.out_size is not None:
self.inputs['OutSize'] = self.out_size
if self.actual_shape is not None:
self.inputs['OutSize'] = self.actual_shape
self.attrs = {
'out_h': self.out_h,
'out_w': self.out_w,
'scale': self.scale,
'interp_method': self.interp_method,
'align_corners': self.align_corners,
'align_mode': self.align_mode,
'data_layout': self.data_layout
}
self.outputs = {'Out': output_np}
def test_check_output(self):
place = paddle.XPUPlace(0)
self.check_output_with_place(place)
def test_check_grad(self):
place = paddle.XPUPlace(0)
self.check_grad_with_place(place, ['X'], 'Out', in_place=True)
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 3, 5, 5]
self.out_h = 2
self.out_w = 2
self.scale = 0.
self.out_size = np.array([3, 3]).astype("int32")
self.align_corners = True
self.align_mode = 1
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestBilinearInterpCase1(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [4, 1, 7, 8]
self.out_h = 1
self.out_w = 1
self.scale = 0.
self.align_corners = True
self.align_mode = 1
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestBilinearInterpCase2(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [3, 3, 9, 6]
self.out_h = 12
self.out_w = 12
self.scale = 0.
self.align_corners = True
self.align_mode = 1
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestBilinearInterpCase3(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [1, 1, 32, 64]
self.out_h = 64
self.out_w = 32
self.scale = 0.
self.align_corners = True
self.align_mode = 1
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestBilinearInterpCase4(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [4, 1, 7, 8]
self.out_h = 1
self.out_w = 1
self.scale = 0.
self.out_size = np.array([2, 2]).astype("int32")
self.align_corners = True
self.align_mode = 1
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestBilinearInterpCase5(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [3, 3, 9, 6]
self.out_h = 12
self.out_w = 12
self.scale = 0.
self.out_size = np.array([11, 11]).astype("int32")
self.align_corners = True
self.align_mode = 1
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestBilinearInterpCase6(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [1, 1, 32, 64]
self.out_h = 64
self.out_w = 32
self.scale = 0.
self.out_size = np.array([65, 33]).astype("int32")
self.align_corners = True
self.align_mode = 1
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestBilinearInterpSame(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 3, 32, 64]
self.out_h = 32
self.out_w = 64
self.scale = 0.
self.align_corners = True
self.align_mode = 1
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestBilinearInterpActualShape(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [3, 2, 32, 16]
self.out_h = 64
self.out_w = 32
self.scale = 0.
self.out_size = np.array([66, 40]).astype("int32")
self.align_corners = True
self.align_mode = 1
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestBilinearInterpDataLayout(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 5, 5, 3]
self.out_h = 2
self.out_w = 2
self.scale = 0.
self.out_size = np.array([3, 3]).astype("int32")
self.align_corners = True
self.align_mode = 1
self.data_layout = "NHWC"
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestBilinearInterpOtherMethod1(TestBilinearInterpOp):
def set_align_mode(self):
self.align_corners = False
self.align_mode = 1
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestBilinearInterpWithMethod2(TestBilinearInterpOp):
def set_align_mode(self):
self.align_corners = False
self.align_mode = 0
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestBilinearInterpWithMethod3(TestBilinearInterpOp):
def set_align_mode(self):
self.align_corners = True
self.align_mode = 0
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestBilinearInterpScale1(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 3, 5, 7]
self.out_h = 60
self.out_w = 25
self.scale = 2.
self.align_corners = True
self.align_mode = 1
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestBilinearInterpScale2(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 3, 5, 7]
self.out_h = 60
self.out_w = 25
self.scale = 1.
