Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
eae31856
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
eae31856
编写于
7月 05, 2021
作者:
W
WangXi
提交者:
GitHub
7月 05, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add fused elemwise gelu and optimize performance (#33480)
上级
fa5ddfd9
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
202 addition
and
77 deletion
+202
-77
paddle/fluid/operators/elementwise/elementwise_op_function.h
paddle/fluid/operators/elementwise/elementwise_op_function.h
+103
-76
paddle/fluid/operators/fused/fused_elemwise_activation_op.cc
paddle/fluid/operators/fused/fused_elemwise_activation_op.cc
+1
-1
paddle/fluid/operators/fused/fused_elemwise_activation_op.h
paddle/fluid/operators/fused/fused_elemwise_activation_op.h
+17
-0
paddle/fluid/operators/math/functors.h
paddle/fluid/operators/math/functors.h
+58
-0
python/paddle/fluid/tests/unittests/test_fused_elemwise_activation_op.py
...luid/tests/unittests/test_fused_elemwise_activation_op.py
+23
-0
未找到文件。
paddle/fluid/operators/elementwise/elementwise_op_function.h
浏览文件 @
eae31856
...
...
@@ -57,6 +57,10 @@ constexpr int ELEMWISE_MAX_BLOCK_DIM = 1024;
*mod = dividend_copy % divisor; \
} while (0)
#define DIVUP(x, y) (((x) + (y)-1) / (y))
#define ROUNDUP(x, y) (DIVUP((x), (y)) * (y))
namespace
paddle
{
namespace
operators
{
...
...
@@ -2156,10 +2160,10 @@ template <typename T, typename CompoundFunctor, bool BcastY,
static
__global__
void
FusedElemwiseAndActBroadcast1CUDAKernel
(
const
T
*
x
,
const
T
*
y
,
int
h
,
int
w
,
CompoundFunctor
compound_functor
,
T
*
out
,
T
*
intermediate_out
)
{
int
j
=
blockIdx
.
x
;
int
i
=
threadIdx
.
x
;
int
i
=
blockIdx
.
x
;
int
j
=
threadIdx
.
x
;
while
(
i
<
h
)
{
while
(
j
<
w
)
{
int
offset
=
i
*
w
+
j
;
T
y_val
=
BcastY
?
y
[
j
]
:
y
[
offset
];
...
...
@@ -2185,7 +2189,7 @@ static __global__ void FusedElemwiseAndActBroadcast1CUDAKernel(
out
[
offset
]
=
compound_functor
.
GetOut
(
x_val
,
y_val
);
}
i
+=
ELEMWISE_MAX_BLOCK_DIM
;
j
+=
ELEMWISE_MAX_BLOCK_DIM
;
}
}
...
...
@@ -2196,8 +2200,8 @@ static void FusedElemwiseAndActBroadcast1CUDA(gpuStream_t stream, const T *x,
CompoundFunctor
compound_functor
,
int
h
,
int
w
,
T
*
out
,
T
*
intermediate_out
)
{
int
block_size
=
std
::
min
(
ELEMWISE_MAX_BLOCK_DIM
,
h
);
int
gird_size
=
w
;
int
block_size
=
std
::
min
(
ELEMWISE_MAX_BLOCK_DIM
,
w
);
int
gird_size
=
h
;
FusedElemwiseAndActBroadcast1CUDAKernel
<
T
,
CompoundFunctor
,
BcastY
,
KeepIntermediateOut
,
SameShapeOfIntermediateOutAndOut
><<<
gird_size
,
block_size
,
0
,
stream
>>>
(
...
...
