Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ec9c0874
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ec9c0874
编写于
3月 27, 2019
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Implement Expotential NatureExp Inversetime and Polynomal Decay
上级
4278be8c
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
248 addition
and
53 deletion
+248
-53
python/paddle/fluid/imperative/learning_rate_scheduler.py
python/paddle/fluid/imperative/learning_rate_scheduler.py
+117
-1
python/paddle/fluid/layers/learning_rate_scheduler.py
python/paddle/fluid/layers/learning_rate_scheduler.py
+58
-37
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
...paddle/fluid/tests/unittests/test_imperative_optimizer.py
+73
-15
未找到文件。
python/paddle/fluid/imperative/learning_rate_scheduler.py
浏览文件 @
ec9c0874
...
...
@@ -16,7 +16,9 @@ from __future__ import print_function
from
..
import
unique_name
__all__
=
[
'PiecewiseDecay'
]
__all__
=
[
'PiecewiseDecay'
,
'NaturalExpDecay'
,
'ExponentialDecay'
,
'InverseTimeDecay'
]
class
LearningRateDecay
(
object
):
...
...
@@ -65,3 +67,117 @@ class PiecewiseDecay(LearningRateDecay):
if
self
.
step_num
<
self
.
boundaries
[
i
]:
return
self
.
vars
[
i
]
return
self
.
vars
[
len
(
self
.
values
)
-
1
]
class
NaturalExpDecay
(
LearningRateDecay
):
def
__init__
(
self
,
learning_rate
,
decay_steps
,
decay_rate
,
staircase
=
False
,
begin
=
0
,
step
=
1
,
dtype
=
'float32'
):
super
(
NaturalExpDecay
,
self
).
__init__
(
begin
,
step
,
dtype
)
self
.
learning_rate
=
learning_rate
self
.
decay_steps
=
decay_steps
self
.
decay_rate
=
decay_rate
self
.
staircase
=
staircase
def
step
(
self
):
from
..
import
layers
div_res
=
self
.
create_lr_var
(
self
.
step_num
/
self
.
decay_steps
)
if
self
.
staircase
:
div_res
=
layers
.
floor
(
div_res
)
decayed_lr
=
self
.
learning_rate
*
layers
.
exp
(
-
1
*
self
.
decay_rate
*
div_res
)
return
decayed_lr
class
ExponentialDecay
(
LearningRateDecay
):
def
__init__
(
self
,
learning_rate
,
decay_steps
,
decay_rate
,
staircase
=
False
,
begin
=
0
,
step
=
1
,
dtype
=
'float32'
):
super
(
ExponentialDecay
,
self
).
__init__
(
begin
,
step
,
dtype
)
self
.
learning_rate
=
learning_rate
self
.
decay_steps
=
decay_steps
self
.
decay_rate
=
decay_rate
self
.
staircase
=
staircase
def
step
(
self
):
from
..
import
layers
div_res
=
self
.
create_lr_var
(
self
.
step_num
/
self
.
decay_steps
)
if
self
.
staircase
:
div_res
=
layers
.
floor
(
div_res
)
decayed_lr
=
self
.
learning_rate
*
(
self
.
decay_rate
**
div_res
)
return
decayed_lr
class
InverseTimeDecay
(
LearningRateDecay
):
def
__init__
(
self
,
learning_rate
,
decay_steps
,
decay_rate
,
staircase
=
False
,
begin
=
0
,
step
=
1
,
dtype
=
'float32'
):
super
(
InverseTimeDecay
,
self
).
