未验证 提交 ec2aed2a 编写于 作者: X Xin Pan 提交者: GitHub

Merge pull request #13102 from typhoonzero/merge_dist_deps_fixes

Cherrypick dist fixes
......@@ -55,9 +55,10 @@ paddle.fluid.Inferencer.__init__ ArgSpec(args=['self', 'infer_func', 'param_path
paddle.fluid.Inferencer.infer ArgSpec(args=['self', 'inputs', 'return_numpy'], varargs=None, keywords=None, defaults=(True,))
paddle.fluid.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program', 'startup_program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.DistributeTranspiler.get_pserver_programs ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.DistributeTranspiler.get_trainer_program ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True))
paddle.fluid.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode', 'startup_program'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True, None))
paddle.fluid.InferenceTranspiler.__init__
paddle.fluid.InferenceTranspiler.transpile ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.memory_optimize ArgSpec(args=['input_program', 'skip_opt_set', 'print_log', 'level'], varargs=None, keywords=None, defaults=(None, False, 0))
......@@ -329,9 +330,10 @@ paddle.fluid.contrib.BeamSearchDecoder.update_array ArgSpec(args=['self', 'array
paddle.fluid.contrib.memory_usage ArgSpec(args=['program', 'batch_size'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.transpiler.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program', 'startup_program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.transpiler.DistributeTranspiler.get_pserver_programs ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.get_startup_program ArgSpec(args=['self', 'endpoint', 'pserver_program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.transpiler.DistributeTranspiler.get_trainer_program ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.transpiler.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True))
paddle.fluid.transpiler.DistributeTranspiler.transpile ArgSpec(args=['self', 'trainer_id', 'program', 'pservers', 'trainers', 'sync_mode', 'startup_program'], varargs=None, keywords=None, defaults=(None, '127.0.0.1:6174', 1, True, None))
paddle.fluid.transpiler.InferenceTranspiler.__init__
paddle.fluid.transpiler.InferenceTranspiler.transpile ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.transpiler.memory_optimize ArgSpec(args=['input_program', 'skip_opt_set', 'print_log', 'level'], varargs=None, keywords=None, defaults=(None, False, 0))
......
......@@ -736,7 +736,7 @@ void MultiDevSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result,
.emplace(varname, op_dev_id);
}
} else {
PADDLE_ENFORCE(
PADDLE_THROW(
"the distribute training related op should be in [split_byref, "
"concat].");
}
......@@ -746,17 +746,26 @@ void MultiDevSSAGraphBuilder::CreateDistTrainOp(ir::Graph *result,
node->Op()->Type());
CreateComputationalOp(result, node, op_dev_id);
if (node->Op()->Type() == "concat") {
ConnectOp(result, result->Get<GraphOps>(kGraphOps).back().get(),
"fetch_barrier");
}
void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) {
auto *op_handle = result->Get<GraphOps>(kGraphOps).back().get();
for (ir::Node *input : node->inputs) {
VarHandle *var = nullptr;
for (int place_offset = 0; place_offset < num_places; ++place_offset) {
auto &var_holders = result->Get<GraphVars>(kGraphVars)[place_offset];
auto &var_holder = var_holders[input->Name()];
if (!var_holder.empty()) {
var = var_holder.rbegin()->get();
op_handle->AddInput(var);
}
}
}
}
// Create RPC related op handles that connects its in ops and out ops.
void MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result,
ir::Node *node) const {
// FIXME(typhoonzero): Cleanup this deps for both sync mode and async mode
// put them into transpiler.
int op_dev_id = -1;
if (node->Op()->Type() == "send") {
// TODO(paddle-dev): getting the first var is not safe.
......@@ -791,8 +800,6 @@ void MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result,
}
auto recv_param_grad = boost::get<std::vector<std::string>>(
node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
// FIXME(typhoonzero): assume each recv op output one param
// Use the same place as send.
if (recv_param_grad.size() == 2U) {
op_dev_id = GetVarDeviceID(*result, recv_param_grad[1]);
VLOG(10) << "recv param " << recv_param_grad[0]
......@@ -806,34 +813,44 @@ void MultiDevSSAGraphBuilder::CreateRPCOp(ir::Graph *result,
.emplace(varname, op_dev_id);
}
} else {
// send_barrier and fetch_barrier op can be scheduled on device 0
// send_barrier, fetch_barrier will run on place 0;
op_dev_id = 0;
}
PADDLE_ENFORCE(op_dev_id != -1, "can not find the right place for rpc op: %s",
node->Op()->Type());
result->Get<GraphOps>(kGraphOps).emplace_back(new RPCOpHandle(
result->CreateOpNode(node->Op()), *node->Op(), local_scopes_[op_dev_id],
node->Op()->Type(), places_[op_dev_id]));
// TODO(panyx0718): This might not be needed anymore.
