Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ec3e0a13
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ec3e0a13
编写于
6月 20, 2022
作者:
Z
zhangbopd
提交者:
GitHub
6月 20, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add cross_op cuda kernel (#43558)
上级
abbd4abb
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
448 addition
and
233 deletion
+448
-233
paddle/fluid/operators/cross_op.cc
paddle/fluid/operators/cross_op.cc
+12
-0
paddle/phi/kernels/cpu/cross_grad_kernel.cc
paddle/phi/kernels/cpu/cross_grad_kernel.cc
+96
-1
paddle/phi/kernels/cpu/cross_kernel.cc
paddle/phi/kernels/cpu/cross_kernel.cc
+89
-1
paddle/phi/kernels/gpu/cross_grad_kernel.cu
paddle/phi/kernels/gpu/cross_grad_kernel.cu
+133
-1
paddle/phi/kernels/gpu/cross_kernel.cu
paddle/phi/kernels/gpu/cross_kernel.cu
+118
-1
paddle/phi/kernels/impl/cross_grad_kernel_impl.h
paddle/phi/kernels/impl/cross_grad_kernel_impl.h
+0
-113
paddle/phi/kernels/impl/cross_kernel_impl.h
paddle/phi/kernels/impl/cross_kernel_impl.h
+0
-116
未找到文件。
paddle/fluid/operators/cross_op.cc
浏览文件 @
ec3e0a13
...
@@ -61,6 +61,18 @@ class CrossGradOp : public framework::OperatorWithKernel {
...
@@ -61,6 +61,18 @@ class CrossGradOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Y"
),
ctx
->
GetInputDim
(
"Y"
));
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Y"
),
ctx
->
GetInputDim
(
"Y"
));
auto
x_dims
=
ctx
->
GetInputsDim
(
"X"
);
auto
y_dims
=
ctx
->
GetInputsDim
(
"Y"
);
for
(
size_t
i
=
0
;
i
<
x_dims
.
size
();
++
i
)
{
PADDLE_ENFORCE_EQ
(
x_dims
[
i
],
y_dims
[
i
],
phi
::
errors
::
InvalidArgument
(
"The 'shape' of Input(X) should be equal to "
"the 'shape' of Input(Y). But received "
"Input(X).dimensions = [%s], "
"Input(Y).dimensions = [%s]"
,
x_dims
[
i
],
y_dims
[
i
]));
}
}
}
protected:
protected:
...
...
paddle/phi/kernels/cpu/cross_grad_kernel.cc
浏览文件 @
ec3e0a13
...
@@ -14,10 +14,105 @@
...
@@ -14,10 +14,105 @@
#include "paddle/phi/kernels/cross_grad_kernel.h"
#include "paddle/phi/kernels/cross_grad_kernel.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/cross_grad_kernel_impl.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
CrossGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
out_grad
,
int
axis
,
DenseTensor
*
x_grad
,
DenseTensor
*
y_grad
)
{
auto
&
input_x
=
x
;
auto
&
input_y
=
y
;
auto
&
input_out_grad
=
out_grad
;
auto
*
output_x_grad
=
x_grad
;
auto
*
output_y_grad
=
y_grad
;
int
dim
=
axis
;
auto
input_x_dims
=
input_x
.
dims
();
if
(
dim
!=
DDim
::
kMaxRank
)
{
PADDLE_ENFORCE_EQ
(
dim
<
input_x_dims
.
size
()
&&
dim
>=
(
0
-
input_x_dims
.
size
()),
true
,
errors
::
OutOfRange
(
"Attr(dim) is out of range, It's expected "
"to be in range of [-%d, %d]. But received Attr(dim) = %d."
,
input_x_dims
.
size
(),
input_x_dims
.
size
()
-
1
,
dim
));
if
(
dim
<
0
)
{
dim
+=
input_x_dims
.
size
();
}
PADDLE_ENFORCE_EQ
(
input_x_dims
[
dim
]
==
3
,
true
,
errors
::
InvalidArgument
(
"Input(X/Y).dims[dim] must be equal to 3. But received: "
"Input(X/Y).dims[dim] = [%d]."
