Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ec11135d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ec11135d
编写于
3月 22, 2019
作者:
Z
Zhen Wang
提交者:
GitHub
3月 22, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #16341 from wzzju/add_channel_wise_in_quant_pass
Add channel wise in quant pass.
上级
e235882c
8965819f
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
655 addition
and
146 deletion
+655
-146
paddle/fluid/operators/fake_dequantize_op.cc
paddle/fluid/operators/fake_dequantize_op.cc
+43
-0
paddle/fluid/operators/fake_dequantize_op.cu
paddle/fluid/operators/fake_dequantize_op.cu
+58
-0
paddle/fluid/operators/fake_dequantize_op.h
paddle/fluid/operators/fake_dequantize_op.h
+27
-18
paddle/fluid/operators/fake_quantize_op.cc
paddle/fluid/operators/fake_quantize_op.cc
+49
-4
paddle/fluid/operators/fake_quantize_op.cu
paddle/fluid/operators/fake_quantize_op.cu
+103
-22
paddle/fluid/operators/fake_quantize_op.h
paddle/fluid/operators/fake_quantize_op.h
+19
-17
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
...ddle/fluid/contrib/slim/quantization/quantization_pass.py
+194
-27
python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py
...paddle/fluid/contrib/slim/tests/test_quantization_pass.py
+129
-44
python/paddle/fluid/tests/unittests/test_fake_dequantize_op.py
...n/paddle/fluid/tests/unittests/test_fake_dequantize_op.py
+32
-13
python/paddle/fluid/tests/unittests/test_fake_quantize_op.py
python/paddle/fluid/tests/unittests/test_fake_quantize_op.py
+1
-1
未找到文件。
paddle/fluid/operators/fake_dequantize_op.cc
浏览文件 @
ec11135d
...
...
@@ -33,8 +33,51 @@ struct DequantizeFunctor<platform::CPUDeviceContext, T> {
}
};
template
<
typename
T
>
struct
ChannelDequantizeFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
dev_ctx
,
const
framework
::
Tensor
*
in
,
const
framework
::
Tensor
**
scales
,
const
int
scale_num
,
T
max_range
,
framework
::
Tensor
*
out
)
{
if
(
scale_num
==
1
)
{
const
int
channel
=
in
->
dims
()[
0
];
const
T
*
scale_factor
=
scales
[
0
]
->
data
<
T
>
();
for
(
int
i
=
0
;
i
<
channel
;
i
++
)
{
T
s
=
scale_factor
[
i
];
framework
::
Tensor
one_channel_in
=
in
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_out
=
out
->
Slice
(
i
,
i
+
1
);
auto
in_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
one_channel_in
);
auto
out_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
one_channel_out
);
auto
&
dev
=
*
dev_ctx
.
eigen_device
();
out_e
.
device
(
dev
)
=
(
s
/
max_range
)
*
in_e
;
}
}
else
if
(
scale_num
==
2
)
{
int
batch_size
=
in
->
dims
()[
0
];
int
channel
=
in
->
dims
()[
1
];
const
T
*
scale_one
=
scales
[
0
]
->
data
<
T
>
();
const
T
*
scale_two
=
scales
[
1
]
->
data
<
T
>
();
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
framework
::
Tensor
one_batch_in
=
in
->
Slice
(
i
,
i
+
1
).
Resize
(
framework
::
slice_ddim
(
in
->
dims
(),
1
,
in
->
dims
().
size
()));
framework
::
Tensor
one_batch_out
=
out
->
Slice
(
i
,
i
+
1
).
Resize
(
framework
::
slice_ddim
(
out
->
dims
(),
1
,
out
->
dims
().
size
()));
for
(
int
j
=
0
;
j
<
channel
;
j
++
)
{
T
s
=
scale_one
[
j
];
framework
::
Tensor
one_channel_in
=
one_batch_in
.
Slice
(
j
,
j
+
1
);
framework
::
Tensor
one_channel_out
=
one_batch_out
.
Slice
(
j
,
j
+
1
);
auto
in_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
one_channel_in
);
auto
out_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
one_channel_out
);
auto
&
dev
=
*
dev_ctx
.
eigen_device
();
out_e
.
device
(
dev
)
=
(
s
*
scale_two
[
0
]
/
max_range
)
*
in_e
;
}
}
}
}
};
template
struct
DequantizeFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
struct
DequantizeFunctor
<
platform
::
CPUDeviceContext
,
double
>;
template
struct
ChannelDequantizeFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
struct
ChannelDequantizeFunctor
<
platform
::
CPUDeviceContext
,
double
>;
class
FakeDequantizeMaxAbsOp
:
public
framework
::
OperatorWithKernel
{
public:
...
...
paddle/fluid/operators/fake_dequantize_op.cu
浏览文件 @
ec11135d
...
...
@@ -44,8 +44,66 @@ struct DequantizeFunctor<platform::CUDADeviceContext, T> {
}
};
template
<
typename
T
>
__global__
void
DequantizeOneScale
(
const
T
*
in
,
const
T
*
scale
,
T
max_range
,
int
num
,
int
channel
,
T
*
out
)
{
int
tid
=
threadIdx
.
x
;
int
channel_size
=
num
/
channel
;
const
T
*
in_c
=
in
+
blockIdx
.
x
*
channel_size
;
T
*
out_c
=
out
+
blockIdx
.
x
*
channel_size
;
for
(
int
i
=
tid
;
i
<
channel_size
;
i
+=
blockDim
.
x
)
{
out_c
[
i
]
=
in_c
[
i
]
*
scale
[
blockIdx
.
x
]
/
max_range
;
}
}
template
<
typename
T
>
__global__
void
DequantizeTwoScale
(
const
T
*
in
,
const
T
*
scale_one
,
const
T
*
scale_two
,
T
max_range
,
int
num
,
int
batch_size
,
int
channel
,
T
*
out
)
{
int
tid
=
threadIdx
.
x
;
int
channel_size
=
num
/
(
batch_size
*
channel
);
int
scale_index
=
blockIdx
.
x
%
channel
;
const
T
*
in_c
=
in
+
blockIdx
.
x
*
channel_size
;
T
*
out_c
=
out
+
blockIdx
.
x
*
channel_size
;
for
(
int
i
=
tid
;
i
<
channel_size
;
i
+=
blockDim
.
x
)
{
out_c
[
i
]
=
in_c
[
i
]
*
scale_one
[
scale_index
]
*
scale_two
[
0
]
/
max_range
;
}
}
template
<
typename
T
>
struct
ChannelDequantizeFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
dev_ctx
,
const
framework
::
Tensor
*
in
,
const
framework
::
Tensor
**
scales
,
const
int
scale_num
,
T
max_range
,
framework
::
Tensor
*
out
)
{
const
T
*
in_data
=
in
->
data
<
T
>
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
if
(
scale_num
==
1
)
{
int
num
=
in
->
numel
();
int
channel
=
in
->
dims
()[
0
];
const
T
*
scale_factor
=
scales
[
0
]
->
data
<
T
>
();
int
block
=
1024
;
int
grid
=
channel
;
DequantizeOneScale
<
T
><<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
in_data
,
scale_factor
,
max_range
,
num
,
channel
,
out_data
);
}
else
if
(
scale_num
==
2
)
{
int
num
=
in
->
numel
();
int
batch_size
=
in
->
dims
()[
0
];
int
channel
=
in
->
dims
()[
1
];
const
T
*
scale_one
=
scales
[
0
]
->
data
<
T
>
();
const
T
*
scale_two
=
scales
[
1
]
->
data
<
T
>
();
int
block
=
1024
;
int
grid
=
batch_size
*
channel
;
DequantizeTwoScale
<
T
><<<
grid
,
block
,
0
,
dev_ctx
.
stream
()
>>>
(
in_data
,
scale_one
,
scale_two
,
max_range
,
num
,
batch_size
,
channel
,
out_data
);
}
}
};
template
struct
DequantizeFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
struct
DequantizeFunctor
<
platform
::
CUDADeviceContext
,
double
>;
template
struct
ChannelDequantizeFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
struct
ChannelDequantizeFunctor
<
platform
::
CUDADeviceContext
,
double
>;
}
// namespace operators
}
// namespace paddle
...