__init__
(
begin
,
step
,
dtype
)
self
.
learning_rate
=
learning_rate
self
.
decay_steps
=
decay_steps
self
.
decay_rate
=
decay_rate
self
.
staircase
=
staircase
def
step
(
self
):
from
..
import
layers
div_res
=
self
.
create_lr_var
(
self
.
step_num
/
self
.
decay_steps
)
if
self
.
staircase
:
div_res
=
layers
.
floor
(
div_res
)
decayed_lr
=
self
.
learning_rate
/
(
1
+
self
.
decay_rate
*
div_res
)
return
decayed_lr
class
PolynomialDecay
(
LearningRateDecay
):
def
__init__
(
self
,
learning_rate
,
decay_steps
,
end_learning_rate
=
0.0001
,
power
=
1.0
,
cycle
=
False
,
begin
=
0
,
step
=
1
,
dtype
=
'float32'
):
super
(
PolynomialDecay
,
self
).
__init__
(
begin
,
step
,
dtype
)
self
.
learning_rate
=
learning_rate
self
.
decay_steps
=
decay_steps
self
.
end_learning_rate
=
end_learning_rate
self
.
power
=
power
self
.
cycle
=
cycle
def
step
(
self
):
from
..
import
layers
if
self
.
cycle
:
div_res
=
layers
.
ceil
(
self
.
create_lr_var
(
self
.
step_num
/
self
.
decay_steps
))
zero_var
=
0.0
one_var
=
1.0
if
float
(
self
.
step_num
)
==
zero_var
:
div_res
=
one_var
decay_steps
=
self
.
decay_steps
*
div_res
else
:
global_step
=
global_step
if
global_step
<
self
.
decay_steps
else
self
.
decay_steps
decayed_lr
=
(
self
.
learning_rate
-
self
.
end_learning_rate
)
*
\
((
1
-
global_step
/
self
.
decay_steps
)
**
self
.
power
)
+
self
.
end_learning_rate
return
self
.
create_lr_var
(
decayed_lr
)
python/paddle/fluid/layers/learning_rate_scheduler.py
浏览文件 @
ec9c0874
...
...
@@ -115,14 +115,19 @@ def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
"""
with
default_main_program
().
_lr_schedule_guard
():
global_step
=
_decay_step_counter
()
if
imperative_base
.
enabled
():
decay
=
imperate_lr
.
ExponentialDecay
(
learning_rate
,
decay_steps
,
decay_rate
,
staircase
)
return
decay
else
:
global_step
=
_decay_step_counter
()
div_res
=
global_step
/
decay_steps
if
staircase
:
div_res
=
ops
.
floor
(
div_res
)
decayed_lr
=
learning_rate
*
(
decay_rate
**
div_res
)
div_res
=
global_step
/
decay_steps
if
staircase
:
div_res
=
ops
.
floor
(
div_res
)
decayed_lr
=
learning_rate
*
(
decay_rate
**
div_res
)
return
decayed_lr
return
decayed_lr
def
natural_exp_decay
(
learning_rate
,
decay_steps
,
decay_rate
,
staircase
=
False
):
...
...
@@ -144,14 +149,19 @@ def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
The decayed learning rate
"""
with
default_main_program
().
_lr_schedule_guard
():
global_step
=
_decay_step_counter
()
if
imperative_base
.
enabled
():
decay
=
imperate_lr
.
NaturalExpDecay
(
learning_rate
,
decay_steps
,
decay_rate
,
staircase
)
return
decay
else
:
global_step
=
_decay_step_counter
()
div_res
=
global_step
/
decay_steps
if
staircase
:
div_res
=
ops
.
floor
(
div_res
)
decayed_lr
=
learning_rate
*
ops
.
exp
(
-
1
*
decay_rate
*
div_res
)
div_res
=
global_step
/
decay_steps
if
staircase
:
div_res
=
ops
.
floor
(
div_res
)
decayed_lr
=
learning_rate
*
ops
.
exp
(
-
1
*
decay_rate
*
div_res
)
return
decayed_lr
return
decayed_lr
def
inverse_time_decay
(
learning_rate
,
decay_steps
,
decay_rate
,
staircase
=
False
):
...
...
@@ -190,15 +200,20 @@ def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
sgd_optimizer.minimize(avg_cost)
"""
with
default_main_program
().