,
input_x_dims
[
dim
]));
}
else
{
for
(
auto
i
=
0
;
i
<
input_x_dims
.
size
();
i
++
)
{
if
(
input_x_dims
[
i
]
==
3
)
{
dim
=
i
;
break
;
}
}
PADDLE_ENFORCE_EQ
(
dim
==
DDim
::
kMaxRank
,
false
,
errors
::
InvalidArgument
(
"There must be at least one dimension 'd' "
"so that Input(X/Y).dims()[d] is equal to 3. "
"But received: Input(X/Y).dims() == [%s]."
,
input_x_dims
));
}
auto
outer_loops
=
1
;
for
(
auto
i
=
0
;
i
<
dim
;
i
++
)
{
outer_loops
*=
input_x_dims
[
i
];
}
auto
slice_size
=
1
;
for
(
auto
i
=
dim
+
1
;
i
<
input_x_dims
.
size
();
i
++
)
{
slice_size
*=
input_x_dims
[
i
];
}
std
::
vector
<
T
>
input_x_vec
,
input_y_vec
,
input_dout_vec
;
paddle
::
framework
::
TensorToVector
(
input_x
,
dev_ctx
,
&
input_x_vec
);
paddle
::
framework
::
TensorToVector
(
input_y
,
dev_ctx
,
&
input_y_vec
);
paddle
::
framework
::
TensorToVector
(
input_out_grad
,
dev_ctx
,
&
input_dout_vec
);
std
::
vector
<
T
>
out_dx_vec
(
output_x_grad
->
numel
());
std
::
vector
<
T
>
out_dy_vec
(
output_y_grad
->
numel
());
dev_ctx
.
template
Alloc
<
T
>(
output_x_grad
);
dev_ctx
.
template
Alloc
<
T
>(
output_y_grad
);
for
(
auto
i
=
0
;
i
<
outer_loops
;
i
++
)
{
for
(
auto
j
=
0
;
j
<
3
;
j
++
)
{
auto
dst_pos
=
(
3
*
i
+
j
)
*
slice_size
;
auto
in_pos1
=
(
3
*
i
+
((
j
+
1
)
%
3
))
*
slice_size
;
auto
in_pos2
=
(
3
*
i
+
((
j
+
2
)
%
3
))
*
slice_size
;
for
(
auto
k
=
0
;
k
<
slice_size
;
k
++
)
{
out_dx_vec
[
dst_pos
+
k
]
=
input_dout_vec
[
in_pos2
+
k
]
*
input_y_vec
[
in_pos1
+
k
]
-
input_dout_vec
[
in_pos1
+
k
]
*
input_y_vec
[
in_pos2
+
k
];
out_dy_vec
[
dst_pos
+
k
]
=
input_dout_vec
[
in_pos1
+
k
]
*
input_x_vec
[
in_pos2
+
k
]
-
input_dout_vec
[
in_pos2
+
k
]
*
input_x_vec
[
in_pos1
+
k
];
}
}
}
paddle
::
framework
::
TensorFromVector
(
out_dx_vec
,
dev_ctx
,
output_x_grad
);
paddle
::
framework
::
TensorFromVector
(
out_dy_vec
,
dev_ctx
,
output_y_grad
);
output_x_grad
->
Resize
(
input_x_dims
);
output_y_grad
->
Resize
(
input_x_dims
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
cross_grad
,
PD_REGISTER_KERNEL
(
cross_grad
,
CPU
,
CPU
,
ALL_LAYOUT
,
ALL_LAYOUT
,
...
...
paddle/phi/kernels/cpu/cross_kernel.cc
浏览文件 @
ec3e0a13
...
@@ -14,9 +14,97 @@
...
