Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ecb2419e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ecb2419e
编写于
12月 17, 2019
作者:
Z
zhouwei25
提交者:
liuwei1031
12月 17, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
increase the explanation doc of py_func (#21631)
* increase example code of py_func, fix some wrong description of English API doc
上级
b976ba3e
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
96 addition
and
29 deletion
+96
-29
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+96
-29
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
ecb2419e
...
@@ -12190,12 +12190,15 @@ class PyFuncRegistry(object):
...
@@ -12190,12 +12190,15 @@ class PyFuncRegistry(object):
@templatedoc()
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
"""
"""
This API is used to register customized OP to Fluid. The forward function
This OP is used to register customized Python OP to Paddle Fluid. The design
of the registered OP is ``func`` and the backward function of that is
principe of py_func is that LodTensor and numpy array can be converted to each
``backward_func``. Paddle will call ``func`` at forward runtime and call
other easily. So you can use Python and numpy API to register a python OP.
``backward_func`` at backward runtime(if ``backward_func`` is not None).
The forward function of the registered OP is ``func`` and the backward function
of that is ``backward_func``. Paddle will call ``func`` at forward runtime and
call ``backward_func`` at backward runtime(if ``backward_func`` is not None).
``x`` is the input of ``func``, whose type must be LoDTensor; ``out`` is
``x`` is the input of ``func``, whose type must be LoDTensor; ``out`` is
the output of ``func``, whose type can be either LoDTensor or
NumP
y array.
the output of ``func``, whose type can be either LoDTensor or
nump
y array.
The input of the backward function ``backward_func`` is ``x``, ``out`` and
The input of the backward function ``backward_func`` is ``x``, ``out`` and
the gradient of ``out``. If some variables of ``out`` have no gradient, the
the gradient of ``out``. If some variables of ``out`` have no gradient, the
...
@@ -12212,49 +12215,56 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
...
@@ -12212,49 +12215,56 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
Args:
Args:
func (callable): The forward function of the registered OP. When the network
func (callable): The forward function of the registered OP. When the network
is running, the forward output ``out`` will be calculated according to this
is running, the forward output ``out`` will be calculated according to this
function and the forward input ``x``.
function and the forward input ``x``. In ``func`` , it's suggested that we
x (Variable): The input of the forward function ``func``, its type can be
actively convert LoDTensor into a numpy array, so that we can use Python and
Variable | tuple[Variable] | list[Variale], in which Variable is LoDTensor.
numpy API arbitrarily. If not, some operations of numpy may not be compatible.
out (Variable): The output of the forward function ``func``, its type can be
x (Variable|tuple(Variale)|list[Variale]): The input of the forward function ``func``.
Variable | tuple[Variable] | list[Variale], in which Variable can be either
It can be Variable|tuple(Variale)|list[Variale], where Variable is LoDTensor or
LoDTensor or NumPy array. Since Paddle cannot automatically infer the shape
Tenosor. In addition, Multiple Variable should be passed in the form of tuple(Variale)
and data type of ``out``, ``out`` must be created in advance.
or list[Variale].
out (Variable|tuple(Variale)|list[Variale]): The output of the forward function ``func``,
it can be Variable|tuple(Variale)|list[Variale], where Variable can be either LoDTensor
or numpy array. Since Paddle cannot automatically infer the shape and type of ``out``,
you must create ``out`` in advance.
backward_func (callable, optional): The backward function of the registered OP.
backward_func (callable, optional): The backward function of the registered OP.
Its default value is None, which means there is no reverse calculation. If
Its default value is None, which means there is no reverse calculation. If
it is not None, ``backward_func`` is called to calculate the gradient of
it is not None, ``backward_func`` is called to calculate the gradient of
``x`` when the network is at backward runtime.
``x`` when the network is at backward runtime.
skip_vars_in_backward_input (Variable, optional): It's used to limit the input
skip_vars_in_backward_input (Variable, optional): It's used to limit the input
variable list of ``backward_func``, and it can be single Variable, tuple[Variable]
variable list of ``backward_func``, and it can be Variable|tuple(Variale)|list[Variale].
or list[Variable]. It must belong to either ``x`` or ``out``. The default
It must belong to either ``x`` or ``out``. The default value is None, which means
value is None, which means that no variables need to be removed from ``x``
that no variables need to be removed from ``x`` and ``out``. If it is not None,
and ``out``. If it is not None, these variables will not be the input of
these variables will not be the input of ``backward_func``. This parameter is only
``backward_func``. This parameter is only useful when ``backward_func`` is
useful when ``backward_func`` is not None.
not None.