...
paddle/fluid/operators/fake_dequantize_op.h
浏览文件 @
ec11135d
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include <vector>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
...
...
@@ -28,6 +29,13 @@ struct DequantizeFunctor {
framework
::
Tensor
*
out
);
};
template
<
typename
DeviceContext
,
typename
T
>
struct
ChannelDequantizeFunctor
{
void
operator
()(
const
DeviceContext
&
dev_ctx
,
const
framework
::
Tensor
*
in
,
const
framework
::
Tensor
**
scales
,
const
int
scale_num
,
T
max_range
,
framework
::
Tensor
*
out
);
};
template
<
typename
DeviceContext
,
typename
T
>
class
FakeDequantizeMaxAbsKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -54,32 +62,33 @@ class FakeChannelWiseDequantizeMaxAbsKernel : public framework::OpKernel<T> {
auto
scales
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"Scales"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
PADDLE_ENFORCE_EQ
(
scales
[
0
]
->
numel
(),
in
->
dims
()[
0
],
"The number of first scale values must be the same with "
"first dimension value of Input(X)."
);
auto
quant_bits
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"quant_bits"
);
int
max_range
=
std
::
pow
(
2
,
quant_bits
[
0
]
-
1
)
-
1
;
int
max_range
=
1
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
out
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
auto
dequant
=
DequantizeFunctor
<
DeviceContext
,
T
>
();
for
(
int64_t
i
=
0
;
i
<
in
->
dims
()[
0
];
i
++
)
{
framework
::
Tensor
one_channel_in
=
in
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_out
=
out
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_scale
=
scales
[
0
]
->
Slice
(
i
,
i
+
1
);
dequant
(
dev_ctx
,
&
one_channel_in
,
&
one_channel_scale
,
static_cast
<
T
>
(
max_range
),
&
one_channel_out
);
}
if
(
scales
.
size
()
==
2
)
{
int
scale_num
=
scales
.
size
();
if
(
scale_num
==
1
)
{
PADDLE_ENFORCE_EQ
(
scales
[
0
]
->
numel
(),
in
->
dims
()[
0
],
"The number of first scale values must be the same with "
"first dimension value of Input(X) when the `Scales` has only one "
"element."
);
max_range
*=
(
std
::
pow
(
2
,
quant_bits
[
0
]
-
1
)
-
1
);
}
else
if
(
scale_num
==
2
)
{
PADDLE_ENFORCE_EQ
(
scales
[
0
]
->
numel
(),
in
->
dims
()[
1
],
"The number of first scale values must be the same with "
"second dimension value of Input(X) when the `Scales` has two "
"elements."
);
PADDLE_ENFORCE_EQ
(
scales
[
1
]
->
numel
(),
1
,
"The second scale tensor should only have one value at now."
);
max_range
=
std
::
pow
(
2
,
quant_bits
[
1
]
-
1
)
-
1
;
dequant
(
dev_ctx
,
out
,
scales
[
1
],
static_cast
<
T
>
(
max_range
),
out
);
max_range
*=
(
std
::
pow
(
2
,
quant_bits
[
0
]
-
1
)
-
1
)
*
(
std
::
pow
(
2
,
quant_bits
[
1
]
-
1
)
-
1
);
}
ChannelDequantizeFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
in
,
scales
.
data
(),
scale_num
,
static_cast
<
T
>
(
max_range
),
out
);
}
};
...
...
paddle/fluid/operators/fake_quantize_op.cc
浏览文件 @
ec11135d
...
...
@@ -37,6 +37,21 @@ struct FindAbsMaxFunctor<platform::CPUDeviceContext, T> {
template
struct
FindAbsMaxFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
<
typename
T
>
struct
FindChannelAbsMaxFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
ctx
,
const
T
*
in
,
const
int
num
,
const
int
channel
,
T
*
out
)
{
const
int
channel_size
=
num
/
channel
;
for
(
int
i
=
0
;
i
<
channel
;
i
++
)
{
auto
*
start
=
in
+
i
*
channel_size
;
auto
*
end
=
in
+
(
i
+
1
)
*
channel_size
;
out
[
i
]
=
std
::
abs
(
*
(
std
::
max_element
(
start
,
end
,
Compare
<
T
>
())));
}
}
};
template
struct
FindChannelAbsMaxFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
<
typename
T
>
struct
ClipAndFakeQuantFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
ctx
,
...
...
@@ -53,6 +68,36 @@ struct ClipAndFakeQuantFunctor<platform::CPUDeviceContext, T> {
template
struct
ClipAndFakeQuantFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
<
typename
T
>
struct
ChannelClipAndFakeQuantFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
const
int
channel
,
framework
::
Tensor
*
out
)
{
auto
*
scale_data
=
scale
.
data
<
T
>
();
auto
*
in_data
=
in
.
data
<
T
>
();
auto
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
int
channel_size
=
in
.
numel
()
/
channel
;
platform
::
Transform
<
platform
::
CPUDeviceContext
>
trans
;
for
(
int
i
=
0
;
i
<
channel
;
i
++
)
{
T
s
=
scale_data
[
i
];
auto
*
start
=
in_data
+
i
*
channel_size
;
auto
*
end
=
in_data
+
(
i
+
1
)
*
channel_size
;
trans
(
ctx
,
start
,
end
,
out_data
+
i
*
channel_size
,
ClipFunctor
<
T
>
(
-
s
,
s
));
}
for
(
int
i
=
0
;
i
<
channel
;
i
++
)
{
T
s
=
scale_data
[
i
];
framework
::
Tensor
one_channel_out
=
out
->
Slice
(
i
,
i
+
1
);
auto
out_e
=
framework
::
EigenVector
<
T
>::
Flatten
(
one_channel_out
);
out_e
.
device
(
*
ctx
.
eigen_device
())
=
(
bin_cnt
/
s
*
out_e
).
round
();
}
}
};
template
struct
ChannelClipAndFakeQuantFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
<
typename
T
>
struct
FindRangeAbsMaxFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CPUDeviceContext
&
ctx
,
...
...
@@ -169,10 +214,10 @@ class FakeChannelWiseQuantizeAbsMaxOp : public framework::OperatorWithKernel {
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of FakeChannelWiseQuantizeOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"OutScale
s
"
),
"Output(Scale
s
) of FakeChannelWiseQuantizeOp should not be null."
);
ctx
->
HasOutput
(
"OutScale"
),
"Output(Scale) of FakeChannelWiseQuantizeOp should not be null."
);
ctx
->
SetOutputDim
(
"Out"
,
ctx
->
GetInputDim
(
"X"
));
ctx
->
SetOutputDim
(
"OutScale
s
"
,
{
ctx
->
GetInputDim
(
"X"
)[
0
]});
ctx
->
SetOutputDim
(
"OutScale"
,
{
ctx
->
GetInputDim
(
"X"
)[
0
]});
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
...
...
@@ -192,7 +237,7 @@ class FakeChannelWiseQuantizeAbsMaxOpMaker
AddOutput
(
"Out"
,
"(Tensor) Output of quantized low level tensor, "
"but also saved as float data type."
);
AddOutput
(
"OutScale
s
"
,
"(Tensor) Current channel wise scale"
);
AddOutput
(
"OutScale"
,
"(Tensor) Current channel wise scale"
);
AddAttr
<
int
>
(
"bit_length"
,
"(int, default 8)"
)
.
SetDefault
(
8
)
.
AddCustomChecker
([](
const
int
&
bit_length
)
{
...
...
paddle/fluid/operators/fake_quantize_op.cu
浏览文件 @
ec11135d
...
...