@@ -14,9 +14,97 @@
#include "paddle/phi/kernels/cross_kernel.h"
#include "paddle/phi/kernels/cross_kernel.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/cross_kernel_impl.h"
#include "paddle/phi/kernels/funcs/common_shape.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
CrossKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
int
axis
,
DenseTensor
*
out
)
{
auto
&
input_x
=
x
;
auto
&
input_y
=
y
;
auto
*
output
=
out
;
int
dim
=
axis
;
auto
input_x_dims
=
input_x
.
dims
();
if
(
dim
!=
DDim
::
kMaxRank
)
{
PADDLE_ENFORCE_EQ
(
dim
<
input_x_dims
.
size
()
&&
dim
>=
(
0
-
input_x_dims
.
size
()),
true
,
phi
::
errors
::
OutOfRange
(
"Attr(dim) is out of range, It's expected "
"to be in range of [-%d, %d]. But received Attr(dim) = %d."
,
input_x_dims
.
size
(),
input_x_dims
.
size
()
-
1
,
dim
));
if
(
dim
<
0
)
{
dim
+=
input_x_dims
.
size
();
}
PADDLE_ENFORCE_EQ
(
input_x_dims
[
dim
]
==
3
,
true
,
phi
::
errors
::
InvalidArgument
(
"Input(X/Y).dims[dim] must be equal to 3. But received: "
"Input(X/Y).dims[dim] = [%d]."
,
input_x_dims
[
dim
]));
}
else
{
for
(
auto
i
=
0
;
i
<
input_x_dims
.
size
();
i
++
)
{
if
(
input_x_dims
[
i
]
==
3
)
{
dim
=
i
;
break
;
}
}
PADDLE_ENFORCE_EQ
(
dim
==
DDim
::
kMaxRank
,
false
,
phi
::
errors
::
InvalidArgument
(
"There must be at least one dimension 'd' so that "
"Input(X/Y).dims()[d] is equal to 3. "
"But received: Input(X/Y).dims() == [%s]."
,
input_x_dims
));
}
auto
outer_loops
=
1
;
for
(
auto
i
=
0
;
i
<
dim
;
i
++
)
{
outer_loops
*=
input_x_dims
[
i
];
}
auto
slice_size
=
1
;
for
(
auto
i
=
dim
+
1
;
i
<
input_x_dims
.
size
();
i
++
)
{
slice_size
*=
input_x_dims
[
i
];
}
std
::
vector
<
T
>
input_x_vec
,
input_y_vec
;
paddle
::
framework
::
TensorToVector
(
input_x
,
dev_ctx
,
&
input_x_vec
);
paddle
::
framework
::
TensorToVector
(
input_y
,
dev_ctx
,
&
input_y_vec
);
std
::
vector
<
T
>
out_vec
(
output
->
numel
());
dev_ctx
.
template
Alloc
<
T
>(
output
);
for
(
auto
i
=
0
;
i
<
outer_loops
;
i
++
)
{
for
(
auto
j
=
0
;
j
<
3
;
j
++
)
{
auto
dst_pos
=
(
3
*
i
+
j
)
*
slice_size
;
auto
in_pos1
=
(
3
*
i
+
((
j
+
1
)
%
3
))
*
slice_size
;
auto
in_pos2
=
(
3
*
i
+
((
j
+
2
)
%
3
))
*
slice_size
;
for
(
auto
k
=
0
;
k
<
slice_size
;
k
++
)
{
out_vec
[
dst_pos
+
k
]
=
input_x_vec
[
in_pos1
+
k
]
*
input_y_vec
[
in_pos2
+
k
]
-
input_x_vec
[
in_pos2
+
k
]
*
input_y_vec
[
in_pos1
+
k
];
}
}
}
paddle
::
framework
::
TensorFromVector
(
out_vec
,
dev_ctx
,
output
);
output
->
Resize
(
input_x_dims
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
PD_REGISTER_KERNEL
(
cross
,
CPU
,
ALL_LAYOUT
,
phi
::
CrossKernel
,
float
,
double
,
int
,
int64_t
)
{}
cross
,
CPU
,
ALL_LAYOUT
,
phi
::
CrossKernel
,
float
,
double
,
int
,
int64_t
)
{}
paddle/phi/kernels/gpu/cross_grad_kernel.cu
浏览文件 @
ec3e0a13
...
@@ -13,9 +13,141 @@
...
@@ -13,9 +13,141 @@
// limitations under the License.
// limitations under the License.