if (node->Op()->Type() == "send_barrier") {
ConnectOp(result, result->Get<GraphOps>(kGraphOps).back().get(), "send");
} else if (node->Op()->Type() == "recv") {
ConnectOp(result, result->Get<GraphOps>(kGraphOps).back().get(),
"send_barrier");
} else if (node->Op()->Type() == "fetch_barrier") {
ConnectOp(result, result->Get<GraphOps>(kGraphOps).back().get(), "recv");
} else if (node->Op()->Type() == "send") {
// do nothing
if (node->Op()->Type() == "send") {
CreateOpHandleIOs(result, node, op_dev_id);
} else {
PADDLE_THROW(
"rpc op should be in ["
"send, send_barrier. recv, fetch_barrier]");
}
// send_barrier, recv, fetch_barrier's inputs are deps var, get them from
// all places
auto p = places_[op_dev_id];
auto *op_handle = result->Get<GraphOps>(kGraphOps).back().get();
op_handle->SetDeviceContext(p,
platform::DeviceContextPool::Instance().Get(p));
CreateOpHandleIOs(result, node, op_dev_id);
SetOpInputsAllPlaces(result, node, places_.size());
for (ir::Node *output : node->outputs) {
int outvar_dev_id = op_dev_id;
if (node->Op()->Type() == "fetch_barrier") {
outvar_dev_id = GetVarDeviceID(*result, output->Name());
PADDLE_ENFORCE_NE(outvar_dev_id, -1);
}
p = places_[outvar_dev_id];
ir::Node *new_node = nullptr;
if (output->Var()) {
new_node = result->CreateVarNode(output->Var());
} else {
new_node =
result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
}
CreateOpOutput(result, op_handle, new_node, p, outvar_dev_id);
}
}
}
bool MultiDevSSAGraphBuilder::IsScaleLossOp(ir::Node *node) const {
......
......@@ -132,63 +132,6 @@ Graph::Graph(const ProgramDesc &program) : program_(program) {
}
}
std::vector<ir::Node *> send_ops;
ir::Node *send_bar = nullptr;
std::vector<ir::Node *> recv_ops;
ir::Node *fetch_bar = nullptr;
for (ir::Node *node : Nodes()) {
if (node->Name() == "send") {
send_ops.push_back(node);
} else if (node->Name() == "send_barrier") {
PADDLE_ENFORCE(!send_bar, "only has one send barrier");
send_bar = node;
} else if (node->Name() == "recv") {
recv_ops.push_back(node);
} else if (node->Name() == "fetch_barrier") {
PADDLE_ENFORCE(!fetch_bar, "only has one fetch barrier");
fetch_bar = node;
}
}
if (send_bar) {
for (ir::Node *send : send_ops) {
ir::Node *dep_var = CreateControlDepVar();
send->outputs.push_back(dep_var);
dep_var->inputs.push_back(send);
send_bar->inputs.push_back(dep_var);
dep_var->outputs.push_back(send_bar);
}
for (ir::Node *recv : recv_ops) {
ir::Node *dep_var = CreateControlDepVar();
recv->inputs.push_back(dep_var);
dep_var->outputs.push_back(recv);
send_bar->outputs.push_back(dep_var);
dep_var->inputs.push_back(send_bar);
}
}
if (fetch_bar) {
for (ir::Node *recv : recv_ops) {
ir::Node *dep_var = CreateControlDepVar();
recv->outputs.push_back(dep_var);
dep_var->inputs.push_back(recv);
fetch_bar->inputs.push_back(dep_var);
dep_var->outputs.push_back(fetch_bar);
}
}
std::vector<std::string> send_vars = FindDistTrainSendVars(send_ops);
std::vector<std::string> recv_vars = FindDistTrainRecvVars(recv_ops);
for (ir::Node *node : Nodes()) {
if (IsDistTrainOp(node, send_vars, recv_vars)) {
if (fetch_bar && node->Name() == "concat") {
ir::Node *dep_var = CreateControlDepVar();
fetch_bar->outputs.push_back(dep_var);
dep_var->inputs.push_back(fetch_bar);
node->inputs.push_back(dep_var);
dep_var->outputs.push_back(node);
}
}
}
/**
* We should handle write after read(WAR) and write after write(WAW) here.
* Because some of the operators of the program can be executed parallelly.
......
......@@ -52,6 +52,8 @@ class FetchBarrierOp : public framework::OperatorBase {
class FetchBarrierOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() {
AddOutput("Out", "(Any) Dummy outputs, used for control dependency")
.AsDuplicable();
AddComment(R"DOC(
SendBarrier operator
......
......@@ -56,6 +56,10 @@ class SendBarrierOp : public framework::OperatorBase {
class SendBarrierOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("X", "(Any) Dummy inputs, used for control dependency")
.AsDuplicable();
AddOutput("Out", "(Any) Dummy outputs, used for control dependency")
.AsDuplicable();
AddComment(R"DOC(
SendBarrier operator
......
