Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
eac2c3cf
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
eac2c3cf
编写于
2月 28, 2018
作者:
E
emailweixu
提交者:
GitHub
2月 28, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #8505 from emailweixu/math_op
Correctly handling variable with batch dimension for math ops.
上级
0d878e4c
e9b8ebf4
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
167 addition
and
123 deletion
+167
-123
paddle/fluid/framework/ddim.cc
paddle/fluid/framework/ddim.cc
+8
-6
paddle/fluid/framework/ddim.h
paddle/fluid/framework/ddim.h
+2
-2
paddle/fluid/framework/dim.h
paddle/fluid/framework/dim.h
+40
-41
paddle/fluid/operators/detail/strided_memcpy.h
paddle/fluid/operators/detail/strided_memcpy.h
+23
-0
paddle/fluid/operators/elementwise_op.h
paddle/fluid/operators/elementwise_op.h
+7
-1
paddle/fluid/operators/elementwise_op_function.h
paddle/fluid/operators/elementwise_op_function.h
+20
-59
python/paddle/fluid/executor.py
python/paddle/fluid/executor.py
+3
-1
python/paddle/fluid/layers/math_op_patch.py
python/paddle/fluid/layers/math_op_patch.py
+26
-7
python/paddle/fluid/tests/unittests/test_elementwise_add_op.py
...n/paddle/fluid/tests/unittests/test_elementwise_add_op.py
+24
-0
python/paddle/fluid/tests/unittests/test_math_op_patch.py
python/paddle/fluid/tests/unittests/test_math_op_patch.py
+14
-6
未找到文件。
paddle/fluid/framework/ddim.cc
浏览文件 @
eac2c3cf
...
...
@@ -26,12 +26,15 @@ Dim<i> make_dim(const int64_t* d) {
}
template
<
>
Dim
<
1
>
make_dim
<
1
>
(
const
int64_t
*
d
)
{
return
Dim
<
1
>
(
*
d
);
Dim
<
0
>
make_dim
<
0
>
(
const
int64_t
*
d
)
{
return
Dim
<
0
>
(
*
d
);
}
void
make_ddim
(
DDim
&
ddim
,
const
int64_t
*
dims
,
int
n
)
{
switch
(
n
)
{
case
0
:
ddim
=
make_dim
<
0
>
(
dims
);
break
;
case
1
:
ddim
=
make_dim
<
1
>
(
dims
);
break
;
...
...
@@ -190,7 +193,7 @@ struct VectorizeVisitor : public boost::static_visitor<> {
this
->
operator
()(
t
.
tail
);
}
void
operator
()(
const
Dim
<
1
>&
t
)
{
vector
.
push_back
(
t
.
head
);
}
void
operator
()(
const
Dim
<
0
>&
t
)
{
}
};
/// @endcond
...
...
@@ -247,9 +250,8 @@ struct SliceVectorizeVisitor : public boost::static_visitor<> {
}
}
void
operator
()(
const
Dim
<
1
>&
dim
)
{
PADDLE_ENFORCE
(
end
==
1
,
"End index in ddim slice is out of bound."
);
vector
.
push_back
(
dim
.
head
);
void
operator
()(
const
Dim
<
0
>&
dim
)
{
PADDLE_ENFORCE
(
end
==
0
,
"End index in ddim slice is out of bound."
);
}
};
...
...
paddle/fluid/framework/ddim.h
浏览文件 @
eac2c3cf
...
...
@@ -30,8 +30,8 @@ namespace framework {
* The number of dimensions must be between [1, 9].
*/
struct
DDim
{
typedef
boost
::
variant
<
Dim
<
1
>
,
Dim
<
2
>
,
Dim
<
3
>
,
Dim
<
4
>
,
Dim
<
5
>
,
Dim
<
6
>
,
Dim
<
7
>
,
Dim
<
8
>
,
Dim
<
9
>>
typedef
boost
::
variant
<
Dim
<
0
>
,
Dim
<
1
>
,
Dim
<
2
>
,
Dim
<
3
>
,
Dim
<
4
>
,
Dim
<
5
>
,
Dim
<
6
>
,
Dim
<
7
>
,
Dim
<
8
>
,
Dim
<
9
>>
DDimVar
;
DDimVar
var
;
...