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cross_grad_kernel.h"
#include "paddle/phi/kernels/cross_grad_kernel.h"
#include "paddle/phi/kernels/impl/cross_grad_kernel_impl.h"
#include "paddle/phi/kernels/funcs/reduce_function.h"
namespace
phi
{
using
funcs
::
IndexCalculator
;
template
<
typename
T
>
__global__
void
CrossGrad
(
const
T
*
x
,
const
T
*
y
,
const
T
*
out
,
T
*
out_dx
,
T
*
out_dy
,
const
int
stride
,
const
int
N
,
IndexCalculator
index_calculator
)
{
CUDA_KERNEL_LOOP
(
i
,
N
)
{
int
offset
=
index_calculator
(
i
);
auto
pos0
=
offset
+
0
*
stride
;
auto
pos1
=
offset
+
1
*
stride
;
auto
pos2
=
offset
+
2
*
stride
;
out_dx
[
pos0
]
=
out
[
pos2
]
*
y
[
pos1
]
-
out
[
pos1
]
*
y
[
pos2
];
out_dy
[
pos0
]
=
out
[
pos1
]
*
x
[
pos2
]
-
out
[
pos2
]
*
x
[
pos1
];
out_dx
[
pos1
]
=
out
[
pos0
]
*
y
[
pos2
]
-
out
[
pos2
]
*
y
[
pos0
];
out_dy
[
pos1
]
=
out
[
pos2
]
*
x
[
pos0
]
-
out
[
pos0
]
*
x
[
pos2
];
out_dx
[
pos2
]
=
out
[
pos1
]
*
y
[
pos0
]
-
out
[
pos0
]
*
y
[
pos1
];
out_dy
[
pos2
]
=
out
[
pos0
]
*
x
[
pos1
]
-
out
[
pos1
]
*
x
[
pos0
];
}
}
template
<
typename
T
,
typename
Context
>
void
CrossGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
out_grad
,
int
axis
,
DenseTensor
*
x_grad
,
DenseTensor
*
y_grad
)
{
auto
&
input_x
=
x
;
auto
&
input_y
=
y
;
auto
&
input_out_grad
=
out_grad
;
auto
*
output_x_grad
=
x_grad
;
auto
*
output_y_grad
=
y_grad
;
int
dim
=
axis
;
auto
input_x_dims
=
input_x
.
dims
();
if
(
dim
!=
DDim
::
kMaxRank
)
{
PADDLE_ENFORCE_EQ
(
dim
<
input_x_dims
.
size
()
&&
dim
>=
(
0
-
input_x_dims
.
size
()),
true
,
errors
::
OutOfRange
(
"Attr(dim) is out of range, It's expected "
"to be in range of [-%d, %d]. But received Attr(dim) = %d."
,
input_x_dims
.
size
(),
input_x_dims
.
size
()
-
1
,
dim
));
if
(
dim
<
0
)
{
dim
+=
input_x_dims
.
size
();
}
PADDLE_ENFORCE_EQ
(
input_x_dims
[
dim
]
==
3
,
true
,
errors
::
InvalidArgument
(
"Input(X/Y).dims[dim] must be equal to 3. But received: "
"Input(X/Y).dims[dim] = [%d]."
,
input_x_dims
[
dim
]));
}
else
{
for
(
auto
i
=
0
;
i
<
input_x_dims
.
size
();
i
++
)
{
if
(
input_x_dims
[
i
]
==
3
)
{
dim
=
i
;
break
;
}
}
PADDLE_ENFORCE_EQ
(
dim
==
DDim
::
kMaxRank
,
false
,
errors
::
InvalidArgument
(
"There must be at least one dimension 'd' "
"so that Input(X/Y).dims()[d] is equal to 3. "
"But received: Input(X/Y).dims() == [%s]."