@@ -74,6 +74,45 @@ struct FindAbsMaxFunctor<platform::CUDADeviceContext, T> {
template
struct
FindAbsMaxFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
<
typename
T
>
__global__
void
FindChannelAbsMaxKernel
(
const
T
*
in
,
const
int
n
,
const
int
c
,
T
*
out
)
{
int
tid
=
threadIdx
.
x
;
int
channel_size
=
n
/
c
;
const
T
*
in_c
=
in
+
blockIdx
.
x
*
channel_size
;
extern
__shared__
T
shared_max_data
[];
shared_max_data
[
tid
]
=
T
(
0
);
for
(
int
i
=
tid
;
i
<
channel_size
;
i
+=
blockDim
.
x
)
{
T
tmp
=
fabs
(
in_c
[
i
]);
if
(
tmp
>
shared_max_data
[
tid
])
{
shared_max_data
[
tid
]
=
tmp
;
}
}
__syncthreads
();
for
(
int
i
=
blockDim
.
x
/
2
;
i
>
0
;
i
>>=
1
)
{
if
(
tid
<
i
&&
(
shared_max_data
[
tid
]
<
shared_max_data
[
tid
+
i
]))
{
shared_max_data
[
tid
]
=
shared_max_data
[
tid
+
i
];
}
__syncthreads
();
}
if
(
tid
==
0
)
{
out
[
blockIdx
.
x
]
=
shared_max_data
[
0
];
}
}
template
<
typename
T
>
struct
FindChannelAbsMaxFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
const
T
*
in
,
const
int
num
,
const
int
channel
,
T
*
out
)
{
int
block
=
1024
;
int
grid
=
channel
;
FindChannelAbsMaxKernel
<
T
><<<
grid
,
block
,
1024
*
sizeof
(
T
),
ctx
.
stream
()
>>>
(
in
,
num
,
channel
,
out
);
}
};
template
struct
FindChannelAbsMaxFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
<
typename
T
>
__global__
void
ClipAndQuantKernel
(
const
T
*
in
,
const
T
*
scale
,
const
int
bin_cnt
,
const
int
n
,
T
*
out
)
{
...
...
@@ -82,14 +121,76 @@ __global__ void ClipAndQuantKernel(const T* in, const T* scale,
T
s
=
scale
[
0
];
for
(
int
i
=
bid
;
i
<
n
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
T
x
=
in
[
bid
];
T
x
=
in
[
i
];
T
v
=
x
>
s
?
s
:
x
;
v
=
v
<
-
s
?
-
s
:
v
;
v
=
bin_cnt
/
s
*
v
;
out
[
bid
]
=
round
(
v
);
out
[
i
]
=
round
(
v
);
}
}
template
<
typename
T
>
struct
ClipAndFakeQuantFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
framework
::
Tensor
*
out
)
{
int
num
=
in
.
numel
();
int
block
=
1024
;
int
grid
=
(
block
-
1
+
num
)
/
block
;
const
T
*
in_data
=
in
.
data
<
T
>
();
const
T
*
scale_data
=
scale
.
data
<
T
>
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
ClipAndQuantKernel
<
T
><<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
in_data
,
scale_data
,
bin_cnt
,
num
,
out_data
);
}
};
template
struct
ClipAndFakeQuantFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
<
typename
T
>
__global__
void
ChannelClipAndQuantKernel
(
const
T
*
in
,
const
T
*
scale
,
const
int
bin_cnt
,
const
int
n
,
const
int
c
,
T
*
out
)
{
int
tid
=
threadIdx
.
x
;
int
channel_size
=
n
/
c
;
const
T
*
in_c
=
in
+
blockIdx
.
x
*
channel_size
;
T
*
out_c
=
out
+
blockIdx
.
x
*
channel_size
;
T
s
=
scale
[
blockIdx
.
x
];
for
(
int
i
=
tid
;
i
<
channel_size
;
i
+=
blockDim
.
x
)
{
T
x
=
in_c
[
i
];
T
v
=
x
>
s
?
s
:
x
;
v
=
v
<
-
s
?
-
s
:
v
;
v
=
bin_cnt
/
s
*
v
;
out_c
[
i
]
=
round
(
v
);
}
}
template
<
typename
T
>
struct
ChannelClipAndFakeQuantFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
const
int
channel
,
framework
::
Tensor
*
out
)
{
int
num
=
in
.
numel
();
int
block
=
1024
;
int
grid
=
channel
;
const
T
*
in_data
=
in
.
data
<
T
>
();
const
T
*
scale_data
=
scale
.
data
<
T
>
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
ChannelClipAndQuantKernel
<
T
><<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
in_data
,
scale_data
,
bin_cnt
,
num
,
channel
,
out_data
);
}
};
template
struct
ChannelClipAndFakeQuantFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
<
typename
T
>
__global__
void
FindRangeAbsMaxAndFillArray
(
const
T
*
cur_scale
,
const
T
*
last_scale
,
...
...
@@ -182,26 +283,6 @@ struct FindMovingAverageAbsMaxFunctor<platform::CUDADeviceContext, T> {
template
struct
FindMovingAverageAbsMaxFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
<
typename
T
>
struct
ClipAndFakeQuantFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
void
operator
()(
const
platform
::
CUDADeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
framework
::
Tensor
*
out
)
{
int
num
=
in
.
numel
();
int
block
=
1024
;
int
grid
=
(
block
-
1
+
num
)
/
block
;
const
T
*
in_data
=
in
.
data
<
T
>
();
const
T
*
scale_data
=
scale
.
data
<
T
>
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
ClipAndQuantKernel
<
T
><<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
in_data
,
scale_data
,
bin_cnt
,
num
,
out_data
);
}
};
template
struct
ClipAndFakeQuantFunctor
<
platform
::
CUDADeviceContext
,
float
>;
}
// namespace operators
}
// namespace paddle
...
...
paddle/fluid/operators/fake_quantize_op.h
浏览文件 @
ec11135d
...
...
@@ -42,6 +42,19 @@ struct FindRangeAbsMaxFunctor {
framework
::
Tensor
*
scales_arr
,
framework
::
Tensor
*
out_scale
);
};
template
<
typename
DeviceContext
,
typename
T
>
struct
FindChannelAbsMaxFunctor
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
T
*
in
,
const
int
num
,
const
int
channel
,
T
*
out
);
};
template
<
typename
DeviceContext
,
typename
T
>
struct
ChannelClipAndFakeQuantFunctor
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
in
,
const
framework
::
Tensor
&
scale
,
const
int
bin_cnt
,
const
int
channel
,
framework
::
Tensor
*
out
);
};
template
<
typename
DeviceContext
,
typename
T
>
struct
FindMovingAverageAbsMaxFunctor
{
void
operator
()(
const
DeviceContext
&
ctx
,
const
framework
::
Tensor
&
in_accum
,
...
...
@@ -78,29 +91,18 @@ class FakeChannelWiseQuantizeAbsMaxKernel : public framework::OpKernel<T> {
auto
*
in
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
out_scale
s
=
context
.
Output
<
framework
::
Tensor
>
(
"OutScales
"
);
T
*
out_scale
s_data
=
out_scales
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
out_scale
=
context
.
Output
<
framework
::
Tensor
>
(
"OutScale
"
);
T
*
out_scale
_data
=
out_scale
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
bit_length
=
context
.
Attr
<
int
>
(
"bit_length"
);
int
bin_cnt
=
std
::
pow
(
2
,
bit_length
-
1
)
-
1
;
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
auto
find_abs_max
=
FindAbsMaxFunctor
<
DeviceContext
,
T
>
();
for
(
int64_t
i
=
0
;
i
<
in
->
dims
()[
0
];
i
++
)
{
framework
::
Tensor
one_channel
=
in
->
Slice
(
i
,
i
+
1
);
const
T
*
one_channel_data
=
one_channel
.
data
<
T
>
();
find_abs_max
(
dev_ctx
,
one_channel_data
,
one_channel
.
numel
(),
&
out_scales_data
[
i
]);
}
auto
clip_quant
=
ClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
();
for
(
int64_t
i
=
0
;
i
<
in
->
dims
()[
0
];
i
++
)
{
framework
::
Tensor
one_channel_in
=
in
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_out
=
out
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_scale
=
out_scales
->
Slice
(
i
,
i
+
1
);
clip_quant
(
dev_ctx
,
one_channel_in
,
one_channel_scale
,
bin_cnt
,
&
one_channel_out
);
}
FindChannelAbsMaxFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
in
->
data
<
T
>
(),
in
->
numel
(),
in
->
dims
()[
0
],
out_scale_data
);
ChannelClipAndFakeQuantFunctor
<
DeviceContext
,
T
>
()(
dev_ctx
,
*
in
,
*
out_scale
,
bin_cnt
,
in
->
dims
()[
0
],
out
);
}
};
...