...
paddle/fluid/framework/dim.h
浏览文件 @
eac2c3cf
...
...
@@ -72,38 +72,36 @@ struct Dim {
// Base case specialization
template
<
>
struct
Dim
<
1
>
{
static
constexpr
int
dimensions
=
1
;
struct
Dim
<
0
>
{
static
constexpr
int
dimensions
=
0
;
HOSTDEVICE
Dim
(
int64_t
_head
)
:
head
(
_head
)
{}
Dim
(
int64_t
_head
)
{}
HOSTDEVICE
Dim
()
:
head
(
0
)
{}
Dim
()
{}
HOSTDEVICE
Dim
(
int
idx
,
const
Dim
<
1
>&
size
)
:
head
(
idx
)
{
Dim
(
int
idx
,
const
Dim
<
0
>&
size
)
{
#ifndef __CUDA_ARCH__
if
(
idx
>
=
size
.
head
)
{
if
(
idx
>
0
)
{
throw
std
::
invalid_argument
(
"Index out of range."
);
}
#else
PADDLE_ASSERT
(
idx
<
size
.
head
);
PADDLE_ASSERT
(
idx
==
0
);
#endif
}
HOSTDEVICE
bool
operator
==
(
const
Dim
<
1
>&
o
)
const
{
return
(
head
==
o
.
head
)
;
}
bool
operator
==
(
const
Dim
<
0
>&
o
)
const
{
return
true
;
}
HOSTDEVICE
bool
operator
!=
(
const
Dim
<
1
>&
o
)
const
{
return
!
(
*
this
==
o
)
;
}
bool
operator
!=
(
const
Dim
<
0
>&
o
)
const
{
return
false
;
}
HOSTDEVICE
int64_t
&
operator
[](
int
idx
);
HOSTDEVICE
int64_t
operator
[](
int
idx
)
const
;
int64_t
head
;
};
namespace
{
...
...
@@ -154,15 +152,14 @@ HOSTDEVICE int64_t& indexer(Dim<D>& dim, int idx) {
}
template
<
>
HOSTDEVICE
int64_t
&
indexer
<
1
>
(
Dim
<
1
>&
dim
,
int
idx
)
{
HOSTDEVICE
int64_t
&
indexer
<
0
>
(
Dim
<
0
>&
dim
,
int
idx
)
{
#ifndef __CUDA_ARCH__
if
(
idx
!=
0
)
{
throw
std
::
invalid_argument
(
"Invalid index"
);
}
throw
std
::
invalid_argument
(
"Invalid index"
);
#else
PADDLE_ASSERT
(
idx
==
0
);
PADDLE_ASSERT
(
false
);
#endif
return
dim
.
head
;
static
int64_t
head
=
0
;
return
head
;
}
template
<
int
D
>
...
...
@@ -181,15 +178,14 @@ HOSTDEVICE int64_t indexer(const Dim<D>& dim, int idx) {
}
template
<
>
HOSTDEVICE
int64_t
indexer
<
1
>
(
const
Dim
<
1
>&
dim
,
int
idx
)
{
HOSTDEVICE
int64_t
indexer
<
0
>
(
const
Dim
<
0
>&
dim
,
int
idx
)
{
#ifndef __CUDA_ARCH__
if
(
idx
!=
0
)
{
throw
std
::
invalid_argument
(
"Invalid index"
);
}
throw
std
::
invalid_argument
(
"Invalid index"
);
#else
PADDLE_ASSERT
(
idx
==
0
);
PADDLE_ASSERT
(
false
);
#endif
return
dim
.
head
;
static
int64_t
head
=
0
;
return
head
;
}
}
// namespace
...
...
