提交 ecb2419e 编写于 作者: Z zhouwei25 提交者: liuwei1031

increase the explanation doc of py_func (#21631)

* increase example code of py_func, fix some wrong description of English API doc
上级 b976ba3e
......@@ -12190,12 +12190,15 @@ class PyFuncRegistry(object):
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
"""
This API is used to register customized OP to Fluid. The forward function
of the registered OP is ``func`` and the backward function of that is
``backward_func``. Paddle will call ``func`` at forward runtime and call
``backward_func`` at backward runtime(if ``backward_func`` is not None).
This OP is used to register customized Python OP to Paddle Fluid. The design
principe of py_func is that LodTensor and numpy array can be converted to each
other easily. So you can use Python and numpy API to register a python OP.
The forward function of the registered OP is ``func`` and the backward function
of that is ``backward_func``. Paddle will call ``func`` at forward runtime and
call ``backward_func`` at backward runtime(if ``backward_func`` is not None).
``x`` is the input of ``func``, whose type must be LoDTensor; ``out`` is
the output of ``func``, whose type can be either LoDTensor or NumPy array.
the output of ``func``, whose type can be either LoDTensor or numpy array.
The input of the backward function ``backward_func`` is ``x``, ``out`` and
the gradient of ``out``. If some variables of ``out`` have no gradient, the
......@@ -12212,49 +12215,56 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
Args:
func (callable): The forward function of the registered OP. When the network
is running, the forward output ``out`` will be calculated according to this
function and the forward input ``x``.
x (Variable): The input of the forward function ``func``, its type can be
Variable | tuple[Variable] | list[Variale], in which Variable is LoDTensor.
out (Variable): The output of the forward function ``func``, its type can be
Variable | tuple[Variable] | list[Variale], in which Variable can be either
LoDTensor or NumPy array. Since Paddle cannot automatically infer the shape
and data type of ``out``, ``out`` must be created in advance.
function and the forward input ``x``. In ``func`` , it's suggested that we
actively convert LoDTensor into a numpy array, so that we can use Python and
numpy API arbitrarily. If not, some operations of numpy may not be compatible.
x (Variable|tuple(Variale)|list[Variale]): The input of the forward function ``func``.
It can be Variable|tuple(Variale)|list[Variale], where Variable is LoDTensor or
Tenosor. In addition, Multiple Variable should be passed in the form of tuple(Variale)
or list[Variale].
out (Variable|tuple(Variale)|list[Variale]): The output of the forward function ``func``,
it can be Variable|tuple(Variale)|list[Variale], where Variable can be either LoDTensor
or numpy array. Since Paddle cannot automatically infer the shape and type of ``out``,
you must create ``out`` in advance.
backward_func (callable, optional): The backward function of the registered OP.
Its default value is None, which means there is no reverse calculation. If
it is not None, ``backward_func`` is called to calculate the gradient of
``x`` when the network is at backward runtime.
skip_vars_in_backward_input (Variable, optional): It's used to limit the input
variable list of ``backward_func``, and it can be single Variable, tuple[Variable]
or list[Variable]. It must belong to either ``x`` or ``out``. The default
value is None, which means that no variables need to be removed from ``x``
and ``out``. If it is not None, these variables will not be the input of
``backward_func``. This parameter is only useful when ``backward_func`` is
not None.
variable list of ``backward_func``, and it can be Variable|tuple(Variale)|list[Variale].
It must belong to either ``x`` or ``out``. The default value is None, which means
that no variables need to be removed from ``x`` and ``out``. If it is not None,
these variables will not be the input of ``backward_func``. This parameter is only
useful when ``backward_func`` is not None.
Returns:
Variable: The output ``out`` of the forward function ``func``.
Variable|tuple(Variale)|list[Variale]: The output ``out`` of the forward function ``func``.
Examples:
.. code-block:: python
# example 1:
import paddle.fluid as fluid
import six
def create_tmp_var(name, dtype, shape):
return fluid.default_main_program().current_block().create_var(
name=name, dtype=dtype, shape=shape)
# Tanh activation function provided by Paddle C++ op
# Here, tanh is used as an example to show how to use py_func
# Creates a forward function, LodTensor can be input directly without
# being converted into numpy array.
def tanh(x):
return np.tanh(x)
# Skip forward input x
# Skip x in backward function and return the gradient of x
# LodTensor must be actively converted to numpy array, otherwise,
# operations such as +/- can't be used.
def tanh_grad(y, dy):
return np.array(dy) * (1 - np.square(np.array(y)))
# Creates a forward function for debugging running networks(print value)
def debug_func(x):
print(x)
def create_tmp_var(name, dtype, shape):
return fluid.default_main_program().current_block().create_var(
name=name, dtype=dtype, shape=shape)
def simple_net(img, label):
hidden = img
......@@ -12268,12 +12278,69 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
out=new_hidden, backward_func=tanh_grad,
skip_vars_in_backward_input=hidden)
# User-defined debugging layer, which can print out variable details
# User-defined debug functions that print out the input LodTensor
fluid.layers.py_func(func=debug_func, x=hidden, out=None)
prediction = fluid.layers.fc(hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
return fluid.layers.mean(loss)
# example 2:
# This example shows how to turn LoDTensor into numpy array and
# use numpy API to register an Python OP
import paddle.fluid as fluid
import numpy as np
def element_wise_add(x, y):
# LodTensor must be actively converted to numpy array, otherwise,
# numpy.shape can't be used.
x = np.array(x)
y = np.array(y)
if x.shape != y.shape:
raise AssertionError("the shape of inputs must be the same!")
result = np.zeros(x.shape, dtype='int32')
for i in range(len(x)):
for j in range(len(x[0])):
result[i][j] = x[i][j] + y[i][j]
return result
def create_tmp_var(name, dtype, shape):
return fluid.default_main_program().current_block().create_var(
name=name, dtype=dtype, shape=shape)
def py_func_demo():
start_program = fluid.default_startup_program()
main_program = fluid.default_main_program()
# Input of the forward function
x = fluid.data(name='x', shape=[2,3], dtype='int32')
y = fluid.data(name='y', shape=[2,3], dtype='int32')
# Output of the forward function, name/dtype/shape must be specified
output = create_tmp_var('output','int32', [3,1])
# Multiple Variable should be passed in the form of tuple(Variale) or list[Variale]
fluid.layers.py_func(func=element_wise_add, x=[x,y], out=output)
exe=fluid.Executor(fluid.CPUPlace())
exe.run(start_program)
# Feed numpy array to main_program
input1 = np.random.randint(1, 10, size=[2,3], dtype='int32')
input2 = np.random.randint(1, 10, size=[2,3], dtype='int32')
out = exe.run(main_program,
feed={'x':input1, 'y':input2},
fetch_list=[output.name])
print("{0} + {1} = {2}".format(input1, input2, out))
py_func_demo()
# Reference output:
# [[5, 9, 9] + [[7, 8, 4] = [array([[12, 17, 13]
# [7, 5, 2]] [1, 3, 3]] [8, 8, 5]], dtype=int32)]
"""
helper = LayerHelper('py_func', **locals())
if x is None:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册