...
python/paddle/fluid/contrib/slim/quantization/quantization_pass.py
浏览文件 @
ec11135d
...
...
@@ -22,6 +22,7 @@ from ....framework import IrGraph
from
....framework
import
IrNode
from
....framework
import
Program
from
....initializer
import
Constant
from
....initializer
import
NumpyArrayInitializer
from
....
import
unique_name
__all__
=
[
...
...
@@ -54,14 +55,15 @@ class QuantizationTransformPass(object):
the bias is not quantized.
activation_bits (int): quantization bit number for activation.
activation_quantize_type (str): quantization type for activation,
now support 'abs_max', 'range_abs_max'
. If use 'abs_max' mode,
the quantization scale will be calculated dynamically each step
in both training and testing period. If use 'range_abs_max',
a static quantization scale will be calculated during training
and used in inference.
now support 'abs_max', 'range_abs_max'
and 'moving_average_abs_max'.
If use 'abs_max' mode, the quantization scale will be calculated
dynamically each step in both training and testing period. If use
'range_abs_max', a static quantization scale will be calculated
during training
and used in inference.
weight_quantize_type (str): quantization type for weights,
support 'abs_max'. The 'range_abs_max' usually is not used for
weight, since weights are fixed once the model is well trained.
support 'abs_max' and 'channel_wise_abs_max'. The 'range_abs_max'
usually is not used for weight, since weights are fixed once the
model is well trained.
window_size (int): the window size for 'range_abs_max' quantization.
Examples:
...
...
@@ -84,7 +86,11 @@ class QuantizationTransformPass(object):
self
.
_weight_bits
=
weight_bits
self
.
_activation_bits
=
activation_bits
quant_type
=
[
'abs_max'
,
'range_abs_max'
,
'moving_average_abs_max'
]
quant_type
=
[
'abs_max'
,
'channel_wise_abs_max'
,
'range_abs_max'
,
'moving_average_abs_max'
]
assert
activation_quantize_type
!=
'channel_wise_abs_max'
,
"The activation quantization type does not support 'channel_wise_abs_max'."
if
activation_quantize_type
not
in
quant_type
:
raise
ValueError
(
"Unknown activation_quantize_type : '%s'. It can only be "
,
...
...
@@ -93,7 +99,7 @@ class QuantizationTransformPass(object):
if
weight_quantize_type
not
in
quant_type
:
raise
ValueError
(
"Unknown weight_quantize_type: '%s'. It can only be "
,
"'abs_max' or 'range_abs_max' or 'moving_average_abs_max'."
,
"'abs_max' or '
channel_wise_abs_max' or '
range_abs_max' or 'moving_average_abs_max'."
,
str
(
weight_quantize_type
))
self
.
_activation_quantize_type
=
activation_quantize_type
...
...
@@ -103,6 +109,7 @@ class QuantizationTransformPass(object):
self
.
_need_initialized
=
collections
.
OrderedDict
()
self
.
_quantizable_ops
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]
self
.
_conv_ops
=
[
'conv2d'
,
'depthwise_conv2d'
]
self
.
_quantizable_grad_ops
=
[
'%s_grad'
%
(
op
)
for
op
in
self
.
_quantizable_ops
]
...
...
@@ -135,10 +142,26 @@ class QuantizationTransformPass(object):
else
self
.
_activation_bits
quant_type
=
self
.
_weight_quantize_type
if
var_node
.
name
()
\
in
persistable_vars
else
self
.
_activation_quantize_type
quant_var_node
,
scale_var_node
=
self
.
_insert_quant_op
(
graph
,
var_node
,
quant_bits
,
quant_type
)
dequant_var_node
=
self
.
_insert_dequant_op
(
graph
,
quant_var_node
,
scale_var_node
,
quant_bits
)
if
quant_type
==
'channel_wise_abs_max'
:
assert
var_node
.
name
(
)
in
persistable_vars
,
"'channel_wise_abs_max' can only be applied on weights."
if
op
.
name
()
in
self
.
_conv_ops
:
quant_var_node
,
scale_var_node
=
self
.
_insert_channel_quant_op
(
graph
,
var_node
,
quant_bits
)
dequant_var_node
=
self
.
_insert_channel_dequant_op
(
graph
,
quant_var_node
,
[
scale_var_node
],
[
quant_bits
])
else
:
quant_var_node
,
scale_var_node
=
self
.
_insert_quant_op
(
graph
,
var_node
,
quant_bits
,
'abs_max'
)
dequant_var_node
=
self
.
_insert_dequant_op
(
graph
,
quant_var_node
,
scale_var_node
,
quant_bits
)
else
:
quant_var_node
,
scale_var_node
=
self
.
_insert_quant_op
(
graph
,
var_node
,
quant_bits
,
quant_type
)
dequant_var_node
=
self
.
_insert_dequant_op
(
graph
,
quant_var_node
,
scale_var_node
,
quant_bits
)
dequantized_vars
[
var_node
.
name
()]
=
dequant_var_node
graph
.
update_input_link
(
var_node
,
dequant_var_node
,
op
)
...
...
@@ -244,7 +267,7 @@ class QuantizationTransformPass(object):
scale_var_node
=
graph
.
create_var_node
(
name
=
self
.
_quantized_scale_name
(
var_node
.
name
()),
var_type
=
var_node
.
type
(),
shape
=
var_node
.
shape
()
,
shape
=
[
1
]
,
var_dtype
=
var_node
.
dtype
())
quant_op_node
=
graph
.
create_op_node
(
op_type
=
'fake_quantize_abs_max'
,
...
...
@@ -384,6 +407,36 @@ class QuantizationTransformPass(object):
return
quant_var_node
,
scale_out_node
def
_insert_channel_quant_op
(
self
,
graph
,
var_node
,
quant_bits
):
"""
Insert fake_channel_wise_quantize_abs_max op in the graph.
"""
assert
var_node
.
is_var
(),
'{} is not a var'
.
format
(
var_node
.
name
())
quant_var_node
=
graph
.
create_var_node
(
name
=
self
.
_quantized_var_name
(
var_node
.
name
()),
var_type
=
var_node
.
type
(),
shape
=
var_node
.
shape
(),
var_dtype
=
var_node
.
dtype
())
scale_var_node
=
graph
.
create_var_node
(
name
=
self
.
_quantized_scale_name
(
var_node
.
name
()),
var_type
=
var_node
.
type
(),
shape
=
[
var_node
.
shape
()[
0
]],
var_dtype
=
var_node
.
dtype
())
quant_op_node
=
graph
.
create_op_node
(
op_type
=
'fake_channel_wise_quantize_abs_max'
,
attrs
=
{
'bit_length'
:
quant_bits
,
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
},
inputs
=
{
'X'
:
var_node
},
outputs
=
{
'Out'
:
quant_var_node
,
'OutScale'
:
scale_var_node
})
graph
.
link_to
(
var_node
,
quant_op_node
)
graph
.
link_to
(
quant_op_node
,
quant_var_node
)
graph
.
link_to
(
quant_op_node
,
scale_var_node
)
return
quant_var_node
,
scale_var_node
def
_insert_dequant_op
(
self
,
graph
,
var_node
,
scale_var_node
,
quant_bits
):
"""
Insert fake_dequantize_op in the graph.
...
...