@@ -218,12 +214,12 @@ HOSTDEVICE int64_t& Dim<l>::operator[](int i) {
}
// Dynamic access to constant Dim
inline
HOSTDEVICE
int64_t
Dim
<
1
>::
operator
[](
int
i
)
const
{
inline
HOSTDEVICE
int64_t
Dim
<
0
>::
operator
[](
int
i
)
const
{
return
indexer
(
*
this
,
i
);
}
// Dynamic access to mutable Dim
inline
HOSTDEVICE
int64_t
&
Dim
<
1
>::
operator
[](
int
i
)
{
inline
HOSTDEVICE
int64_t
&
Dim
<
0
>::
operator
[](
int
i
)
{
return
indexer
(
*
this
,
i
);
}
...
...
@@ -251,8 +247,8 @@ HOSTDEVICE int64_t linearize(const Dim<i>& a, const Dim<i>& b) {
// Base case dot product of two Dims
// Notice it is inline because it is no longer a template
template
<
>
HOSTDEVICE
inline
int64_t
linearize
(
const
Dim
<
1
>&
a
,
const
Dim
<
1
>&
b
)
{
return
a
.
head
*
b
.
head
;
HOSTDEVICE
inline
int64_t
linearize
(
const
Dim
<
0
>&
a
,
const
Dim
<
0
>&
b
)
{
return
0
;
}
// Product of a Dim
...
...
@@ -264,8 +260,8 @@ HOSTDEVICE int64_t product(const Dim<i>& a, int prod = 1) {
// Base case product of a Dim
// Notice it is inline because it is no longer a template
template
<
>
HOSTDEVICE
inline
int64_t
product
(
const
Dim
<
1
>&
a
,
int
prod
)
{
return
prod
*
a
.
head
;
HOSTDEVICE
inline
int64_t
product
(
const
Dim
<
0
>&
a
,
int
prod
)
{
return
prod
;
}
// Is 0 <= idx_i < size_i for all i?
...
...
@@ -278,8 +274,8 @@ HOSTDEVICE bool contained(const Dim<i>& idx, const Dim<i>& size) {
// Base case of is 0 <= idx_i < size_i ?
// Notice it is inline because it is no longer a template
template
<
>
HOSTDEVICE
inline
bool
contained
(
const
Dim
<
1
>&
idx
,
const
Dim
<
1
>&
size
)
{
return
((
0
<=
idx
.
head
)
&&
(
idx
.
head
<
size
.
head
))
;
HOSTDEVICE
inline
bool
contained
(
const
Dim
<
0
>&
idx
,
const
Dim
<
0
>&
size
)
{
return
true
;
}
/**
...
...
@@ -294,8 +290,8 @@ HOSTDEVICE Dim<i> ex_prefix_mul(const Dim<i>& src, int mul = 1) {
// Base case of ex_prefix_mul
// Notice it is inline because it is no longer a template
template
<
>
HOSTDEVICE
inline
Dim
<
1
>
ex_prefix_mul
(
const
Dim
<
1
>&
src
,
int
mul
)
{
return
Dim
<
1
>
(
mul
);
HOSTDEVICE
inline
Dim
<
0
>
ex_prefix_mul
(
const
Dim
<
0
>&
src
,
int
mul
)
{
return
Dim
<
0
>
(
);
}
///\endcond
...
...
@@ -309,8 +305,8 @@ HOSTDEVICE Dim<i> dim_plus(const Dim<i>& a, const Dim<i>& b) {
// Base case
template
<
>
HOSTDEVICE
inline
Dim
<
1
>
dim_plus
(
const
Dim
<
1
>&
a
,
const
Dim
<
1
>&
b
)
{
return
Dim
<
1
>
(
a
.
head
+
b
.
head
);
HOSTDEVICE
inline
Dim
<
0
>
dim_plus
(
const
Dim
<
0
>&
a
,
const
Dim
<
0
>&
b
)
{
return
Dim
<
0
>
(
);
}
template
<
int
i
>
...
...