@@ -2585,106 +2589,129 @@ static __global__ void FusedElemwiseAndActGradBroadcast1CUDAKernel(
const
T
*
x
,
const
T
*
y
,
const
T
*
intermediate_out
,
const
T
*
out
,
const
T
*
dout
,
int
h
,
int
w
,
DX_OP
dx_op
,
DY_OP
dy_op
,
DIntermediate_OP
dintermediate_op
,
T
*
dx
,
T
*
dy
,
T
*
d_intermediate
)
{
int
j
=
blockIdx
.
x
;
int
i
=
threadIdx
.
x
;
int
tid
=
threadIdx
.
x
;
T
val
(
0
),
inter_val
(
0
);
int64_t
tmp_out_idx
,
x_idx
,
y_idx
;
__shared__
T
sdata
[
BLOCK_Y
][
BLOCK_X
];
size_t
idx
=
threadIdx
.
x
+
BLOCK_X
*
blockIdx
.
x
;
size_t
width_stride
=
gridDim
.
x
*
BLOCK_X
;
size_t
full_w
=
ROUNDUP
(
w
,
BLOCK_X
);
T
zero
=
static_cast
<
T
>
(
0
);
do
{
int
offset
=
i
*
w
+
j
;
for
(
size_t
j
=
idx
;
j
<
full_w
;
j
+=
width_stride
)
{
T
val
(
0
),
inter_val
(
0
);
if
(
j
<
w
)
{
for
(
size_t
i
=
threadIdx
.
y
;
i
<
h
;
i
+=
BLOCK_Y
)
{
size_t
offset
=
i
*
w
+
j
;
tmp_out_idx
=
BcastY
?
j
:
offset
;
y_idx
=
BcastY
?
j
:
offset
;
x_idx
=
BcastY
?
offset
:
j
;
T
x_val
=
(
x
==
nullptr
)
?
zero
:
x
[
x_idx
];
T
y_val
=
(
y
==
nullptr
)
?
zero
:
y
[
y_idx
];
size_t
tmp_out_idx
=
BcastY
?
j
:
offset
;
size_t
y_idx
=
BcastY
?
j
:
offset
;
size_t
x_idx
=
BcastY
?
offset
:
j
;
T
x_val
=
(
x
==
nullptr
)
?
zero
:
x
[
x_idx
];
T
y_val
=
(
y
==
nullptr
)
?
zero
:
y
[
y_idx
];
if
(
SameShapeOfIntermediateOutAndOut
)
{
tmp_out_idx
=
offset
;
}
if
(
SameShapeOfIntermediateOutAndOut
)
{
tmp_out_idx
=
offset
;
}
if
(
dx
!=
nullptr
)
{
T
tmp
=
UseIntermediateOut
if
(
dx
!=
nullptr
)
{
T
tmp
=
UseIntermediateOut
?
dx_op
.
UseIntermediateOut
(
x_val
,
y_val
,
intermediate_out
[
tmp_out_idx
],
out
[
offset
],
dout
[
offset
])
:
dx_op
.
Recompute
(
x_val
,
y_val
,
out
[
offset
],
dout
[
offset
]);
if
(
BcastY
)
{
dx
[
x_idx
]
=
tmp
;
}
else
{
val
+=
tmp
;
}
}
if
(
dy
!=
nullptr
)
{
T
tmp
=
UseIntermediateOut
if
(
BcastY
)
{
dx
[
x_idx
]
=
tmp
;
}
else
{
val
+=
tmp
;
}
}
if
(
dy
!=
nullptr
)
{
T
tmp
=
UseIntermediateOut
?
dy_op
.
UseIntermediateOut
(
x_val
,
y_val
,
intermediate_out
[
tmp_out_idx
],
out
[
offset
],
dout
[
offset
])
:
dy_op
.
Recompute
(
x_val
,
y_val
,
out
[
offset
],
dout
[
offset
]);
if
(
BcastY
)
{
val
+=
tmp
;
}
else
{
dy
[
y_idx
]
=
tmp
;
}
}
if
(
d_intermediate
!=
nullptr
)
{
T
tmp
=
UseIntermediateOut
?
dintermediate_op
.
UseIntermediateOut
(
y
[
y_idx
],
intermediate_out
[
tmp_out_idx
],
out
[
offset
],
dout
[
offset
])
:
dintermediate_op
.
Recompute
(
x_val
,
y_val
,
out
[
offset
],
dout
[
offset
]);
if
(
SameShapeOfIntermediateOutAndOut
)
{
d_intermediate
[
tmp_out_idx
]
=
tmp
;
}
else
{
inter_val
+=
tmp
;
if
(
BcastY
)
{
val
+=
tmp
;
}
else
{
dy
[
y_idx
]
=
tmp
;
}
}
if
(
d_intermediate
!=
nullptr
)
{
T
tmp
=
UseIntermediateOut
?
dintermediate_op
.