@@ -410,6 +463,33 @@ class QuantizationTransformPass(object):
graph
.
link_to
(
dequant_op_node
,
dequant_var_node
)
return
dequant_var_node
def
_insert_channel_dequant_op
(
self
,
graph
,
var_node
,
scale_var_nodes
,
quant_bits
):
"""
Insert fake_channel_wise_dequantize_max_abs in the graph.
"""
assert
var_node
.
is_var
(),
'{} is not a var'
.
format
(
var_node
.
name
())
dequant_var_node
=
graph
.
create_var_node
(
name
=
self
.
_dequantized_var_name
(
var_node
.
name
()),
var_type
=
var_node
.
type
(),
shape
=
var_node
.
shape
(),
var_dtype
=
var_node
.
dtype
())
dequant_op_node
=
graph
.
create_op_node
(
op_type
=
'fake_channel_wise_dequantize_max_abs'
,
attrs
=
{
'quant_bits'
:
quant_bits
,
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
},
inputs
=
{
'X'
:
var_node
,
'Scales'
:
scale_var_nodes
},
outputs
=
{
'Out'
:
dequant_var_node
})
graph
.
link_to
(
var_node
,
dequant_op_node
)
for
scale_n
in
scale_var_nodes
:
graph
.
link_to
(
scale_n
,
dequant_op_node
)
graph
.
link_to
(
dequant_op_node
,
dequant_var_node
)
return
dequant_var_node
def
_quantized_var_name
(
self
,
var_name
):
"""
Return quantized variable name for the input `var_name`.
...
...
@@ -442,7 +522,7 @@ class QuantizationFreezePass(object):
place(fluid.CPUPlace|fluid.CUDAPlace): place is used to restore the weight tensors.
weight_bits (int): quantization bit number for weights.
activation_bits (int): quantization bit number for activation.
weight_quantize_type (str): quantization type for weights, support 'abs_max'.
weight_quantize_type (str): quantization type for weights, support 'abs_max'
and 'channel_wise_abs_max'
.
The 'range_abs_max' usually is not used for weight, since weights are fixed once the
model is well trained.
"""
...
...
@@ -463,11 +543,15 @@ class QuantizationFreezePass(object):
self
.
_activation_bits
=
activation_bits
self
.
_weight_quantize_type
=
weight_quantize_type
self
.
_quantizable_ops
=
[
'conv2d'
,
'depthwise_conv2d'
,
'mul'
]
self
.
_conv_ops
=
[
'conv2d'
,
'depthwise_conv2d'
]
self
.
_fake_quant_op_names
=
[
'fake_quantize_abs_max'
,
'fake_quantize_range_abs_max'
,
'fake_quantize_moving_average_abs_max'
'fake_quantize_moving_average_abs_max'
,
'fake_channel_wise_quantize_abs_max'
]
self
.
_fake_dequant_op_names
=
[
'fake_dequantize_max_abs'
,
'fake_channel_wise_dequantize_max_abs'
]
self
.
_fake_dequant_op_names
=
[
'fake_dequantize_max_abs'
]
self
.
_op_input_rename_map
=
collections
.
OrderedDict
()
self
.
_op_output_rename_map
=
collections
.
OrderedDict
()
self
.
_var_scale_map
=
collections
.
OrderedDict
()
...
...
@@ -489,20 +573,27 @@ class QuantizationFreezePass(object):
if
self
.
_weight_quantize_type
==
'abs_max'
:
param
=
self
.
_load_var
(
input_arg_name
)
scale_v
=
np
.
max
(
np
.
abs
(
param
))
elif
self
.
_weight_quantize_type
==
'channel_wise_abs_max'
:
param
=
self
.
_load_var
(
input_arg_name
)
if
len
(
param
.
shape
)
==
4
:
# conv2d or depthwise_conv2d
scale_v
=
[]
for
i
in
range
(
param
.
shape
[
0
]):
scale_v
.
append
(
np
.
max
(
np
.
abs
(
param
[
i
])))
else
:
scale_v
=
np
.
max
(
np
.
abs
(
param
))
else
:
scale_v
=
self
.
_load_var
(
op_node
.
output
(
'OutScale'
)[
0
])[
0
]
self
.
_var_scale_map
[
input_arg_name
]
=
scale_v
else
:
scale_v
=
graph
.
var_node
(
op_node
.
output
(
'OutScale'
)[
0
])
self
.
_var_scale_map
[
input_arg_name
]
=
scale_v
if
input_arg_name
in
persistable_vars
:
self
.
_remove_fake_quant_and_dequant_op
(
graph
,
op_node
)
# quantize weight and restore
param_v
=
self
.
_load_var
(
input_arg_name
)
quantized_param_v
=
self
.
_quant
(
param_v
,
scale_v
,
self
.
_weight_bits
)
self
.
_restore_var
(
input_arg_name
,
quantized_param_v
)
else
:
scale_v
=
graph
.
var_node
(
op_node
.
output
(
'OutScale'
)[
0
])
self
.
_var_scale_map
[
input_arg_name
]
=
scale_v
ops
=
graph
.
all_op_nodes
()
for
op_node
in
ops
:
...
...
@@ -514,7 +605,10 @@ class QuantizationFreezePass(object):
for
op_node
in
ops
:
op_name
=
op_node
.
name
()
if
op_name
in
self
.
_quantizable_ops
:
self
.
_insert_post_dequant_op
(
graph
,
op_node
)
if
self
.
_weight_quantize_type
==
'channel_wise_abs_max'
and
op_name
in
self
.
_conv_ops
:
self
.
_insert_post_channel_dequant_op
(
graph
,
op_node
)
else
:
self
.
_insert_post_dequant_op
(
graph
,
op_node
)
for
op_node
in
ops
:
# insert dequant_op after fc/conv, need to rename inputs of the followed ops
...
...
@@ -538,9 +632,73 @@ class QuantizationFreezePass(object):
self
.
_op_input_rename_map
[
k
]
=
self
.
_op_input_rename_map
[
v
]
graph
.
safe_remove_nodes
(
op_node
)
def
_insert_post_channel_dequant_op
(
self
,
graph
,
op_node
):
persistable_vars
=
[
p
.
name
()
for
p
in
graph
.
all_persistable_nodes
()]
for
var_node
in
op_node
.
inputs
:
name
=
var_node
.
name
()
if
name
in
self
.
_op_input_rename_map
:
old_in
=
graph
.
var_node
(
name
)
new_in
=
graph
.
var_node
(
self
.
_op_input_rename_map
[
name
])
new_in
.
clear_outputs
()
graph
.
update_input_link
(
old_in
,
new_in
,
op_node
)
original_var_name
=
self
.
_original_var_name
(
name
)
scale_v
=
self
.
_var_scale_map
[
original_var_name
]
if
original_var_name
in
persistable_vars
:
assert
isinstance
(
scale_v
,
list
),
'The scale of parameter %s is not a list.'
%
(
original_var_name
)
channel_scale
=
np
.
array
(
scale_v
)
else
:
assert
isinstance
(
scale_v
,
IrNode
)
scale_var_node
=
self
.
_var_scale_map
[
original_var_name
]
if
len
(
op_node
.
outputs
)
!=
1
:
raise
ValueError
(
"Only support one output, but op %s has"
" more than one output."
%
(
op_node
.
name
()))
output_var_node
=
op_node
.
outputs
[
0
]
weight_scale_node
=
graph
.
create_persistable_node
(
name
=
unique_name
.
generate
(
'channel_scale'
),
var_type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
shape
=
[
channel_scale
.
shape
[
0
]],
var_dtype
=
output_var_node
.
dtype
())
init_program
=
Program
()
weight_scale_var
=
init_program
.
global_block
().
create_var
(
name
=
weight_scale_node
.
name
(),
shape
=
weight_scale_node
.
shape
(),
dtype
=
weight_scale_node
.
dtype
(),
type
=
weight_scale_node
.
type
(),
lod_level
=
weight_scale_node
.
var
().
lod_level
(),
persistable
=
weight_scale_node
.
persistable
())
initializer
=
NumpyArrayInitializer
(
value
=
channel_scale
)
initializer
(
weight_scale_var
,
init_program
.
global_block
())
exe
=
Executor
(
self
.