@@ -328,8 +324,8 @@ HOSTDEVICE Dim<i> dim_mult(const Dim<i>& a, const Dim<i>& b) {
// Base case
template
<
>
HOSTDEVICE
inline
Dim
<
1
>
dim_mult
(
const
Dim
<
1
>&
a
,
const
Dim
<
1
>&
b
)
{
return
Dim
<
1
>
(
a
.
head
*
b
.
head
);
HOSTDEVICE
inline
Dim
<
0
>
dim_mult
(
const
Dim
<
0
>&
a
,
const
Dim
<
0
>&
b
)
{
return
Dim
<
0
>
(
);
}
template
<
int
i
>
...
...
@@ -356,10 +352,9 @@ HOSTDEVICE Dim<i> normalize_strides(const Dim<i>& size, const Dim<i>& stride) {
///\cond HIDDEN
template
<
>
HOSTDEVICE
inline
Dim
<
1
>
normalize_strides
(
const
Dim
<
1
>&
size
,
const
Dim
<
1
>&
stride
)
{
int
norm_stride
=
size
.
head
==
1
?
0
:
stride
.
head
;
return
Dim
<
1
>
(
norm_stride
);
HOSTDEVICE
inline
Dim
<
0
>
normalize_strides
(
const
Dim
<
0
>&
size
,
const
Dim
<
0
>&
stride
)
{
return
Dim
<
0
>
();
}
///\endcond
...
...
@@ -394,6 +389,10 @@ typename std::enable_if<(i == 1), std::ostream&>::type operator<<(
return
os
;
}
inline
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
Dim
<
0
>&
d
)
{
return
os
;
}
template
<
int
i
>
HOST
std
::
string
Dim
<
i
>::
to_string
()
const
{
std
::
stringstream
stream
;
...
...
paddle/fluid/operators/detail/strided_memcpy.h
浏览文件 @
eac2c3cf
...
...
@@ -24,6 +24,29 @@ namespace detail {
template
<
typename
T
,
int
Rank
>
struct
StridedMemcpyFunctor
;
template
<
typename
T
>
struct
StridedMemcpyFunctor
<
T
,
0
>
{
void
operator
()(
const
platform
::
DeviceContext
&
dev_ctx
,
const
T
*
src
,
framework
::
Dim
<
0
>
src_stride
,
framework
::
Dim
<
0
>
dst_dim
,
framework
::
Dim
<
0
>
dst_stride
,
T
*
dst
)
const
{
auto
place
=
dev_ctx
.
GetPlace
();
if
(
platform
::
is_cpu_place
(
place
))
{
auto
&
cpu_place
=
boost
::
get
<
platform
::
CPUPlace
>
(
place
);
memory
::
Copy
(
cpu_place
,
dst
,
cpu_place
,
src
,
sizeof
(
T
));
}
else
{
#ifdef PADDLE_WITH_CUDA
auto
&
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
place
);
auto
&
cuda_ctx
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
dev_ctx
);
memory
::
Copy
(
gpu_place
,
dst
,
gpu_place
,
src
,
sizeof
(
T
),
cuda_ctx
.
stream
());
#else
PADDLE_THROW
(
"Paddle is not compiled with GPU"
);
#endif
}
}
};
template
<
typename
T
>
struct
StridedMemcpyFunctor
<
T
,
1
>
{
void
operator
()(
const
platform
::
DeviceContext
&
dev_ctx
,
const
T
*
src
,
...
...
paddle/fluid/operators/elementwise_op.h
浏览文件 @
eac2c3cf
...
...
@@ -65,12 +65,17 @@ smaller than or equal to the dimensions of $X$.
There are two cases for this operator:
1. The shape of $Y$ is same with $X$;
2. The shape of $Y$ is a subset of $X$.
2. The shape of $Y$ is a congiguous subsequencet of $X$. The trailing dimensions
of size 1 for $Y$ will be ignored for the consideration of subsequence.
For case 2:
$Y$ will be broadcasted to match the shape of $X$ and axis should be
set to index of the start dimension to broadcast $Y$ onto $X$.