UseIntermediateOut
(
y
[
y_idx
],
intermediate_out
[
tmp_out_idx
],
out
[
offset
],
dout
[
offset
])
:
dintermediate_op
.
Recompute
(
x_val
,
y_val
,
out
[
offset
],
dout
[
offset
]);
if
(
SameShapeOfIntermediateOutAndOut
)
{
d_intermediate
[
tmp_out_idx
]
=
tmp
;
}
else
{
inter_val
+=
tmp
;
}
}
}
}
i
+=
ELEMWISE_MAX_BLOCK_DIM
;
}
while
(
i
<
h
);
// transpose, for ReduceSum with wrap
sdata
[
threadIdx
.
y
][
threadIdx
.
x
]
=
val
;
__syncthreads
();
val
=
sdata
[
threadIdx
.
x
][
threadIdx
.
y
];
#pragma unroll
for
(
int
i
=
BLOCK_X
>>
1
;
i
>
0
;
i
>>=
1
)
{
// reduce sum with wrap
val
+=
platform
::
CudaShuffleXorSync
(
0xFFFFFFFF
,
val
,
i
);
}
h
=
h
>
ELEMWISE_MAX_BLOCK_DIM
?
ELEMWISE_MAX_BLOCK_DIM
:
h
;
if
(
BcastY
)
{
if
(
dy
)
{
val
=
paddle
::
platform
::
reduceSum
(
val
,
tid
,
h
);
if
(
threadIdx
.
x
==
0
)
{
dy
[
j
]
=
val
;
size_t
idx_j
=
j
+
threadIdx
.
y
;
if
(
BcastY
)
{
if
(
dy
)
{
if
(
threadIdx
.
x
==
0
&&
(
idx_j
<
w
))
dy
[
idx_j
]
=
val
;
}
}
}
else
{
if
(
dx
)
{
val
=
paddle
::
platform
::
reduceSum
(
val
,
tid
,
h
);
if
(
threadIdx
.
x
==
0
)
{
dx
[
j
]
=
val
;
}
else
{
if
(
dx
)
{
if
(
threadIdx
.
x
==
0
&&
(
idx_j
<
w
))
dx
[
idx_j
]
=
val
;
}
}
}
if
(
!
SameShapeOfIntermediateOutAndOut
)
{
if
(
d_intermediate
)
{
inter_val
=
paddle
::
platform
::
reduceSum
(
inter_val
,
tid
,
h
);
if
(
threadIdx
.
x
==
0
)
{
d_intermediate
[
j
]
=
inter_val
;
if
(
!
SameShapeOfIntermediateOutAndOut
)
{
if
(
d_intermediate
)
{
sdata
[
threadIdx
.
y
][
threadIdx
.
x
]
=
inter_val
;
__syncthreads
();
inter_val
=
sdata
[
threadIdx
.
x
][
threadIdx
.
y
];
#pragma unroll
for
(
int
i
=
BLOCK_X
>>
1
;
i
>
0
;
i
>>=
1
)
{
// reduce sum with wrap
inter_val
+=
platform
::
CudaShuffleXorSync
(
0xFFFFFFFF
,
inter_val
,
i
);
}
if
(
threadIdx
.
x
==
0
&&
(
idx_j
<
w
))
d_intermediate
[
idx_j
]
=
inter_val
;
}
}
}
}
// end for
}
template
<
typename
T
,
typename
DX_OP
,
typename
DY_OP
,
typename
DIntermediate_OP
,
bool
UseIntermediateOut
,
bool
BcastY
,
bool
SameShapeOfIntermediateOutAndOut
>
static
void
FusedElemwiseAndActGradBroadcast1CUDA
(
gpuStream_t
stream
,
const
T
*
x
,
const
T
*
y
,
const
T
*
intermediate_out
,
const
T
*
out
,
const
T
*
dout
,
int
h
,
int
w
,
DX_OP
dx_op
,
DY_OP
dy_op
,
DIntermediate_OP
dintermediate_op
,
T
*
dx
,
T
*
dy
,
T
*
d_intermediate
)
{
int
block_size
=
std
::
min
(
ELEMWISE_MAX_BLOCK_DIM
,
h
);
int
gird_size
=
w
;
const
framework
::
ExecutionContext
&
ctx
,
const
T
*
x
,
const
T
*
y
,
const
T
*
intermediate_out
,
const
T
*
out
,
const
T
*
dout
,
int
h
,
int
w
,
DX_OP
dx_op
,
DY_OP
dy_op
,
DIntermediate_OP
dintermediate_op
,
T
*
dx
,
T
*
dy
,
T
*
d_intermediate
)
{
gpuStream_t
stream
=
ctx
.