_place
)
exe
.
run
(
program
=
init_program
,
scope
=
self
.
_scope
)
dequant_var_node
=
graph
.
create_var_node
(
name
=
self
.
_dequantized_var_name
(
output_var_node
.
name
()),
var_type
=
output_var_node
.
type
(),
shape
=
output_var_node
.
shape
(),
var_dtype
=
output_var_node
.
dtype
())
dequant_op_node
=
graph
.
create_op_node
(
op_type
=
'fake_channel_wise_dequantize_max_abs'
,
attrs
=
{
'quant_bits'
:
[
self
.
_weight_bits
,
self
.
_activation_bits
],
'op_role'
:
core
.
op_proto_and_checker_maker
.
OpRole
.
Forward
},
inputs
=
{
'X'
:
output_var_node
,
'Scales'
:
[
weight_scale_node
,
scale_var_node
]
},
outputs
=
{
'Out'
:
dequant_var_node
})
graph
.
link_to
(
output_var_node
,
dequant_op_node
)
graph
.
link_to
(
scale_var_node
,
dequant_op_node
)
graph
.
link_to
(
weight_scale_node
,
dequant_op_node
)
graph
.
link_to
(
dequant_op_node
,
dequant_var_node
)
self
.
_op_output_rename_map
[
output_var_node
.
name
()]
=
dequant_var_node
return
dequant_var_node
def
_insert_post_dequant_op
(
self
,
graph
,
op_node
):
max_range
=
None
scale_var_node
=
None
persistable_vars
=
[
p
.
name
()
for
p
in
graph
.
all_persistable_nodes
()]
for
var_node
in
op_node
.
inputs
:
name
=
var_node
.
name
()
...
...
@@ -637,7 +795,12 @@ class QuantizationFreezePass(object):
or
isinstance
(
v
,
np
.
float64
)
def
_quant
(
self
,
x
,
scale
,
num_bits
):
return
np
.
round
(
x
/
scale
*
((
1
<<
(
num_bits
-
1
))
-
1
))
if
isinstance
(
scale
,
list
):
for
i
,
s
in
enumerate
(
scale
):
x
[
i
]
=
np
.
round
(
x
[
i
]
/
s
*
((
1
<<
(
num_bits
-
1
))
-
1
))
return
x
else
:
return
np
.
round
(
x
/
scale
*
((
1
<<
(
num_bits
-
1
))
-
1
))
class
ConvertToInt8Pass
(
object
):
...
...
@@ -731,9 +894,13 @@ class TransformForMobilePass(object):
def
__init__
(
self
):
self
.
_fake_quant_op_names
=
[
'fake_quantize_abs_max'
,
'fake_quantize_range_abs_max'
'fake_quantize_abs_max'
,
'fake_quantize_range_abs_max'
,
'fake_quantize_moving_average_abs_max'
,
'fake_channel_wise_quantize_abs_max'
]
self
.
_fake_dequant_op_names
=
[
'fake_dequantize_max_abs'
,
'fake_channel_wise_dequantize_max_abs'
]
self
.
_fake_dequant_op_names
=
[
'fake_dequantize_max_abs'
]
def
apply
(
self
,
graph
):
"""
...
...
python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py
浏览文件 @
ec11135d
...
...
@@ -127,7 +127,7 @@ class TestQuantizationTransformPass(unittest.TestCase):
arg_name
.
endswith
(
'.quantized.dequantized'
))
self
.
assertTrue
(
arg_name
in
quantized_ops
)
def
linear_fc_quant
(
self
,
quant_type
,
for_ci
=
False
):
def
linear_fc_quant
(
self
,
activation_
quant_type
,
for_ci
=
False
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
...
...
@@ -140,14 +140,15 @@ class TestQuantizationTransformPass(unittest.TestCase):
transform_pass
=
QuantizationTransformPass
(
scope
=
fluid
.
global_scope
(),
place
=
place
,
activation_quantize_type
=
quant_type
)
activation_quantize_type
=
activation_
quant_type
)
transform_pass
.
apply
(
graph
)
if
not
for_ci
:
marked_nodes
=
set
()
for
op
in
graph
.
all_op_nodes
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
marked_nodes
.
add
(
op
)
graph
.
draw
(
'.'
,
'quantize_fc_'
+
quant_type
,
marked_nodes
)
graph
.
draw
(
'.'
,
'quantize_fc_'
+
activation_quant_type
,
marked_nodes
)
program
=
graph
.
to_program
()
self
.
check_program
(
transform_pass
,
program
)
val_graph
=
IrGraph
(
core
.
Graph
(
program
.
desc
),
for_test
=
False
)
...
...
@@ -156,7 +157,8 @@ class TestQuantizationTransformPass(unittest.TestCase):
for
op
in
val_graph
.
all_op_nodes
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
val_marked_nodes
.
add
(
op
)
val_graph
.
draw
(
'.'
,
'val_fc_'
+
quant_type
,
val_marked_nodes
)
val_graph
.
draw
(
'.'
,
'val_fc_'
+
activation_quant_type
,
val_marked_nodes
)
def
test_linear_fc_quant_abs_max
(
self
):
self
.
linear_fc_quant
(
'abs_max'
,
for_ci
=
True
)
...
...
@@ -167,7 +169,7 @@ class TestQuantizationTransformPass(unittest.TestCase):
def
test_linear_fc_quant_moving_average_abs_max
(
self
):
self
.
linear_fc_quant
(
'moving_average_abs_max'
,
for_ci
=
True
)
def
residual_block_quant
(
self
,
quant_type
,
for_ci
=
False
):
def
residual_block_quant
(
self
,
activation_
quant_type
,
for_ci
=
False
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
...
...
@@ -180,14 +182,15 @@ class TestQuantizationTransformPass(unittest.TestCase):
transform_pass
=
QuantizationTransformPass
(
scope
=
fluid
.
global_scope
(),
place
=
place
,
activation_quantize_type
=
quant_type
)
activation_quantize_type
=
activation_
quant_type
)
transform_pass
.
apply
(
graph
)
if
not
for_ci
:
marked_nodes
=
set
()
for
op
in
graph
.
all_op_nodes
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
marked_nodes
.
add
(
op
)
graph
.
draw
(
'.'
,
'quantize_residual_'
+
quant_type
,
marked_nodes
)
graph
.
draw
(
'.'
,
'quantize_residual_'
+
activation_quant_type
,
marked_nodes
)
program
=
graph
.
to_program
()
self
.
check_program
(
transform_pass
,
program
)
val_graph
=
IrGraph
(
core
.
Graph
(
program
.
desc
),
for_test
=
False
)
...
...
@@ -196,7 +199,8 @@ class TestQuantizationTransformPass(unittest.TestCase):
for
op
in
val_graph
.
all_op_nodes
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
val_marked_nodes
.
add
(
op
)
val_graph
.
draw
(
'.'
,
'val_residual_'
+
quant_type
,
val_marked_nodes
)
val_graph
.
draw
(
'.'
,
'val_residual_'
+
activation_quant_type
,
val_marked_nodes
)
def
test_residual_block_abs_max
(
self
):
self
.
residual_block_quant
(
'abs_max'
,
for_ci
=
True
)
...
...
@@ -209,7 +213,12 @@ class TestQuantizationTransformPass(unittest.TestCase):
class
TestQuantizationFreezePass
(
unittest
.
TestCase
):
def
freeze_graph
(
self
,
use_cuda
,
seed
,
quant_type
,
for_ci
=
False
):
def
freeze_graph
(
self
,
use_cuda
,
seed
,
activation_quant_type
,
weight_quant_type
=
'abs_max'
,
for_ci
=
False
):
def
build_program
(
main
,
startup
,
is_test
):
main
.
random_seed
=
seed
startup
.
random_seed
=
seed
...
...