If axis is -1, it is treated as axis=rank(X)-rank(Y).
For example
.. code-block:: python
...
...
@@ -79,6 +84,7 @@ For example
shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
Either of the inputs $X$ and $Y$ or none can carry the LoD (Level of Details)
information. However, the output only shares the LoD information with input $X$.
...
...
paddle/fluid/operators/elementwise_op_function.h
浏览文件 @
eac2c3cf
...
...
@@ -62,6 +62,19 @@ inline void get_mid_dims(const framework::DDim& x_dims,
}
}
inline
void
trim_trailing_singular_dims
(
framework
::
DDim
&
dims
)
{
// Remove trailing dimensions of size 1 for y
auto
actual_dims_size
=
dims
.
size
();
for
(;
actual_dims_size
!=
0
;
--
actual_dims_size
)
{
if
(
dims
[
actual_dims_size
-
1
]
!=
1
)
break
;
}
if
(
actual_dims_size
!=
dims
.
size
())
{
auto
actual_dims
=
framework
::
vectorize
(
dims
);
actual_dims
.
resize
(
actual_dims_size
);
dims
=
framework
::
make_ddim
(
actual_dims
);
}
}
template
<
typename
T
,
typename
DeviceContext
>
class
RowwiseTransformIterator
;
template
<
typename
T
,
typename
DeviceContext
>
...
...
@@ -264,44 +277,6 @@ class TransformFunctor {
} \
}
template
<
class
functor
,
typename
DeviceContext
,
typename
T
>
void
ElementwiseCompute
(
const
framework
::
ExecutionContext
&
ctx
)
{
using
Tensor
=
framework
::
Tensor
;
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
auto
*
z
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
z
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
x_dims
=
x
->
dims
();
auto
y_dims
=
y
->
dims
();
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
y_dims
.
size
(),
"Rank of first input must >= rank of second input."
);
if
(
x_dims
==
y_dims
)
{
functor
f
;
f
.
template
Run
<
DeviceContext
,
T
>(
x
,
y
,
z
,
ctx
);
return
;
}
int
axis
=
ctx
.
Attr
<
int
>
(
"axis"
);
axis
=
(
axis
==
-
1
?
x_dims
.
size
()
-
y_dims
.
size
()
:
axis
);
PADDLE_ENFORCE
(
axis
>=
0
&&
axis
<
x_dims
.
size
(),
"Axis should be in range [0, x_dims)"
);
int
pre
,
n
,
post
;
get_mid_dims
(
x_dims
,
y_dims
,
axis
,
pre
,
n
,
post
);
if
(
post
==
1
)
{
functor
f
;
f
.
template
RunBroadCast
<
DeviceContext
,
T
>(
x
,
y
,
z
,
ctx
,
pre
,
n
);
return
;
}
else
{
functor
f
;
f
.
template
RunBroadCast2
<
DeviceContext
,
T
>(
x
,
y
,
z
,
ctx
,
pre
,
n
,
post
);
return
;
}
}
#define EIGEN_ADD(x, y) ((x) + (y))
EIGEN_FUNCTOR
(
Add
,
EIGEN_ADD
);
...
...
@@ -496,14 +471,10 @@ void ElemwiseGradCompute(const framework::ExecutionContext& ctx,
auto
x_dim
=
x
.
dims
();
auto
y_dim
=
y
.
dims
();
if
(
y_dim
.
size
()
==
1
&&
y_dim
[
0
]
==
1
)
{
// y is a scalar
auto
extended_dims
=
framework
::
vectorize
(
x_dim
);
extended_dims
.
push_back
(
1
);
x_dim
=
framework
::
make_ddim
(
extended_dims
);
}
axis
=
(
axis
==
-
1
?
x_dim
.
size
()
-
y_dim
.
size
()
:
axis
);
trim_trailing_singular_dims
(
y_dim
);
axis
=
(
y_dim
.
size
()
==
0
)
?
x_dim
.
size
()
:
axis
;
int
pre
,
n
,
post
;
get_mid_dims
(
x_dim
,
y_dim
,
axis
,
pre
,
n
,
post
);
if
(
post
==
1
)
{
...