cuda_device_context
().
stream
();
dim3
blocks
(
BLOCK_X
,
BLOCK_Y
);
int
max_gpu_threads
=
ctx
.
cuda_device_context
().
GetMaxPhysicalThreadCount
();
int
max_blocks
=
std
::
max
(
max_gpu_threads
/
(
BLOCK_X
*
BLOCK_Y
),
1
);
int
theory_block
=
(
w
+
BLOCK_X
-
1
)
/
BLOCK_X
;
dim3
grids
(
std
::
min
(
theory_block
,
max_blocks
));
FusedElemwiseAndActGradBroadcast1CUDAKernel
<
T
,
DX_OP
,
DY_OP
,
DIntermediate_OP
,
UseIntermediateOut
,
BcastY
,
SameShapeOfIntermediateOutAndOut
><<<
g
ird_size
,
block_size
,
0
,
stream
>>>
(
SameShapeOfIntermediateOutAndOut
><<<
g
rids
,
blocks
,
0
,
stream
>>>
(
x
,
y
,
intermediate_out
,
out
,
dout
,
h
,
w
,
dx_op
,
dy_op
,
dintermediate_op
,
dx
,
dy
,
d_intermediate
);
}
...
...
@@ -2836,7 +2863,7 @@ void FusedElemwiseAndActGradComputeWithBroadcast(
FusedElemwiseAndActGradBroadcast1CUDA
<
T
,
DX_OP
,
DY_OP
,
DIntermediate_OP
,
UseIntermediateOut
,
BcastY
,
SameShapeOfIntermediateOutAndOut
>
(
ctx
.
template
device_context
<
DeviceContext
>().
stream
()
,
x_data
,
y_data
,
ctx
,
x_data
,
y_data
,
intermediate_out
==
nullptr
?
nullptr
:
intermediate_out
->
data
<
T
>
(),
out
->
data
<
T
>
(),
dout
->
data
<
T
>
(),
h
,
w
,
dx_op
,
dy_op
,
dintermediate_op
,
dx
==
nullptr
?
nullptr
:
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()),
...
...
paddle/fluid/operators/fused/fused_elemwise_activation_op.cc
浏览文件 @
eae31856
...
...
@@ -69,7 +69,7 @@ static bool IsSupportedCompound(const std::vector<std::string> &functors) {
functors
.
size
(),
2
));
static
std
::
unordered_set
<
std
::
string
>
unary_fun
=
{
"scale"
,
"relu"
,
"tanh"
,
"sigmoid"
};
"sigmoid"
,
"gelu"
};
static
std
::
unordered_set
<
std
::
string
>
binary_fun
=
{
"elementwise_add"
,
"elementwise_mul"
};
...
...
paddle/fluid/operators/fused/fused_elemwise_activation_op.h
浏览文件 @
eae31856
...
...
@@ -275,6 +275,13 @@ static void RunFunctors(const framework::ExecutionContext &ctx,
paddle
::
operators
::
math
::
SigmoidFunctor
<
T
>>
(
ctx
,
paddle
::
operators
::
math
::
MulFunctor
<
T
>
(),
paddle
::
operators
::
math
::
SigmoidFunctor
<
T
>
(),
in_x
,
in_y
,
outputs
);
}
else
if
(
funcs_str
==
"gelu,elementwise_add"
)
{
// Z = Unary(Binary(X, Y))
RunUnaryCompoundFunctors
<
DeviceContext
,
T
,
paddle
::
operators
::
math
::
GeluFunctor
<
T
>
,
paddle
::
operators
::
math
::
AddFunctor
<
T
>>
(
ctx
,
paddle
::
operators
::
math
::
GeluFunctor
<
T
>
(),
paddle
::
operators
::
math
::
AddFunctor
<
T
>
(),
in_x
,
in_y
,
outputs
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"%s has not been implemented."