@@ -243,7 +252,12 @@ class TestQuantizationFreezePass(unittest.TestCase):
with
fluid
.
scope_guard
(
scope
):
exe
.
run
(
startup
)
transform_pass
=
QuantizationTransformPass
(
scope
=
scope
,
place
=
place
,
activation_quantize_type
=
quant_type
)
scope
=
scope
,
place
=
place
,
activation_quantize_type
=
activation_quant_type
,
weight_quantize_type
=
weight_quant_type
)
#transform_pass = QuantizationTransformPass(
# scope=scope, place=place, activation_quantize_type=activation_quant_type)
transform_pass
.
apply
(
main_graph
)
transform_pass
.
apply
(
test_graph
)
dev_name
=
'_gpu_'
if
use_cuda
else
'_cpu_'
...
...
@@ -252,12 +266,14 @@ class TestQuantizationFreezePass(unittest.TestCase):
for
op
in
main_graph
.
all_op_nodes
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
marked_nodes
.
add
(
op
)
main_graph
.
draw
(
'.'
,
'main'
+
dev_name
+
quant_type
,
marked_nodes
)
main_graph
.
draw
(
'.'
,
'main'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
marked_nodes
)
marked_nodes
=
set
()
for
op
in
test_graph
.
all_op_nodes
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
marked_nodes
.
add
(
op
)
test_graph
.
draw
(
'.'
,
'test'
+
dev_name
+
quant_type
,
marked_nodes
)
test_graph
.
draw
(
'.'
,
'test'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
marked_nodes
)
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
memory_optimize
=
False
...
...
@@ -282,8 +298,9 @@ class TestQuantizationFreezePass(unittest.TestCase):
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
])
if
not
for_ci
:
print
(
'{}: {}'
.
format
(
'loss'
+
dev_name
+
quant_type
,
loss_v
))
print
(
'{}: {}'
.
format
(
'loss'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
loss_v
))
test_data
=
next
(
test_reader
())
with
fluid
.
program_guard
(
quantized_test_program
):
...
...
@@ -296,14 +313,17 @@ class TestQuantizationFreezePass(unittest.TestCase):
fetch_list
=
[
loss
,
w_var
])
# Freeze graph for inference, but the weight of fc/conv is still float type.
freeze_pass
=
QuantizationFreezePass
(
scope
=
scope
,
place
=
place
)
freeze_pass
=
QuantizationFreezePass
(
scope
=
scope
,
place
=
place
,
weight_quantize_type
=
weight_quant_type
)
#freeze_pass = QuantizationFreezePass(scope=scope, place=place)
freeze_pass
.
apply
(
test_graph
)
if
not
for_ci
:
marked_nodes
=
set
()
for
op
in
test_graph
.
all_op_nodes
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
marked_nodes
.
add
(
op
)
test_graph
.
draw
(
'.'
,
'test_freeze'
+
dev_name
+
quant_type
,
test_graph
.
draw
(
'.'
,
'test_freeze'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
marked_nodes
)
server_program
=
test_graph
.
to_program
()
...
...
@@ -313,18 +333,20 @@ class TestQuantizationFreezePass(unittest.TestCase):
fetch_list
=
[
loss
])
self
.
assertAlmostEqual
(
test_loss1
,
test_loss2
,
delta
=
5e-3
)
if
not
for_ci
:
print
(
'{}: {}'
.
format
(
'test_loss1'
+
dev_name
+
quant_type
,
test_loss1
))
print
(
'{}: {}'
.
format
(
'test_loss2'
+
dev_name
+
quant_type
,
test_loss2
))
print
(
'{}: {}'
.
format
(
'test_loss1'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
test_loss1
))
print
(
'{}: {}'
.
format
(
'test_loss2'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
test_loss2
))
w_freeze
=
np
.
array
(
scope
.
find_var
(
'conv2d_1.w_0'
).
get_tensor
())
# Maybe failed, this is due to the calculation precision
# self.assertAlmostEqual(np.sum(w_freeze), np.sum(w_quant))
if
not
for_ci
:
print
(
'{}: {}'
.
format
(
'w_freeze'
+
dev_name
+
quant_type
,
np
.
sum
(
w_freeze
)))
print
(
'{}: {}'
.
format
(
'w_quant'
+
dev_name
+
quant_type
,
np
.
sum
(
w_quant
)))
print
(
'{}: {}'
.
format
(
'w_freeze'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
np
.
sum
(
w_freeze
)))
print
(
'{}: {}'
.
format
(
'w_quant'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
np
.
sum
(
w_quant
)))
# Convert parameter to 8-bit.
convert_int8_pass
=
ConvertToInt8Pass
(
scope
=
scope
,
place
=
place
)
...
...
@@ -334,26 +356,28 @@ class TestQuantizationFreezePass(unittest.TestCase):
for
op
in
test_graph
.
all_op_nodes
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
marked_nodes
.
add
(
op
)
test_graph
.
draw
(
'.'
,
'test_int8'
+
dev_name
+
quant_type
,
marked_nodes
)
test_graph
.
draw
(
'.'
,
'test_int8'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
marked_nodes
)
server_program_int8
=
test_graph
.
to_program
()
# Save the 8-bit parameter and model file.
with
fluid
.
scope_guard
(
scope
):
fluid
.
io
.
save_inference_model
(
'server_int8'
+
dev_name
+
quant_type
,
[
'image'
,
'label'
],
[
loss
],
exe
,
server_program_int8
)
fluid
.
io
.
save_inference_model
(
'server_int8'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
[
'image'
,
'label'
],
[
loss
],
exe
,
server_program_int8
)
# Test whether the 8-bit parameter and model file can be loaded successfully.
[
infer
,
feed
,
fetch
]
=
fluid
.
io
.
load_inference_model
(
'server_int8'
+
dev_name
+
quant_type
,
exe
)
'server_int8'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
exe
)
# Check the loaded 8-bit weight.
w_8bit
=
np
.
array
(
scope
.
find_var
(
'conv2d_1.w_0.int8'
).
get_tensor
())
self
.
assertEqual
(
w_8bit
.
dtype
,
np
.
int8
)
self
.
assertEqual
(
np
.
sum
(
w_8bit
),
np
.
sum
(
w_freeze
))
if
not
for_ci
:
print
(
'{}: {}'
.
format
(
'w_8bit'
+
dev_name
+
quant_type
,
np
.
sum
(
w_8bit
)))
print
(
'{}: {}'
.
format
(
'w_freeze'
+
dev_name
+
quant_type
,
np
.
sum
(
w_freeze
)))
print
(
'{}: {}'
.
format
(
'w_8bit'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
np
.
sum
(
w_8bit
)))
print
(
'{}: {}'
.
format
(
'w_freeze'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
np
.
sum
(
w_freeze
)))
mobile_pass
=
TransformForMobilePass
()
mobile_pass
.
apply
(
test_graph
)
...
...
@@ -362,42 +386,103 @@ class TestQuantizationFreezePass(unittest.TestCase):
for
op
in
test_graph
.
all_op_nodes
():
if
op
.
name
().
find
(
'quantize'
)
>
-
1
:
marked_nodes
.
add
(
op
)
test_graph
.
draw
(
'.'
,
'test_mobile'
+
dev_name
+
quant_type
,
test_graph
.
draw
(
'.'