,
input_x_dims
));
}
std
::
vector
<
int
>
cal_dims
;
std
::
vector
<
int
>
left_strides
;
std
::
vector
<
int
>
full_strides
;
int
full_dim
=
1
;
int
left_dim
=
1
;
for
(
auto
i
=
0
;
i
<
input_x_dims
.
size
();
i
++
)
{
full_strides
.
insert
(
full_strides
.
begin
(),
full_dim
);
full_dim
*=
input_x_dims
[
input_x_dims
.
size
()
-
i
-
1
];
if
(
i
==
dim
)
{
continue
;
}
cal_dims
.
push_back
(
i
);
left_strides
.
insert
(
left_strides
.
begin
(),
left_dim
);
left_dim
*=
input_x_dims
[
input_x_dims
.
size
()
-
i
-
1
];
}
const
auto
*
input_x_data
=
input_x
.
data
<
T
>
();
const
auto
*
input_y_data
=
input_y
.
data
<
T
>
();
const
auto
*
input_out_grad_data
=
input_out_grad
.
data
<
T
>
();
auto
*
output_x_grad_data
=
dev_ctx
.
template
Alloc
<
T
>(
x_grad
);
auto
*
output_y_grad_data
=
dev_ctx
.
template
Alloc
<
T
>(
y_grad
);
auto
index_calculator
=
IndexCalculator
(
input_x_dims
.
size
()
-
1
,
cal_dims
,
left_strides
,
full_strides
);
int64_t
numel
=
x
.
numel
();
backends
::
gpu
::
GpuLaunchConfig
config
=
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
numel
/
3
);
CrossGrad
<<<
config
.
block_per_grid
,
config
.
thread_per_block
,
0
,
dev_ctx
.
stream
()
>>>
(
input_x_data
,
input_y_data
,
input_out_grad_data
,
output_x_grad_data
,
output_y_grad_data
,
full_strides
[
dim
],
numel
/
3
,
index_calculator
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
cross_grad
,
PD_REGISTER_KERNEL
(
cross_grad
,
GPU
,
GPU
,
...
...
paddle/phi/kernels/gpu/cross_kernel.cu
浏览文件 @
ec3e0a13
...
@@ -13,9 +13,126 @@
...
@@ -13,9 +13,126 @@
// limitations under the License.
// limitations under the License.
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/cross_kernel.h"
#include "paddle/phi/kernels/cross_kernel.h"
#include "paddle/phi/kernels/impl/cross_kernel_impl.h"
#include "paddle/phi/kernels/funcs/reduce_function.h"
namespace
phi
{
using
funcs
::
IndexCalculator
;
template
<
typename
T
>
__global__
void
Cross
(
const
T
*
x
,
const
T
*
y
,
T
*
out
,
const
int
stride
,
const
int
N
,
IndexCalculator
index_calculator
)
{
CUDA_KERNEL_LOOP
(
i
,
N
)
{
int
offset
=
index_calculator
(
i
);
auto
pos0
=
offset
+
0
*
stride
;
auto
pos1
=
offset
+
1
*
stride
;
auto
pos2
=
offset
+
2
*
stride
;
out
[
pos0
]
=
x
[
pos1
]
*
y
[
pos2
]
-
x
[
pos2
]
*
y
[
pos1
];
out
[
pos1
]
=
x
[
pos2
]
*
y
[
pos0
]
-
x
[
pos0
]
*
y
[
pos2
];
out
[
pos2
]
=
x
[
pos0
]
*
y
[
pos1
]
-
x
[
pos1
]
*
y
[
pos0
];
}
}
template
<
typename
T
,
typename
Context
>
void
CrossKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
int
axis
,
DenseTensor
*
out
)
{
auto
&
input_x
=
x
;
auto
&
input_y
=
y
;
auto
*
output
=
out
;
int
dim
=
axis
;
auto
input_x_dims
=
input_x
.
dims
();
if
(
dim
!=
DDim
::
kMaxRank
)
{
PADDLE_ENFORCE_EQ
(
dim
<
input_x_dims
.
size
()
&&
dim
>=
(
0
-
input_x_dims
.
size
()),
true
,
phi
::
errors
::
OutOfRange
(
"Attr(dim) is out of range, It's expected "
"to be in range of [-%d, %d]. But received Attr(dim) = %d."