......@@ -246,7 +246,11 @@ def Send(endpoints, send_vars, dummy_output=None, sync=True):
rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC
})
if sync:
helper.append_op(type="send_barrier", attrs={"endpoints": endpoints})
helper.append_op(
type="send_barrier",
inputs={"X": dummy_output},
outputs={"Out": []},
attrs={"endpoints": endpoints})
def Recv(endpoints, get_vars, dummy_input=None, sync=True):
......@@ -282,7 +286,10 @@ def Recv(endpoints, get_vars, dummy_input=None, sync=True):
attrs={"endpoints": endpoints,
"epmap": epmap})
if sync:
helper.append_op(type="fetch_barrier", attrs={"endpoints": endpoints})
helper.append_op(
type="fetch_barrier",
outputs={"Out": get_vars},
attrs={"endpoints": endpoints})
return get_vars
......
......@@ -130,7 +130,12 @@ class SE_ResNeXt():
input=conv, pool_size=7, pool_type='avg', global_pooling=True)
drop = fluid.layers.dropout(x=pool, dropout_prob=0.2)
stdv = 1.0 / math.sqrt(drop.shape[1] * 1.0)
out = fluid.layers.fc(input=drop, size=class_dim, act='softmax')
out = fluid.layers.fc(
input=drop,
size=class_dim,
act='softmax',
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.05)))
return out
def shortcut(self, input, ch_out, stride):
......@@ -180,7 +185,7 @@ class SE_ResNeXt():
act=None,
# avoid pserver CPU init differs from GPU
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant()),
initializer=fluid.initializer.Constant(value=0.05)),
bias_attr=False)
return fluid.layers.batch_norm(input=conv, act=act)
......@@ -188,13 +193,19 @@ class SE_ResNeXt():
pool = fluid.layers.pool2d(
input=input, pool_size=0, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
squeeze = fluid.layers.fc(input=pool,
size=num_channels // reduction_ratio,
act='relu')
squeeze = fluid.layers.fc(
input=pool,
size=num_channels // reduction_ratio,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.05)),
act='relu')
stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0)
excitation = fluid.layers.fc(input=squeeze,
size=num_channels,
act='sigmoid')
excitation = fluid.layers.fc(
input=squeeze,
size=num_channels,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.05)),
act='sigmoid')
scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
return scale
......
......@@ -49,28 +49,32 @@ class TestDistWord2vec2x2(TestDistRunnerBase):
dtype='float32',
is_sparse=IS_SPARSE,
param_attr=fluid.ParamAttr(
name='shared_w', initializer=fluid.initializer.Constant()))
name='shared_w',
initializer=fluid.initializer.Constant(value=0.1)))
embed_second = fluid.layers.embedding(
input=words[1],
size=[dict_size, EMBED_SIZE],
dtype='float32',
is_sparse=IS_SPARSE,
param_attr=fluid.ParamAttr(
name='shared_w', initializer=fluid.initializer.Constant()))
name='shared_w',
initializer=fluid.initializer.Constant(value=0.1)))
embed_third = fluid.layers.embedding(
input=words[2],
size=[dict_size, EMBED_SIZE],
dtype='float32',
is_sparse=IS_SPARSE,
param_attr=fluid.ParamAttr(
name='shared_w', initializer=fluid.initializer.Constant()))
name='shared_w',
initializer=fluid.initializer.Constant(value=0.1)))
embed_forth = fluid.layers.embedding(
input=words[3],
size=[dict_size, EMBED_SIZE],
dtype='float32',
is_sparse=IS_SPARSE,
param_attr=fluid.ParamAttr(
name='shared_w', initializer=fluid.initializer.Constant()))
name='shared_w',
initializer=fluid.initializer.Constant(value=0.1)))
concat_embed = fluid.layers.concat(
input=[embed_first, embed_second, embed_third, embed_forth],
......@@ -80,13 +84,13 @@ class TestDistWord2vec2x2(TestDistRunnerBase):
size=HIDDEN_SIZE,
act='sigmoid',
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant()))
initializer=fluid.initializer.Constant(value=0.1)))
predict_word = fluid.layers.fc(
input=hidden1,
size=dict_size,
act='softmax',
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant()))
initializer=fluid.initializer.Constant(value=0.1)))
cost = fluid.layers.cross_entropy(
input=predict_word, label=words[4])
avg_cost = fluid.layers.mean(cost)
......
......@@ -21,7 +21,7 @@ import sys
import six
import signal
import subprocess
import six
import argparse
class TestDistRunnerBase(object):
......@@ -30,7 +30,7 @@ class TestDistRunnerBase(object):
"get_model should be implemented by child classes.")