,
'test_mobile'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
marked_nodes
)
mobile_program
=
test_graph
.
to_program
()
with
fluid
.
scope_guard
(
scope
):
fluid
.
io
.
save_inference_model
(
'mobile_int8'
+
dev_name
+
quant_type
,
[
'image'
,
'label'
],
[
loss
],
exe
,
mobile_program
)
fluid
.
io
.
save_inference_model
(
'mobile_int8'
+
dev_name
+
activation_quant_type
+
'_'
+
weight_quant_type
,
[
'image'
,
'label'
],
[
loss
],
exe
,
mobile_program
)
def
test_freeze_graph_cuda_dynamic
(
self
):
if
fluid
.
core
.
is_compiled_with_cuda
():
with
fluid
.
unique_name
.
guard
():
self
.
freeze_graph
(
True
,
seed
=
1
,
quant_type
=
'abs_max'
,
for_ci
=
True
)
True
,
seed
=
1
,
activation_quant_type
=
'abs_max'
,
weight_quant_type
=
'abs_max'
,
for_ci
=
True
)
with
fluid
.
unique_name
.
guard
():
self
.
freeze_graph
(
True
,
seed
=
1
,
activation_quant_type
=
'abs_max'
,
weight_quant_type
=
'channel_wise_abs_max'
,
for_ci
=
True
)
def
test_freeze_graph_cpu_dynamic
(
self
):
with
fluid
.
unique_name
.
guard
():
self
.
freeze_graph
(
False
,
seed
=
2
,
quant_type
=
'abs_max'
,
for_ci
=
True
)
self
.
freeze_graph
(
False
,
seed
=
2
,
activation_quant_type
=
'abs_max'
,
weight_quant_type
=
'abs_max'
,
for_ci
=
True
)
self
.
freeze_graph
(
False
,
seed
=
2
,
activation_quant_type
=
'abs_max'
,
weight_quant_type
=
'channel_wise_abs_max'
,
for_ci
=
True
)
def
test_freeze_graph_cuda_static
(
self
):
if
fluid
.
core
.
is_compiled_with_cuda
():
with
fluid
.
unique_name
.
guard
():
self
.
freeze_graph
(
True
,
seed
=
1
,
quant_type
=
'range_abs_max'
,
for_ci
=
True
)
True
,
seed
=
1
,
activation_quant_type
=
'range_abs_max'
,
weight_quant_type
=
'abs_max'
,
for_ci
=
True
)
self
.
freeze_graph
(
True
,
seed
=
1
,
activation_quant_type
=
'moving_average_abs_max'
,
weight_quant_type
=
'abs_max'
,
for_ci
=
True
)
self
.
freeze_graph
(
True
,
seed
=
1
,
quant_type
=
'moving_average_abs_max'
,
activation_quant_type
=
'range_abs_max'
,
weight_quant_type
=
'channel_wise_abs_max'
,
for_ci
=
True
)
self
.
freeze_graph
(
True
,
seed
=
1
,
activation_quant_type
=
'moving_average_abs_max'
,
weight_quant_type
=
'channel_wise_abs_max'
,
for_ci
=
True
)
def
test_freeze_graph_cpu_static
(
self
):
with
fluid
.
unique_name
.
guard
():
self
.
freeze_graph
(
False
,
seed
=
2
,
quant_type
=
'range_abs_max'
,
for_ci
=
True
)
False
,
seed
=
2
,
activation_quant_type
=
'range_abs_max'
,
weight_quant_type
=
'abs_max'
,
for_ci
=
True
)
self
.
freeze_graph
(
False
,
seed
=
2
,
activation_quant_type
=
'moving_average_abs_max'
,
weight_quant_type
=
'abs_max'
,
for_ci
=
True
)
self
.
freeze_graph
(
False
,
seed
=
2
,
activation_quant_type
=
'range_abs_max'
,
weight_quant_type
=
'channel_wise_abs_max'
,
for_ci
=
True
)
self
.
freeze_graph
(
False
,
seed
=
2
,
quant_type
=
'moving_average_abs_max'
,
for_ci
=
True
)
False
,
seed
=
2
,
activation_quant_type
=
'moving_average_abs_max'
,
weight_quant_type
=
'channel_wise_abs_max'
,
for_ci
=
True
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_fake_dequantize_op.py
浏览文件 @
ec11135d
...
...
@@ -31,15 +31,27 @@ def dequantize_max_abs(x, scale, max_range):
return
y
def
channel_wise_quantize_max_abs
(
x
,
quant_bit
=
8
):
def
channel_wise_quantize_max_abs
(
x
,
quant_bit
=
8
,
use_second_dim
=
False
):
scales
=
[]
for
i
in
range
(
x
.
shape
[
0
]):
scales
.
append
(
np
.
max
(
np
.
abs
(
x
[
i
])).
astype
(
"float32"
))
y
=
x
.
copy
()
max_range
=
math
.
pow
(
2
,
quant_bit
-
1
)
-
1
for
i
,
scale
in
enumerate
(
scales
):
y
[
i
]
=
np
.
round
(
y
[
i
]
/
scale
*
max_range
)
if
not
use_second_dim
:
for
i
in
range
(
x
.
shape
[
0
]):
scales
.
append
(
np
.
max
(
np
.
abs
(
x
[
i
])).
astype
(
"float32"
))
y
=
x
.
copy
()
max_range
=
math
.
pow
(
2
,
quant_bit
-
1
)
-
1
for
i
,
scale
in
enumerate
(
scales
):
y
[
i
]
=
np
.
round
(
x
[
i
]
/
scale
*
max_range
)
else
:
for
i
in
range
(
x
.
shape
[
0
]):
s
=
[]
for
j
in
range
(
x
.
shape
[
1
]):
s
.
append
(
np
.
max
(
np
.
abs
(
x
[
i
][
j
])).
astype
(
"float32"
))
scales
.
append
(
s
)
scales
=
np
.
amax
(
np
.
array
(
scales
),
axis
=
0
)
y
=
x
.
copy
()
max_range
=
math
.
pow
(
2
,
quant_bit
-
1
)
-
1
for
i
in
range
(
x
.
shape
[
0
]):
for
j
,
scale
in
enumerate
(
scales
):
y
[
i
][
j
]
=
np
.
round
(
x
[
i
][
j
]
/
scale
*
max_range
)
return
y
,
scales
...
...
@@ -47,10 +59,16 @@ def channel_wise_dequantize_max_abs(x,
scales
,
quant_bits
,
activation_scale
=
None
):
y
=
x
.
copy
()
for
i
in
range
(
x
.
shape
[
0
]):
y
[
i
]
=
(
scales
[
i
]
/
(
math
.
pow
(
2
,
quant_bits
[
0
]
-
1
)
-
1
))
*
y
[
i
]
if
activation_scale
is
not
None
:
if
activation_scale
is
None
:
y
=
x
.
copy
()
for
i
in
range
(
x
.
shape
[
0
]):
y
[
i
]
=
(
scales
[
i
]
/
(
math
.
pow
(
2
,
quant_bits
[
0
]
-
1
)
-
1
))
*
x
[
i
]
else
:
y
=
x
.
copy
()
for
i
in
range
(
x
.
shape
[
0
]):
for
j
in
range
(
x
.
shape
[
1
]):
y
[
i
][
j
]
=
(
scales
[
j
]
/
(
math
.
pow
(
2
,
quant_bits
[
0
]
-
1
)
-
1
))
*
x
[
i
][
j
]
y
*=
activation_scale
/
(
math
.
pow
(
2
,
quant_bits
[
1
]
-
1
)
-
1
)
return
y
...
...
@@ -65,7 +83,8 @@ class TestFakeChannelWiseDequantizeMaxAbsOpTwoScales(OpTest):
self
.
set_args
()
self
.
op_type
=
"fake_channel_wise_dequantize_max_abs"
x
=
np
.
random
.
randn
(
4
,
3
,
64
,
64
).
astype
(
self
.
data_type
)
yq
,
scales
=
channel_wise_quantize_max_abs
(
x
,
self
.
quant_bits
[
0
])
yq
,
scales
=
channel_wise_quantize_max_abs
(
x
,
self
.
quant_bits
[
0
],
use_second_dim
=
True
)
ydq
=
channel_wise_dequantize_max_abs
(
yq
,
scales
,
self
.
quant_bits
,
self
.
activation_scale
)
...
...
python/paddle/fluid/tests/unittests/test_fake_quantize_op.py
浏览文件 @
ec11135d
...
...
@@ -53,7 +53,7 @@ class TestFakeChannelWiseQuantizeOp(OpTest):
self
.
outputs
=
{
'Out'
:
outputs
,
'OutScale
s
'
:
np
.
array
(
scales
).
astype
(
"float32"
),
'OutScale'
:
np
.
array
(
scales
).
astype
(
"float32"
),
}
def
test_check_output
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录