,
funcs_str
));
...
...
@@ -374,6 +381,16 @@ static void RunGradFunctors(
paddle
::
operators
::
math
::
SigmoidFunctor
<
T
>
(),
paddle
::
operators
::
math
::
SigmoidGradFunctor
<
T
>
(),
in_x
,
in_y
,
in_out
,
in_intermediate_out
,
in_out_grad
,
x_grad
,
y_grad
,
d_intermediate_out
);
}
else
if
(
funcs_str
==
"gelu_grad,elementwise_add_grad"
)
{
// The backward of Z = Unary(Binary(X, Y))
RunUnaryCompoundGradFunctors
<
DeviceContext
,
T
,
paddle
::
operators
::
math
::
GeluGradFunctor
<
T
>
,
paddle
::
operators
::
math
::
AddFunctor
<
T
>
,
paddle
::
operators
::
math
::
AddGradFunctor
<
T
>
,
InPlace
>
(
ctx
,
paddle
::
operators
::
math
::
GeluGradFunctor
<
T
>
(),
paddle
::
operators
::
math
::
AddFunctor
<
T
>
(),
paddle
::
operators
::
math
::
AddGradFunctor
<
T
>
(),
in_x
,
in_y
,
in_out
,
in_intermediate_out
,
in_out_grad
,
x_grad
,
y_grad
,
d_intermediate_out
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"%s has not been implemented."
,
funcs_str
));
...
...
paddle/fluid/operators/math/functors.h
浏览文件 @
eae31856
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
#include "paddle/fluid/operators/math.h"
namespace
paddle
{
...
...
@@ -130,6 +131,63 @@ struct SigmoidGradFunctor {
}
};
template
<
typename
T
>
struct
GeluFunctor
{
using
MT
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
inline
HOSTDEVICE
T
operator
()(
T
x
)
{
// this function is tanh approximation of gelu
// actual gelu is:
// x * 0.5 * (1.0 + torch.erf(x * 0.70710678))
MT
mx
=
static_cast
<
MT
>
(
x
);
MT
out
=
mx
*
static_cast
<
MT
>
(
0.5
)
*
(
static_cast
<
MT
>
(
1.0
)
+
tanh
(
static_cast
<
MT
>
(
0.79788456
)
*
mx
*
(
static_cast
<
MT
>
(
1
)
+
static_cast
<
MT
>
(
0.044715
)
*
mx
*
mx
)));
return
static_cast
<
T
>
(
out
);
}
};
template
<
typename
T
>
struct
GeluGradFunctor
{
using
MT
=
typename
details
::
MPTypeTrait
<
T
>::
Type
;
inline
HOSTDEVICE
T
UseX
(
T
x
)
{
MT
mx
=
static_cast
<
MT
>
(
x
);
MT
tanh_out
=
tanh
(
static_cast
<
MT
>
(
0.79788456
)
*
mx
*
(
static_cast
<
MT
>
(
1
)
+
static_cast
<
MT
>
(
0.044715
)
*
mx
*
mx
));
MT
ans
=
static_cast
<
MT
>
(
0.5
)
*
mx
*
((
static_cast
<
MT
>
(
1
)
-
tanh_out
*
tanh_out
)
*
(
static_cast
<
MT
>
(
0.79788456
)
+
static_cast
<
MT
>
(
0.1070322243
)
*
mx
*
mx
))
+
static_cast
<
MT
>
(
0.5
)
*
(
static_cast
<
MT
>
(
1
)
+
tanh_out
);
return
static_cast
<
T
>
(
ans
);
}
inline
HOSTDEVICE
T
UseOut
(
T
x
)
{
MT
mx
=
static_cast
<
MT
>
(
x
);
MT
tanh_out
=
tanh
(
static_cast
<
MT
>
(
0.79788456
)
*
mx
*
(
static_cast
<
MT
>
(
1
)
+
static_cast
<
MT
>
(
0.044715
)
*
mx
*
mx
));
MT
ans
=
static_cast
<
MT
>
(
0.5
)
*
mx
*