,
input_x_dims
.
size
(),
input_x_dims
.
size
()
-
1
,
dim
));
if
(
dim
<
0
)
{
dim
+=
input_x_dims
.
size
();
}
PADDLE_ENFORCE_EQ
(
input_x_dims
[
dim
]
==
3
,
true
,
phi
::
errors
::
InvalidArgument
(
"Input(X/Y).dims[dim] must be equal to 3. But received: "
"Input(X/Y).dims[dim] = [%d]."
,
input_x_dims
[
dim
]));
}
else
{
for
(
auto
i
=
0
;
i
<
input_x_dims
.
size
();
i
++
)
{
if
(
input_x_dims
[
i
]
==
3
)
{
dim
=
i
;
break
;
}
}
PADDLE_ENFORCE_EQ
(
dim
==
DDim
::
kMaxRank
,
false
,
phi
::
errors
::
InvalidArgument
(
"There must be at least one dimension 'd' so that "
"Input(X/Y).dims()[d] is equal to 3. "
"But received: Input(X/Y).dims() == [%s]."
,
input_x_dims
));
}
std
::
vector
<
int
>
cal_dims
;
std
::
vector
<
int
>
left_strides
;
std
::
vector
<
int
>
full_strides
;
int
dims0
=
1
;
int
dims1
=
1
;
for
(
auto
i
=
0
;
i
<
input_x_dims
.
size
();
i
++
)
{
full_strides
.
insert
(
full_strides
.
begin
(),
dims0
);
dims0
*=
input_x_dims
[
input_x_dims
.
size
()
-
i
-
1
];
if
(
i
==
dim
)
{
continue
;
}
cal_dims
.
push_back
(
i
);
left_strides
.
insert
(
left_strides
.
begin
(),
dims1
);
dims1
*=
input_x_dims
[
input_x_dims
.
size
()
-
i
-
1
];
}
const
auto
*
input_x_data
=
input_x
.
data
<
T
>
();
const
auto
*
input_y_data
=
input_y
.
data
<
T
>
();
auto
*
out_data
=
dev_ctx
.
template
Alloc
<
T
>(
out
);
auto
index_calculator
=
IndexCalculator
(
input_x_dims
.
size
()
-
1
,
cal_dims
,
left_strides
,
full_strides
);
int64_t
numel
=
x
.
numel
();
backends
::
gpu
::
GpuLaunchConfig
config
=
backends
::
gpu
::
GetGpuLaunchConfig1D
(
dev_ctx
,
numel
/
3
);
Cross
<<<
config
.
block_per_grid
,
config
.
thread_per_block
,
0
,
dev_ctx
.
stream
()
>>>
(
input_x_data
,
input_y_data
,
out_data
,
full_strides
[
dim
],
numel
/
3
,
index_calculator
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
PD_REGISTER_KERNEL
(
cross
,
GPU
,
ALL_LAYOUT
,
phi
::
CrossKernel
,
float
,
double
,
int
,
int64_t
)
{}
cross
,
GPU
,
ALL_LAYOUT
,
phi
::
CrossKernel
,
float
,
double
,
int
,
int64_t
)
{}
paddle/phi/kernels/impl/cross_grad_kernel_impl.h
已删除
100644 → 0
浏览文件 @
abbd4abb
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
CrossGradKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
const
DenseTensor
&
out_grad
,
int
axis
,
DenseTensor
*
x_grad
,
DenseTensor
*
y_grad
)
{
auto
&
input_x
=
x
;
auto
&
input_y
=
y
;
auto
&
input_out_grad
=
out_grad
;
auto
*
output_x_grad
=
x_grad
;
auto
*
output_y_grad
=
y_grad
;
int
dim
=
axis
;
auto
input_x_dims
=
input_x
.
dims
();
if
(
dim
!=
DDim
::
kMaxRank
)
{
PADDLE_ENFORCE_EQ
(
dim
<
input_x_dims
.
size
()
&&
dim
>=
(
0
-
input_x_dims
.
size
()),
true
,
errors
::
OutOfRange
(
"Attr(dim) is out of range, It's expected "
"to be in range of [-%d, %d]. But received Attr(dim) = %d."