def get_transpiler(self, trainer_id, main_program, pserver_endpoints,
trainers):
trainers, sync_mode):
# NOTE: import fluid until runtime, or else forking processes will cause error.
import paddle
import paddle.fluid as fluid
......@@ -39,33 +39,35 @@ class TestDistRunnerBase(object):
trainer_id=trainer_id,
program=main_program,
pservers=pserver_endpoints,
trainers=trainers)
trainers=trainers,
sync_mode=sync_mode)
return t
def run_pserver(self, pserver_endpoints, trainers, current_endpoint,
trainer_id):
def run_pserver(self, args):
import paddle
import paddle.fluid as fluid
self.get_model(batch_size=2)
t = self.get_transpiler(trainer_id,
fluid.default_main_program(), pserver_endpoints,
trainers)
pserver_prog = t.get_pserver_program(current_endpoint)
startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
t = self.get_transpiler(args.trainer_id,
fluid.default_main_program(), args.endpoints,
args.trainers, args.sync_mode)
pserver_prog = t.get_pserver_program(args.current_endpoint)
startup_prog = t.get_startup_program(args.current_endpoint,
pserver_prog)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
exe.run(pserver_prog)
def run_trainer(self, place, endpoints, trainer_id, trainers, is_dist=True):
def run_trainer(self, place, args):
import paddle
import paddle.fluid as fluid
test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
self.get_model(batch_size=2)
if is_dist:
t = self.get_transpiler(trainer_id,
fluid.default_main_program(), endpoints,
trainers)
if args.is_dist:
t = self.get_transpiler(args.trainer_id,
fluid.default_main_program(),
args.endpoints, args.trainers,
args.sync_mode)
trainer_prog = t.get_trainer_program()
else:
trainer_prog = fluid.default_main_program()
......@@ -76,8 +78,18 @@ class TestDistRunnerBase(object):
strategy = fluid.ExecutionStrategy()
strategy.num_threads = 1
strategy.allow_op_delay = False
build_stra = fluid.BuildStrategy()
if args.use_reduce:
build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
else:
build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce
exe = fluid.ParallelExecutor(
True, loss_name=avg_cost.name, exec_strategy=strategy)
True,
loss_name=avg_cost.name,
exec_strategy=strategy,
build_strategy=build_stra)
feed_var_list = [
var for var in trainer_prog.global_block().vars.values()
......@@ -106,45 +118,64 @@ def runtime_main(test_class):
import paddle.fluid as fluid
import paddle.fluid.core as core
if len(sys.argv) != 7:
print(
"Usage: python dist_se_resnext.py [pserver/trainer] [endpoints] [trainer_id] [current_endpoint] [trainers] [is_dist]"
)
role = sys.argv[1]
endpoints = sys.argv[2]
trainer_id = int(sys.argv[3])
current_endpoint = sys.argv[4]
trainers = int(sys.argv[5])
is_dist = True if sys.argv[6] == "TRUE" else False
parser = argparse.ArgumentParser(description='Run dist test.')
parser.add_argument(
'--role', type=str, required=True, choices=['pserver', 'trainer'])
parser.add_argument('--endpoints', type=str, required=False, default="")
parser.add_argument('--is_dist', action='store_true')
parser.add_argument('--trainer_id', type=int, required=False, default=0)
parser.add_argument('--trainers', type=int, required=False, default=1)
parser.add_argument(
'--current_endpoint', type=str, required=False, default="")
parser.add_argument('--sync_mode', action='store_true')
parser.add_argument('--mem_opt', action='store_true')
parser.add_argument('--use_reduce', action='store_true')
args = parser.parse_args()
model = test_class()
if role == "pserver":
model.run_pserver(endpoints, trainers, current_endpoint, trainer_id)
if args.role == "pserver":
model.run_pserver(args)
else:
p = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
) else fluid.CPUPlace()
model.run_trainer(p, endpoints, trainer_id, trainers, is_dist)
model.run_trainer(p, args)
import paddle.compat as cpt
class TestDistBase(unittest.TestCase):
def _setup_config(self):
raise NotImplementedError("tests should have _setup_config implemented")
def setUp(self):
self._trainers = 2
self._pservers = 2
self._ps_endpoints = "127.0.0.1:9123,127.0.0.1:9124"
self._python_interp = "python"
self._sync_mode = True
self._mem_opt = False
self._use_reduce = False
self._setup_config()
def start_pserver(self, model_file, check_error_log):
ps0_ep, ps1_ep = self._ps_endpoints.split(",")
ps0_cmd = "%s %s pserver %s 0 %s %d TRUE" % \