_lr_schedule_guard
():
global_step
=
_decay_step_counter
()
if
imperative_base
.
enabled
():
decay
=
imperate_lr
.
InverseTimeDecay
(
learning_rate
,
decay_steps
,
decay_rate
,
staircase
)
return
decay
else
:
global_step
=
_decay_step_counter
()
div_res
=
global_step
/
decay_steps
if
staircase
:
div_res
=
ops
.
floor
(
div_res
)
div_res
=
global_step
/
decay_steps
if
staircase
:
div_res
=
ops
.
floor
(
div_res
)
decayed_lr
=
learning_rate
/
(
1
+
decay_rate
*
div_res
)
decayed_lr
=
learning_rate
/
(
1
+
decay_rate
*
div_res
)
return
decayed_lr
return
decayed_lr
def
polynomial_decay
(
learning_rate
,
...
...
@@ -230,27 +245,33 @@ def polynomial_decay(learning_rate,
Variable: The decayed learning rate
"""
with
default_main_program
().
_lr_schedule_guard
():
global_step
=
_decay_step_counter
()
if
cycle
:
div_res
=
ops
.
ceil
(
global_step
/
decay_steps
)
zero_var
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
0.0
)
one_var
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
1.0
)
with
control_flow
.
Switch
()
as
switch
:
with
switch
.
case
(
global_step
==
zero_var
):
tensor
.
assign
(
input
=
one_var
,
output
=
div_res
)
decay_steps
=
decay_steps
*
div_res
if
imperative_base
.
enabled
():
decay
=
imperate_lr
.
PolynomialDecay
(
learning_rate
,
decay_steps
,
end_learning_rate
,
power
,
cycle
)
return
decay
else
:
decay_steps_var
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
decay_steps
))
global_step
=
nn
.
elementwise_min
(
x
=
global_step
,
y
=
decay_steps_var
)
global_step
=
_decay_step_counter
()
decayed_lr
=
(
learning_rate
-
end_learning_rate
)
*
\
((
1
-
global_step
/
decay_steps
)
**
power
)
+
end_learning_rate
return
decayed_lr
if
cycle
:
div_res
=
ops
.
ceil
(
global_step
/
decay_steps
)
zero_var
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
0.0
)
one_var
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
1.0
)
with
control_flow
.
Switch
()
as
switch
:
with
switch
.
case
(
global_step
==
zero_var
):
tensor
.
assign
(
input
=
one_var
,
output
=
div_res
)
decay_steps
=
decay_steps
*
div_res
else
:
decay_steps_var
=
tensor
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
float
(
decay_steps
))
global_step
=
nn
.
elementwise_min
(
x
=
global_step
,
y
=
decay_steps_var
)
decayed_lr
=
(
learning_rate
-
end_learning_rate
)
*
\
((
1
-
global_step
/
decay_steps
)
**
power
)
+
end_learning_rate
return
decayed_lr
def
piecewise_decay
(
boundaries
,
values
):
...
...
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
浏览文件 @
ec9c0874
...
...
@@ -22,7 +22,7 @@ import six
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.fluid.optimizer
import
SGDOptimizer
,
Adam
from
paddle.fluid.imperative.nn
import
FC
from
paddle.fluid.imperative.base
import
to_variable
from
test_imperative_base
import
new_program_scope
...
...
@@ -46,14 +46,9 @@ class TestImperativeOptimizerBase(unittest.TestCase):
self
.
batch_num
=
10
def
get_optimizer
(
self
):
bd
=
[
3
,
6
,
9
]
self
.
optimizer
=
SGDOptimizer
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
[
0.1
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]))
return
self
.
optimizer
raise
NotImplementedError
()
def
test_optimizer_float32
(
self
):
def
_check_mlp
(
self
):
seed
=
90
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
...
...
@@ -83,16 +78,14 @@ class TestImperativeOptimizerBase(unittest.TestCase):
dy_out
=
avg_loss
.