Returns:
Returns:
Variable: The output ``out`` of the forward function ``func``.
Variable
|tuple(Variale)|list[Variale]
: The output ``out`` of the forward function ``func``.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
# example 1:
import paddle.fluid as fluid
import paddle.fluid as fluid
import six
import six
def create_tmp_var(name, dtype, shape):
# Creates a forward function, LodTensor can be input directly without
return fluid.default_main_program().current_block().create_var(
# being converted into numpy array.
name=name, dtype=dtype, shape=shape)
# Tanh activation function provided by Paddle C++ op
# Here, tanh is used as an example to show how to use py_func
def tanh(x):
def tanh(x):
return np.tanh(x)
return np.tanh(x)
# Skip forward input x
# Skip x in backward function and return the gradient of x
# LodTensor must be actively converted to numpy array, otherwise,
# operations such as +/- can't be used.
def tanh_grad(y, dy):
def tanh_grad(y, dy):
return np.array(dy) * (1 - np.square(np.array(y)))
return np.array(dy) * (1 - np.square(np.array(y)))
# Creates a forward function for debugging running networks(print value)
def debug_func(x):
def debug_func(x):
print(x)
print(x)
def create_tmp_var(name, dtype, shape):
return fluid.default_main_program().current_block().create_var(
name=name, dtype=dtype, shape=shape)
def simple_net(img, label):
def simple_net(img, label):
hidden = img
hidden = img
...
@@ -12268,12 +12278,69 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
...
@@ -12268,12 +12278,69 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
out=new_hidden, backward_func=tanh_grad,
out=new_hidden, backward_func=tanh_grad,
skip_vars_in_backward_input=hidden)
skip_vars_in_backward_input=hidden)
# User-defined debug
ging layer, which can print out variable details
# User-defined debug
functions that print out the input LodTensor
fluid.layers.py_func(func=debug_func, x=hidden, out=None)
fluid.layers.py_func(func=debug_func, x=hidden, out=None)
prediction = fluid.layers.fc(hidden, size=10, act='softmax')
prediction = fluid.layers.fc(hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.cross_entropy(input=prediction, label=label)
return fluid.layers.mean(loss)
return fluid.layers.mean(loss)
# example 2:
# This example shows how to turn LoDTensor into numpy array and
# use numpy API to register an Python OP
import paddle.fluid as fluid
import numpy as np
def element_wise_add(x, y):
# LodTensor must be actively converted to numpy array, otherwise,
# numpy.shape can't be used.
x = np.array(x)
y = np.array(y)
if x.shape != y.shape:
raise AssertionError("the shape of inputs must be the same!")
result = np.zeros(x.shape, dtype='int32')
for i in range(len(x)):
for j in range(len(x[0])):
result[i][j] = x[i][j] + y[i][j]
return result
def create_tmp_var(name, dtype, shape):
return fluid.default_main_program().current_block().create_var(
name=name, dtype=dtype, shape=shape)
def py_func_demo():
start_program = fluid.default_startup_program()
main_program = fluid.default_main_program()
# Input of the forward function
x = fluid.data(name='x', shape=[2,3], dtype='int32')
y = fluid.data(name='y', shape=[2,3], dtype='int32')
# Output of the forward function, name/dtype/shape must be specified
output = create_tmp_var('output','int32', [3,1])
# Multiple Variable should be passed in the form of tuple(Variale) or list[Variale]
fluid.layers.py_func(func=element_wise_add, x=[x,y], out=output)
exe=fluid.Executor(fluid.CPUPlace())
exe.run(start_program)
# Feed numpy array to main_program
input1 = np.random.randint(1, 10, size=[2,3], dtype='int32')
input2 = np.random.randint(1, 10, size=[2,3], dtype='int32')
out = exe.run(main_program,
feed={'x':input1, 'y':input2},
fetch_list=[output.name])
print("{0} + {1} = {2}".format(input1, input2, out))
py_func_demo()
# Reference output:
# [[5, 9, 9] + [[7, 8, 4] = [array([[12, 17, 13]
# [7, 5, 2]] [1, 3, 3]] [8, 8, 5]], dtype=int32)]
"""
"""
helper = LayerHelper('py_func', **locals())
helper = LayerHelper('py_func', **locals())
if x is None:
if x is None:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录