,
input_x_dims
.
size
(),
input_x_dims
.
size
()
-
1
,
dim
));
if
(
dim
<
0
)
{
dim
+=
input_x_dims
.
size
();
}
PADDLE_ENFORCE_EQ
(
input_x_dims
[
dim
]
==
3
,
true
,
errors
::
InvalidArgument
(
"Input(X/Y).dims[dim] must be equal to 3. But received: "
"Input(X/Y).dims[dim] = [%d]."
,
input_x_dims
[
dim
]));
}
else
{
for
(
auto
i
=
0
;
i
<
input_x_dims
.
size
();
i
++
)
{
if
(
input_x_dims
[
i
]
==
3
)
{
dim
=
i
;
break
;
}
}
PADDLE_ENFORCE_EQ
(
dim
==
DDim
::
kMaxRank
,
false
,
errors
::
InvalidArgument
(
"There must be at least one dimension 'd' "
"so that Input(X/Y).dims()[d] is equal to 3. "
"But received: Input(X/Y).dims() == [%s]."
,
input_x_dims
));
}
auto
outer_loops
=
1
;
for
(
auto
i
=
0
;
i
<
dim
;
i
++
)
{
outer_loops
*=
input_x_dims
[
i
];
}
auto
slice_size
=
1
;
for
(
auto
i
=
dim
+
1
;
i
<
input_x_dims
.
size
();
i
++
)
{
slice_size
*=
input_x_dims
[
i
];
}
std
::
vector
<
T
>
input_x_vec
,
input_y_vec
,
input_dout_vec
;
paddle
::
framework
::
TensorToVector
(
input_x
,
dev_ctx
,
&
input_x_vec
);
paddle
::
framework
::
TensorToVector
(
input_y
,
dev_ctx
,
&
input_y_vec
);
paddle
::
framework
::
TensorToVector
(
input_out_grad
,
dev_ctx
,
&
input_dout_vec
);
std
::
vector
<
T
>
out_dx_vec
(
output_x_grad
->
numel
());
std
::
vector
<
T
>
out_dy_vec
(
output_y_grad
->
numel
());
dev_ctx
.
template
Alloc
<
T
>(
output_x_grad
);
dev_ctx
.
template
Alloc
<
T
>(
output_y_grad
);
for
(
auto
i
=
0
;
i
<
outer_loops
;
i
++
)
{
for
(
auto
j
=
0
;
j
<
3
;
j
++
)
{
auto
dst_pos
=
(
3
*
i
+
j
)
*
slice_size
;
auto
in_pos1
=
(
3
*
i
+
((
j
+
1
)
%
3
))
*
slice_size
;
auto
in_pos2
=
(
3
*
i
+
((
j
+
2
)
%
3
))
*
slice_size
;
for
(
auto
k
=
0
;
k
<
slice_size
;
k
++
)
{
out_dx_vec
[
dst_pos
+
k
]
=
input_dout_vec
[
in_pos2
+
k
]
*
input_y_vec
[
in_pos1
+
k
]
-
input_dout_vec
[
in_pos1
+
k
]
*
input_y_vec
[
in_pos2
+
k
];
out_dy_vec
[
dst_pos
+
k
]
=
input_dout_vec
[
in_pos1
+
k
]
*
input_x_vec
[
in_pos2
+
k
]
-
input_dout_vec
[
in_pos2
+
k
]
*
input_x_vec
[
in_pos1
+
k
];
}
}
}
paddle
::
framework
::
TensorFromVector
(
out_dx_vec
,
dev_ctx
,
output_x_grad
);
paddle
::
framework
::
TensorFromVector
(
out_dy_vec
,
dev_ctx
,
output_y_grad
);
output_x_grad
->
Resize
(
input_x_dims
);
output_y_grad
->
Resize
(
input_x_dims
);
}
}
// namespace phi
paddle/phi/kernels/impl/cross_kernel_impl.h
已删除
100644 → 0
浏览文件 @
abbd4abb
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/funcs/common_shape.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
CrossKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
int
axis
,
DenseTensor
*
out
)
{
auto
&
input_x
=
x
;
auto
&
input_y
=
y
;
auto
*
output
=
out
;
int
dim
=
axis
;
auto
input_x_dims
=
input_x
.