self.align_corners = True
self.align_mode = 1
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestBilinearInterpScale3(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 3, 5, 7]
self.out_h = 60
self.out_w = 25
self.scale = 1.5
self.align_corners = True
self.align_mode = 1
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestBilinearInterpZero(TestBilinearInterpOp):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 3, 5, 7]
self.out_h = 60
self.out_w = 25
self.scale = 0.2
self.align_corners = False
self.align_mode = 0
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestBilinearInterpOp_attr_tensor(XPUOpTest):
def setUp(self):
self.out_size = None
self.actual_shape = None
self.init_test_case()
self.op_type = "bilinear_interp"
self.shape_by_1Dtensor = False
self.scale_by_1Dtensor = False
self.attrs = {
'interp_method': self.interp_method,
'align_corners': self.align_corners,
}
input_np = np.random.random(self.input_shape).astype("float32")
self.inputs = {'X': input_np}
if self.scale_by_1Dtensor:
self.inputs['Scale'] = np.array([self.scale]).astype("float32")
elif self.scale > 0:
out_h = int(self.input_shape[2] * self.scale)
out_w = int(self.input_shape[3] * self.scale)
self.attrs['scale'] = self.scale
else:
out_h = self.out_h
out_w = self.out_w
if self.shape_by_1Dtensor:
self.inputs['OutSize'] = self.out_size
elif self.out_size is not None:
size_tensor = []
for index, ele in enumerate(self.out_size):
size_tensor.append(("x" + str(index), np.ones(
(1)).astype('int32') * ele))
self.inputs['SizeTensor'] = size_tensor
self.attrs['out_h'] = self.out_h
self.attrs['out_w'] = self.out_w
output_np = bilinear_interp_np(input_np, out_h, out_w, self.out_size,
self.actual_shape, self.align_corners)
self.outputs = {'Out': output_np}
def test_check_output(self):
place = paddle.XPUPlace(0)
self.check_output_with_place(place)
def test_check_grad(self):
place = paddle.XPUPlace(0)
self.check_grad_with_place(place, ['X'], 'Out', in_place=True)
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [2, 3, 5, 5]
self.out_h = 3
self.out_w = 3
self.scale = 0.
self.out_size = [3, 3]
self.align_corners = True
# out_size is a 1-D tensor
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestBilinearInterp_attr_tensor_Case1(TestBilinearInterpOp_attr_tensor):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [3, 3, 9, 6]
self.out_h = 12
self.out_w = 12
self.scale = 0.
self.out_size = [8, 12]
self.align_corners = True
# scale is a 1-D tensor
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestBilinearInterp_attr_tensor_Case2(TestBilinearInterpOp_attr_tensor):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [3, 2, 32, 16]
self.out_h = 64
self.out_w = 32
self.scale = 0.
self.out_size = np.array([66, 40]).astype("int32")
self.align_corners = True
self.shape_by_1Dtensor = True
# scale is a 1-D tensor
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestBilinearInterp_attr_tensor_Case3(TestBilinearInterpOp_attr_tensor):
def init_test_case(self):
self.interp_method = 'bilinear'
self.input_shape = [3, 2, 32, 16]
self.out_h = 64
self.out_w = 32
self.scale = 2.0
self.out_size = None
self.align_corners = True
self.scale_by_1Dtensor = True
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestBilinearInterpOpAPI(unittest.TestCase):
def test_case(self):
x = fluid.data(name="x", shape=[2, 3, 6, 6], dtype="float32")
dim = fluid.data(name="dim", shape=[1], dtype="int32")
shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
actual_size = fluid.data(name="actual_size", shape=[2], dtype="int32")
scale_tensor = fluid.data(
name="scale_tensor", shape=[1], dtype="float32")
out1 = fluid.layers.resize_bilinear(x, out_shape=[12, 12])
out2 = fluid.layers.resize_bilinear(x, out_shape=[12, dim])
out3 = fluid.layers.resize_bilinear(x, out_shape=shape_tensor)
out4 = fluid.layers.resize_bilinear(
x, out_shape=[4, 4], actual_shape=actual_size)
out5 = fluid.layers.resize_bilinear(x, scale=scale_tensor)
x_data = np.random.random((2, 3, 6, 6)).astype("float32")
dim_data = np.array([12]).astype("int32")
shape_data = np.array([12, 12]).astype("int32")
actual_size_data = np.array([12, 12]).astype("int32")
scale_data = np.array([2.0]).astype("float32")
place = core.XPUPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
results = exe.run(fluid.default_main_program(),
feed={
"x": x_data,
"dim": dim_data,
"shape_tensor": shape_data,
"actual_size": actual_size_data,
"scale_tensor": scale_data
},
fetch_list=[out1, out2, out3, out4, out5],
return_numpy=True)
expect_res = bilinear_interp_np(
x_data, out_h=12, out_w=12, align_corners=True)
for res in results:
self.assertTrue(np.allclose(res, expect_res))
if __name__ == "__main__":
unittest.main()
......@@ -17,7 +17,7 @@ import sys
sys.path.append("..")
from test_softmax_op import stable_softmax
from op_test import OpTest
from op_test_xpu import XPUOpTest
import paddle.fluid.core as core
import paddle
......@@ -45,7 +45,7 @@ def cross_entropy(softmax, label, soft_label, axis, ignore_index=-1):
return result.reshape(label.shape)
class TestSoftmaxWithCrossEntropyOp(OpTest):
class TestSoftmaxWithCrossEntropyOp(XPUOpTest):
"""
Test softmax with cross entropy operator with discreate one-hot labels.
"""
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册