ps_cmd = "%s %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --is_dist"
ps0_cmd = ps_cmd % \
(self._python_interp, model_file, self._ps_endpoints, ps0_ep,
self._trainers)
ps1_cmd = "%s %s pserver %s 0 %s %d TRUE" % \
ps1_cmd = ps_cmd % \
(self._python_interp, model_file, self._ps_endpoints, ps1_ep,
self._trainers)
if self._sync_mode:
ps0_cmd += " --sync_mode"
ps1_cmd += " --sync_mode"
if self._mem_opt:
ps0_cmd += " --mem_opt"
ps1_cmd += " --mem_opt"
ps0_pipe = subprocess.PIPE
ps1_pipe = subprocess.PIPE
if check_error_log:
......@@ -195,9 +226,7 @@ class TestDistBase(unittest.TestCase):
# Run local to get a base line
env_local = {"CUDA_VISIBLE_DEVICES": "0"}
env_local.update(required_envs)
local_cmd = "%s %s trainer %s 0 %s %d FLASE" % \
(self._python_interp, model_file,
"127.0.0.1:1234", "127.0.0.1:1234", 1)
local_cmd = "%s %s --role trainer" % (self._python_interp, model_file)
if not check_error_log:
local_proc = subprocess.Popen(
local_cmd.split(" "),
......@@ -226,12 +255,23 @@ class TestDistBase(unittest.TestCase):
self._wait_ps_ready(ps1.pid)
ps0_ep, ps1_ep = self._ps_endpoints.split(",")
tr0_cmd = "%s %s trainer %s 0 %s %d TRUE" % \
(self._python_interp, model_file, self._ps_endpoints, ps0_ep,
self._trainers)
tr1_cmd = "%s %s trainer %s 1 %s %d TRUE" % \
(self._python_interp, model_file, self._ps_endpoints, ps1_ep,
self._trainers)
tr_cmd = "%s %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --is_dist"
tr0_cmd = tr_cmd % \
(self._python_interp, model_file, self._ps_endpoints,
0, ps0_ep, self._trainers)
tr1_cmd = tr_cmd % \
(self._python_interp, model_file, self._ps_endpoints,
1, ps1_ep, self._trainers)
if self._sync_mode:
tr0_cmd += " --sync_mode"
tr1_cmd += " --sync_mode"
if self._mem_opt:
tr0_cmd += " --mem_opt"
tr1_cmd += " --mem_opt"
if self._use_reduce:
tr0_cmd += " --use_reduce"
tr1_cmd += " --use_reduce"
env0 = {"CUDA_VISIBLE_DEVICES": "0"}
env1 = {"CUDA_VISIBLE_DEVICES": "1"}
......@@ -282,6 +322,10 @@ class TestDistBase(unittest.TestCase):
# FIXME: use terminate() instead of sigkill.
os.kill(ps0.pid, signal.SIGKILL)
os.kill(ps1.pid, signal.SIGKILL)
ps0.terminate()
ps1.terminate()
ps0.wait()
ps1.wait()
FNULL.close()
self.assertAlmostEqual(local_first_loss, dist_first_loss, delta=delta)
......
......@@ -17,10 +17,51 @@ import unittest
from test_dist_base import TestDistBase
class TestDistSeResneXt2x2(TestDistBase):
class TestDistMnist2x2(TestDistBase):
def _setup_config(self):
self._sync_mode = True
self._use_reduce = False
def test_se_resnext(self):
self.check_with_place("dist_mnist.py", delta=1e-7)
class TestDistMnist2x2WithMemopt(TestDistBase):
def _setup_config(self):
self._sync_mode = True
self._mem_opt = True
def test_se_resnext(self):
self.check_with_place("dist_mnist.py", delta=1e-7)
class TestDistMnistAsync(TestDistBase):
def _setup_config(self):
self._sync_mode = False
self._use_reduce = False
def test_se_resnext(self):
self.check_with_place("dist_mnist.py", delta=200)
# FIXME(typhoonzero): enable these tests once we have 4
# 4 GPUs on CI machine, and the base class should be updated.
#
# class TestDistMnist2x2ReduceMode(TestDistBase):
# def _setup_config(self):
# self._sync_mode = True
# self._use_reduce = True
# def test_se_resnext(self):
# self.check_with_place("dist_mnist.py", delta=1e-7)
# class TestDistMnistAsyncReduceMode(TestDistBase):
# def _setup_config(self):
# self._sync_mode = False
# self._use_reduce = True
# def test_se_resnext(self):
# self.check_with_place("dist_mnist.py", delta=200)
if __name__ == "__main__":
unittest.main()
......@@ -18,9 +18,20 @@ from test_dist_base import TestDistBase
class TestDistSeResneXt2x2(TestDistBase):
def _setup_config(self):
self._sync_mode = True
def test_se_resnext(self):
self.check_with_place("dist_se_resnext.py", delta=1e-7)
class TestDistSeResneXt2x2Async(TestDistBase):
def _setup_config(self):
self._sync_mode = False
def test_se_resnext(self):
self.check_with_place("dist_se_resnext.py", delta=100)
if __name__ == "__main__":
unittest.main()
......@@ -100,7 +100,7 @@ class TestSendOp(unittest.TestCase):
main.global_block().append_op(
type="fetch_barrier",
inputs={},
outputs={},
outputs={"Out": []},
attrs={
"endpoints": ["127.0.0.1:{0}".format(port)],
RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
......