_numpy
()
if
batch_id
==
0
:
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
for
param
in
mlp
.
parameters
():
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
avg_loss
.
_backward
()
optimizer
.
minimize
(
avg_loss
)
mlp
.
clear_gradients
()
dy_param_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
for
param
in
mlp
.
parameters
():
dy_param_value
[
param
.
name
]
=
param
.
_numpy
()
with
new_program_scope
():
...
...
@@ -102,7 +95,7 @@ class TestImperativeOptimizerBase(unittest.TestCase):
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
m
nist
=
MLP
(
'mlp'
)
m
lp
=
MLP
(
'mlp'
)
optimizer
=
self
.
get_optimizer
()
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
,
drop_last
=
True
)
...
...
@@ -110,14 +103,14 @@ class TestImperativeOptimizerBase(unittest.TestCase):
img
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
cost
=
m
nist
(
img
)
cost
=
m
lp
(
img
)
avg_loss
=
fluid
.
layers
.
reduce_mean
(
cost
)
optimizer
.
minimize
(
avg_loss
)
# initialize params and fetch them
static_param_init_value
=
{}
static_param_name_list
=
[]
for
param
in
m
nist
.
parameters
():
for
param
in
m
lp
.
parameters
():
static_param_name_list
.
append
(
param
.
name
)
out
=
exe
.
run
(
fluid
.
default_startup_program
(),
...
...
@@ -156,5 +149,70 @@ class TestImperativeOptimizerBase(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_value
[
key
],
atol
=
1e-5
))
class
TestImperativeOptimizerPiecewiseDecay
(
TestImperativeOptimizerBase
):
def
get_optimizer
(
self
):
bd
=
[
3
,
6
,
9
]
optimizer
=
SGDOptimizer
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
[
0.1
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]))
return
optimizer
def
test_sgd
(
self
):
self
.
_check_mlp
()
class
TestImperativeOptimizerNaturalExpDecay
(
TestImperativeOptimizerBase
):
def
get_optimizer
(
self
):
optimizer
=
SGDOptimizer
(
learning_rate
=
fluid
.
layers
.
natural_exp_decay
(
learning_rate
=
0.1
,
decay_steps
=
10000
,
decay_rate
=
0.5
,
staircase
=
True
))
return
optimizer
def
test_sgd
(
self
):
self
.
_check_mlp
()
class
TestImperativeOptimizerExponentialDecay
(
TestImperativeOptimizerBase
):
def
get_optimizer
(
self
):
optimizer
=
SGDOptimizer
(
learning_rate
=
fluid
.
layers
.
exponential_decay
(
learning_rate
=
0.1
,
decay_steps
=
10000
,
decay_rate
=
0.5
,
staircase
=
True
))
return
optimizer
def
test_sgd
(
self
):
self
.
_check_mlp
()
class
TestImperativeOptimizerInverseTimeDecay
(
TestImperativeOptimizerBase
):
def
get_optimizer
(
self
):
optimizer
=
Adam
(
learning_rate
=
fluid
.
layers
.
inverse_time_decay
(
learning_rate
=
0.1
,
decay_steps
=
10000
,
decay_rate
=
0.5
,
staircase
=
True
))
return
optimizer
def
test_adam
(
self
):
self
.
_check_mlp
()
class
TestImperativeOptimizerPolynomialDecay
(
TestImperativeOptimizerBase
):
def
get_optimizer
(
self
):
optimizer
=
SGDOptimizer
(
learning_rate
=
fluid
.
layers
.
polynomial_decay
(
learning_rate
=
0.1
,
decay_steps
=
5
,
cycle
=
self
.
cycle
))
return
optimizer
def
test_sgd_cycle
(
self
):
self
.
cycle
=
True
self
.
_check_mlp
()
def
test_sgd
(
self
):
self
.
cycle
=
False
self
.
_check_mlp
()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录