dims
();
auto
input_y_dims
=
input_y
.
dims
();
bool
dims_match
=
phi
::
funcs
::
CheckDims
(
input_x_dims
,
input_y_dims
);
PADDLE_ENFORCE_EQ
(
dims_match
,
true
,
phi
::
errors
::
InvalidArgument
(
"The 'shape' of Input(X) should be equal to "
"the 'shape' of Input(Y). But received "
"Input(X).dimensions = [%s], "
"Input(Y).dimensions = [%s]"
,
input_x_dims
,
input_x_dims
));
if
(
dim
!=
DDim
::
kMaxRank
)
{
PADDLE_ENFORCE_EQ
(
dim
<
input_x_dims
.
size
()
&&
dim
>=
(
0
-
input_x_dims
.
size
()),
true
,
phi
::
errors
::
OutOfRange
(
"Attr(dim) is out of range, It's expected "
"to be in range of [-%d, %d]. But received Attr(dim) = %d."
,
input_x_dims
.
size
(),
input_x_dims
.
size
()
-
1
,
dim
));
if
(
dim
<
0
)
{
dim
+=
input_x_dims
.
size
();
}
PADDLE_ENFORCE_EQ
(
input_x_dims
[
dim
]
==
3
,
true
,
phi
::
errors
::
InvalidArgument
(
"Input(X/Y).dims[dim] must be equal to 3. But received: "
"Input(X/Y).dims[dim] = [%d]."
,
input_x_dims
[
dim
]));
}
else
{
for
(
auto
i
=
0
;
i
<
input_x_dims
.
size
();
i
++
)
{
if
(
input_x_dims
[
i
]
==
3
)
{
dim
=
i
;
break
;
}
}
PADDLE_ENFORCE_EQ
(
dim
==
DDim
::
kMaxRank
,
false
,
phi
::
errors
::
InvalidArgument
(
"There must be at least one dimension 'd' so that "
"Input(X/Y).dims()[d] is equal to 3. "
"But received: Input(X/Y).dims() == [%s]."
,
input_x_dims
));
}
auto
outer_loops
=
1
;
for
(
auto
i
=
0
;
i
<
dim
;
i
++
)
{
outer_loops
*=
input_x_dims
[
i
];
}
auto
slice_size
=
1
;
for
(
auto
i
=
dim
+
1
;
i
<
input_x_dims
.
size
();
i
++
)
{
slice_size
*=
input_x_dims
[
i
];
}
std
::
vector
<
T
>
input_x_vec
,
input_y_vec
;
paddle
::
framework
::
TensorToVector
(
input_x
,
dev_ctx
,
&
input_x_vec
);
paddle
::
framework
::
TensorToVector
(
input_y
,
dev_ctx
,
&
input_y_vec
);
std
::
vector
<
T
>
out_vec
(
output
->
numel
());
dev_ctx
.
template
Alloc
<
T
>(
output
);
for
(
auto
i
=
0
;
i
<
outer_loops
;
i
++
)
{
for
(
auto
j
=
0
;
j
<
3
;
j
++
)
{
auto
dst_pos
=
(
3
*
i
+
j
)
*
slice_size
;
auto
in_pos1
=
(
3
*
i
+
((
j
+
1
)
%
3
))
*
slice_size
;
auto
in_pos2
=
(
3
*
i
+
((
j
+
2
)
%
3
))
*
slice_size
;
for
(
auto
k
=
0
;
k
<
slice_size
;
k
++
)
{
out_vec
[
dst_pos
+
k
]
=
input_x_vec
[
in_pos1
+
k
]
*
input_y_vec
[
in_pos2
+
k
]
-
input_x_vec
[
in_pos2
+
k
]
*
input_y_vec
[
in_pos1
+
k
];
}
}
}
paddle
::
framework
::
TensorFromVector
(
out_vec
,
dev_ctx
,
output
);
output
->
Resize
(
input_x_dims
);
}
}
// namespace phi
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录