......@@ -15,14 +15,55 @@
from __future__ import print_function
import unittest
import paddle
from test_dist_base import TestDistBase
class TestDistTransformer2x2(TestDistBase):
def download_files():
url_prefix = 'http://paddle-unittest-data.cdn.bcebos.com/dist_transformer/'
vocab_url = url_prefix + 'vocab.bpe.32000'
vocab_md5 = 'a86d345ca6e27f6591d0dccb1b9be853'
paddle.dataset.common.download(vocab_url, 'test_dist_transformer',
vocab_md5)
local_train_url = url_prefix + 'train.tok.clean.bpe.32000.en-de'
local_train_md5 = '033eb02b9449e6dd823f050782ac8914'
paddle.dataset.common.download(local_train_url, 'test_dist_transformer',
local_train_md5)
train0_url = url_prefix + 'train.tok.clean.bpe.32000.en-de.train_0'
train0_md5 = 'ddce7f602f352a0405267285379a38b1'
paddle.dataset.common.download(train0_url, 'test_dist_transformer',
train0_md5)
train1_url = url_prefix + 'train.tok.clean.bpe.32000.en-de.train_1'
train1_md5 = '8757798200180285b1a619cd7f408747'
paddle.dataset.common.download(train1_url, 'test_dist_transformer',
train1_md5)
test_url = url_prefix + 'newstest2013.tok.bpe.32000.en-de'
test_md5 = '9dd74a266dbdb25314183899f269b4a2'
paddle.dataset.common.download(test_url, 'test_dist_transformer', test_md5)
class TestDistTransformer2x2Sync(TestDistBase):
def _setup_config(self):
self._sync_mode = True
def test_transformer(self):
download_files()
#Note: loss on test dataset of the first 5 batch are:
# 10.518872, 10.518871, 10.518868, 10.518862, 10.518855
self.check_with_place("dist_transformer.py", delta=1e-7)
class TestDistTransformer2x2Async(TestDistBase):
def _setup_config(self):
self._sync_mode = False
def test_transformer(self):
# TODO(paddle-dev): check if the delta is OK.
# Usually start around ~8000 and converge to ~5000
self.check_with_place("dist_transformer.py", delta=400)
download_files()
self.check_with_place("dist_transformer.py", delta=1.0)
if __name__ == "__main__":
......
......@@ -18,8 +18,19 @@ from test_dist_base import TestDistBase
class TestDistSeResneXt2x2(TestDistBase):
def _setup_config(self):
self._sync_mode = True
def test_se_resnext(self):
self.check_with_place("dist_word2vec.py", delta=1e-4)
class TestDistSeResneXt2x2Async(TestDistBase):
def _setup_config(self):
self._sync_mode = False
def test_se_resnext(self):
self.check_with_place("dist_word2vec.py", delta=1e-7)
self.check_with_place("dist_word2vec.py", delta=1)
if __name__ == "__main__":
......
......@@ -39,3 +39,136 @@ def find_op_by_output_arg(block, arg_name):
if arg_name in op.output_arg_names:
return index
return -1
def get_indent_space(indent, space_num=4):
ret = ""
for i in range(0, indent * space_num):
ret += " "
return ret
def variable_to_code(var):
"""
Get readable codes of fluid variable.
Args:
var: A fluid operator.
Returns:
string: The formatted string.
"""
if var.type == core.VarDesc.VarType.SELECTED_ROWS or var.type == core.VarDesc.VarType.LOD_TENSOR:
var_str = "{name} : fluid.{type}.shape{shape}.astype({dtype})".\
format(i="{", e="}", name=var.name, type=var.type, shape=var.shape, dtype=var.dtype)
else:
var_str = "{name} : fluid.{type})".\
format(i="{", e="}", name=var.name, type=var.type)
if type(var) == paddle.fluid.framework.Parameter:
if var.trainable:
var_str = "trainable parameter " + var_str
else:
var_str = "parameter " + var_str
else:
var_str = "var " + var_str
if var.persistable:
var_str = "persist " + var_str
return var_str
def op_to_code(op):
"""
Get readable codes of fluid operator.
Args:
op: A fluid operator.
Returns:
string: The foramtted string.
"""
outputs_str = "{"
for i in range(0, len(op.output_names)):
outputs_str += "{name}=".format(name=op.output_names[i])
o = op.output(op.output_names[i])
outputs_str += "{value}".format(value=o)
if i != len(op.output_names) - 1:
outputs_str += ", "
outputs_str += "}"
inputs_str = "{"
for i in range(0, len(op.input_names)):
inputs_str += "{name}=".format(name=op.input_names[i])
o = op.input(op.input_names[i])
inputs_str += "{value}".format(value=o)
if i != len(op.input_names) - 1:
inputs_str += ", "
inputs_str += "}"
attrs_str = ""
for i in range(0, len(op.attr_names)):
name = op.attr_names[i]
attr_type = op.desc.attr_type(name)
if attr_type == core.AttrType.BLOCK:
a = "{name} = block[{value}]".format(
name=name, type=attr_type, value=op.block_attr_id(name))
attrs_str += a
continue
if attr_type == core.AttrType.BLOCKS:
a = "{name} = blocks{value}".format(
name=name, type=attr_type, value=op.blocks_attr_ids(name))
attrs_str += a
continue
a = "{name} = {value}".format(
name=name, type=attr_type, value=op.desc.attr(name))
attrs_str += a
if i != len(op.attr_names) - 1:
attrs_str += ", "
if outputs_str != "{}":
op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".\
format(outputs = outputs_str, op_type=op.type, inputs=inputs_str, attrs=attrs_str)
else:
op_str = "{op_type}(inputs={inputs}, {attrs})".\
format(op_type=op.type, inputs=inputs_str, attrs=attrs_str)
return op_str
def block_to_code(block, block_idx):
indent = 0
print("{0}{1} // block {2}".format(
get_indent_space(indent), '{', block_idx))
indent += 1
# sort all vars
all_vars = sorted(block.vars.iteritems(), key=lambda x: x[0])
for var in all_vars:
print("{}{}".format(get_indent_space(indent), variable_to_code(var[1])))
if len(all_vars) > 0:
print("")
for op in block.ops:
print("{}{}".format(get_indent_space(indent), op_to_code(op)))
indent -= 1
print("{0}{1}".format(get_indent_space(indent), '}'))
def program_to_code(prog):
"""
Print readable codes of fluid program.