((
static_cast
<
MT
>
(
1
)
-
tanh_out
*
tanh_out
)
*
(
static_cast
<
MT
>
(
0.79788456
)
+
static_cast
<
MT
>
(
0.1070322243
)
*
mx
*
mx
))
+
static_cast
<
MT
>
(
0.5
)
*
(
static_cast
<
MT
>
(
1
)
+
tanh_out
);
return
static_cast
<
T
>
(
ans
);
}
inline
HOSTDEVICE
T
UseXAndOut
(
T
x
,
T
out
)
{
MT
mx
=
static_cast
<
MT
>
(
x
);
MT
tanh_out
=
tanh
(
static_cast
<
MT
>
(
0.79788456
)
*
mx
*
(
static_cast
<
MT
>
(
1
)
+
static_cast
<
MT
>
(
0.044715
)
*
mx
*
mx
));
MT
ans
=
static_cast
<
MT
>
(
0.5
)
*
mx
*
((
static_cast
<
MT
>
(
1
)
-
tanh_out
*
tanh_out
)
*
(
static_cast
<
MT
>
(
0.79788456
)
+
static_cast
<
MT
>
(
0.1070322243
)
*
mx
*
mx
))
+
static_cast
<
MT
>
(
0.5
)
*
(
static_cast
<
MT
>
(
1
)
+
tanh_out
);
return
static_cast
<
T
>
(
ans
);
}
};
}
// namespace math
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/tests/unittests/test_fused_elemwise_activation_op.py
浏览文件 @
eae31856
...
...
@@ -305,6 +305,15 @@ def mul_scale_func(x, y, x_bcast, y_bcast, scale, mode=0):
return
y
,
x
,
x
*
scale
,
y_bcast
*
(
x_bcast
*
scale
)
def
gelu_add_func
(
x
,
y
,
x_bcast
,
y_bcast
,
mode
=
0
):
im
=
x_bcast
+
y_bcast
out
=
im
*
0.5
*
(
1.0
+
np
.
tanh
(
0.79788456
*
im
*
(
1
+
0.044715
*
im
*
im
)))
if
mode
==
0
:
return
x
,
y
,
im
,
out
else
:
return
y
,
x
,
im
,
out
scale
=
0.1
scale_add_func
=
partial
(
scale_add_func
,
scale
=
scale
)
add_scale_func
=
partial
(
add_scale_func
,
scale
=
scale
)
...
...
@@ -316,6 +325,7 @@ for mode in {0, 1}:
mul_scale_func
=
partial
(
mul_scale_func
,
mode
=
mode
)
relu_add_func
=
partial
(
relu_add_func
,
mode
=
mode
)
add_relu_func
=
partial
(
add_relu_func
,
mode
=
mode
)
gelu_add_func
=
partial
(
gelu_add_func
,
mode
=
mode
)
for
save_intermediate_out
in
{
True
,
False
}:
suffix
=
(
"_save_intermediate_out"
if
save_intermediate_out
else
""
)
\
...
...
@@ -343,6 +353,11 @@ for mode in {0, 1}:
'functor_list'
:
[
"elementwise_mul"
,
"scale"
],
'save_intermediate_out'
:
save_intermediate_out
,
})
create_test_class
(
'gelu_add'
+
suffix
,
gelu_add_func
,
{
'functor_list'
:
[
"gelu"
,
"elementwise_add"
],
'save_intermediate_out'
:
save_intermediate_out
,
})
if
core
.
is_compiled_with_cuda
():
create_test_class
(
'scale_add_fp16'
+
suffix
,
...
...
@@ -388,6 +403,14 @@ for mode in {0, 1}:
},
dtype
=
np
.
float16
,
grad_chek
=
False
)
create_test_class
(
'gelu_add_fp16'
+
suffix
,
gelu_add_func
,
{
'functor_list'
:
[
"gelu"
,
"elementwise_add"
],
'save_intermediate_out'
:
save_intermediate_out
,
},
dtype
=
np
.
float16
,
grad_chek
=
False
)
if
__name__
==
'__main__'
:
import
paddle
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录