Args:
prog : A fluid program.
An example result like bellow:
https://github.com/PaddlePaddle/Paddle/pull/12673
"""
block_idx = 0
for block in prog.blocks:
block_to_code(block, block_idx)
block_idx += 1
......@@ -31,9 +31,10 @@ Steps to transpile pserver:
"""
import math
import random
import sys
import numpy as np
import collections
import random
from .ps_dispatcher import RoundRobin, HashName, PSDispatcher
from .. import core, framework
......@@ -181,7 +182,8 @@ class DistributeTranspiler(object):
program=None,
pservers="127.0.0.1:6174",
trainers=1,
sync_mode=True):
sync_mode=True,
startup_program=None):
"""
Run the transpiler.
......@@ -194,13 +196,17 @@ class DistributeTranspiler(object):
list.
trainers (int): number of trainers in the distributed job.
sync_mode (bool): Do sync training or not, default is True.
startup_program (Program|None): startup_program to transpile,
default is fluid.default_main_program().
"""
if program is None:
program = default_main_program()
if startup_program is None:
startup_program = default_startup_program()
self.origin_program = program
self.origin_startup_program = default_startup_program().clone()
self.startup_program = startup_program
self.origin_startup_program = self.startup_program.clone()
self.startup_program = default_startup_program()
self.trainer_num = trainers
self.sync_mode = sync_mode
self.trainer_id = trainer_id
......@@ -260,6 +266,10 @@ class DistributeTranspiler(object):
name=framework.generate_control_dev_var_name())
grad_name_to_send_dummy_out[grad_varname] = dummy_output
# get send op_role_var, if not splited, the grad should have .trainer suffix
# if splited, grad should be the original grad var name (split_by_ref and send
# will be on the same place). ParallelExecutor
# will use op_role_var to get expected device place to run this op.
program.global_block()._insert_op(
index=index + 1,
type="send",
......@@ -268,18 +278,23 @@ class DistributeTranspiler(object):
attrs={
"epmap": eplist,
RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
OP_ROLE_VAR_ATTR_NAME:
[self.grad_name_to_param_name[grad_varname], grad_varname],
OP_ROLE_VAR_ATTR_NAME: [
self.grad_name_to_param_name[grad_varname],
splited_grad_varname
],
"sync_mode": not self.sync_mode,
})
for _, var in enumerate(splited_vars):
send_vars.append(var)
if self.sync_mode:
send_barrier_out = program.global_block().create_var(
name=framework.generate_control_dev_var_name())
input_deps = grad_name_to_send_dummy_out.values()
program.global_block().append_op(
type="send_barrier",
inputs={},
outputs={},
inputs={"X": input_deps},
outputs={"Out": send_barrier_out},
attrs={
"endpoints": pserver_endpoints,
RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
......@@ -297,32 +312,46 @@ class DistributeTranspiler(object):
self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
# step4: Concat the parameters splits together after recv.
all_recv_outputs = []
for param_varname, splited_var in six.iteritems(self.param_var_mapping):
eps = []
for var in splited_var:
index = [v.name for v in recv_vars].index(var.name)
eps.append(eplist[index])
grad_send_dummy_out = grad_name_to_send_dummy_out[
self.param_name_to_grad_name[param_varname]]
if self.sync_mode:
recv_dep_in = send_barrier_out
else:
# connect deps to send op in async mode
recv_dep_in = grad_name_to_send_dummy_out[
self.param_name_to_grad_name[param_varname]]
all_recv_outputs.extend(splited_var)
# get recv op_role_var, if not splited, the grad should have .trainer suffix
# if splited, grad should be the original grad var name. ParallelExecutor
# will use op_role_var to get expected device place to run this op.
orig_grad_name = self.param_name_to_grad_name[param_varname]
recv_op_role_var_name = orig_grad_name
splited_trainer_grad = self.grad_var_mapping[orig_grad_name]
if len(splited_trainer_grad) == 1:
recv_op_role_var_name = splited_trainer_grad[0].name
program.global_block().append_op(
type="recv",
inputs={"X": [grad_send_dummy_out]},
inputs={"X": [recv_dep_in]},
outputs={"Out": splited_var},
attrs={
"epmap": eps,
RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE,
OP_ROLE_VAR_ATTR_NAME: [
param_varname,
self.param_name_to_grad_name[param_varname]
],
OP_ROLE_VAR_ATTR_NAME:
[param_varname, recv_op_role_var_name],
"sync_mode": not self.sync_mode
})
if self.sync_mode:
# form a WAW dependency
program.global_block().append_op(
type="fetch_barrier",
inputs={},
outputs={},
outputs={"Out": all_recv_outputs},
attrs={
"endpoints": pserver_endpoints,
RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
......@@ -359,21 +388,18 @@ class DistributeTranspiler(object):
return self.origin_program
def _get_trainer_startup_program(self,
recv_vars,
eplist,
startup_program=None):
def _get_trainer_startup_program(self, recv_vars, eplist):
"""
Get transpiled trainer side startup program.
Args:
startup_program(Program): Startup program.
recv_vars (list): Variable list to recv for current trainer_id
eplist (list): A list of strings indicating
Returns:
Program: trainer side startup program.
"""
if startup_program is None:
startup_program = self.startup_program
startup_program = self.startup_program
# FIXME(gongwb): delete not need ops.
# note that: some parameter is not trainable and those ops can't be deleted.
......@@ -406,10 +432,12 @@ class DistributeTranspiler(object):
RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
})
fetch_barrier_out = startup_program.global_block().create_var(
name=framework.generate_control_dev_var_name())
startup_program.global_block().append_op(
type="fetch_barrier",
inputs={},
outputs={},
outputs={"Out": fetch_barrier_out},
attrs={
"endpoints": self.pserver_endpoints,
RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
......@@ -419,7 +447,18 @@ class DistributeTranspiler(object):
#add concat ops to merge splited parameters received from parameter servers.
if len(splited_var) <= 1:
continue
orig_param = startup_program.global_block().vars[varname]
# NOTE: if enable memory optimization, origin vars maybe removed.
if startup_program.global_block().vars.has_key(varname):
orig_param = startup_program.global_block().vars[varname]
else:
origin_param_var = self.origin_program.global_block().vars[
varname]
orig_param = startup_program.global_block().create_var(
name=varname,
persistable=origin_param_var.persistable,
type=origin_param_var.type,
dtype=origin_param_var.dtype,
shape=origin_param_var.shape)
startup_program.global_block().append_op(
type="concat",
inputs={"X": splited_var},
......@@ -442,7 +481,9 @@ class DistributeTranspiler(object):
# NOTE: assume blocks of the same variable is not distributed
# on the same pserver, only change param/grad varnames for
# trainers to fetch.
sys.stderr.write("get_pserver_program() is deprecated, call\
get_pserver_programs() to get pserver main and startup\
in a single call.")
# step1
pserver_program = Program()
pserver_program.random_seed = self.origin_program.random_seed
......@@ -626,32 +667,58 @@ class DistributeTranspiler(object):
attrs=attrs)
pserver_program._sync_with_cpp()
# save pserver program to generate pserver side startup relatively.
self.pserver_program = pserver_program
return pserver_program
def get_pserver_programs(self, endpoint):
"""
Get pserver side main program and startup program for distributed training.
Args:
endpoint (str): current pserver endpoint.
Returns:
tuple: (main_program, startup_program), of type "Program"
"""
pserver_prog = self.get_pserver_program(endpoint)
pserver_startup = self.get_startup_program(endpoint)
return pserver_prog, pserver_startup
def get_startup_program(self,
endpoint,
pserver_program,
pserver_program=None,
startup_program=None):
"""
**Deprecated**
Get startup program for current parameter server.
Modify operator input variables if there are variables that
were split to several blocks.
Args:
endpoint (str): current pserver endpoint.
pserver_program (Program): call get_pserver_program first and
pass the result here.
startup_program (Program): if pass None, will use
default_startup_program
pserver_program (Program): deprecated, call get_pserver_program first.
startup_program (Program): deprecated, should pass startup_program
when initalizing
Returns:
Program: parameter server side startup program.
"""
sys.stderr.write("get_startup_program() is deprecated, call\
get_pserver_programs() to get pserver main and startup\
in a single call.")
if pserver_program != None:
sys.stderr.write("passing pserver_program to get_startup_program()\
is deprecated, you can use new API get_pserver_programs() to\
get both pserver main program and startup program.")
if startup_program != None:
sys.stderr.write("passing startup_program to get_startup_program()\
is deprecated, use fluid.program_guard() or pass this argument\
to transpile() call.")
s_prog = Program()
if not startup_program:
orig_s_prog = default_startup_program()
else:
orig_s_prog = startup_program
orig_s_prog = self.startup_program
s_prog.random_seed = orig_s_prog.random_seed
params = self.param_grad_ep_mapping[endpoint]["params"]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册