...
@@ -571,14 +542,9 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx,
return
;
}
if
(
y_dims
.
size
()
==
1
&&
y_dims
[
0
]
==
1
)
{
// y is a scalar
auto
extended_dims
=
framework
::
vectorize
(
x_dims
);
extended_dims
.
push_back
(
1
);
x_dims
=
framework
::
make_ddim
(
extended_dims
);
}
axis
=
(
axis
==
-
1
?
x_dims
.
size
()
-
y_dims
.
size
()
:
axis
);
trim_trailing_singular_dims
(
y_dims
);
axis
=
(
y_dims
.
size
()
==
0
)
?
x_dims
.
size
()
:
axis
;
int
pre
,
n
,
post
;
get_mid_dims
(
x_dims
,
y_dims
,
axis
,
pre
,
n
,
post
);
...
...
@@ -613,16 +579,11 @@ void ElementwiseComputeEx(const framework::ExecutionContext& ctx,
return
;
}
if
(
y_dims
.
size
()
==
1
&&
y_dims
[
0
]
==
1
)
{
// y is a scalar
auto
extended_dims
=
framework
::
vectorize
(
x_dims
);
extended_dims
.
push_back
(
1
);
x_dims
=
framework
::
make_ddim
(
extended_dims
);
}
axis
=
(
axis
==
-
1
?
x_dims
.
size
()
-
y_dims
.
size
()
:
axis
);
PADDLE_ENFORCE
(
axis
>=
0
&&
axis
<
x_dims
.
size
(),
"Axis should be in range [0, x_dims)"
);
trim_trailing_singular_dims
(
y_dims
);
axis
=
(
y_dims
.
size
()
==
0
)
?
x_dims
.
size
()
:
axis
;
int
pre
,
n
,
post
;
get_mid_dims
(
x_dims
,
y_dims
,
axis
,
pre
,
n
,
post
);
...
...
python/paddle/fluid/executor.py
浏览文件 @
eac2c3cf
...
...
@@ -14,7 +14,7 @@
import
numpy
as
np
import
contextlib
from
framework
import
Program
,
default_main_program
from
framework
import
Program
,
default_main_program
,
Variable
from
.
import
core
__all__
=
[
...
...
@@ -281,6 +281,8 @@ class Executor(object):
if
not
has_fetch_operators
(
global_block
,
fetch_list
,
fetch_var_name
):
for
i
,
var
in
enumerate
(
fetch_list
):
assert
isinstance
(
var
,
Variable
)
or
isinstance
(
var
,
str
),
(
"Wrong type for fetch_list[%s]: %s"
%
(
i
,
type
(
var
)))
global_block
.
append_op
(
type
=
'fetch'
,
inputs
=
{
'X'
:
[
var
]},
...
...
python/paddle/fluid/layers/math_op_patch.py
浏览文件 @
eac2c3cf
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
...
@@ -53,12 +53,22 @@ def monkey_patch_variable():
value
=
float
(
value
)
tmp_name
=
unique_tmp_name
()
var
=
ref_var
.
block
.
create_var
(
name
=
tmp_name
,
dtype
=
dtype
)
batch_dim
=
-
1
for
i
,
d
in
enumerate
(
ref_var
.
shape
):
if
d
<
0
:
batch_dim
=
i
break
assert
batch_dim
!=
-
1
ref_var
.
block
.
append_op
(
type
=
'fill_constant_batch_size_like'
,
outputs
=
{
'Out'
:
[
var
]},
inputs
=
{
'Input'
:
[
ref_var
]},
attrs
=
{
'shape'
:
ref_var
.
shape
,
'value'
:
value
})
attrs
=
{
'shape'
:
ref_var
.
shape
,
'value'
:
value
,
'input_dim_idx'
:
batch_dim
,
'output_dim_idx'
:
batch_dim
})
return
var
def
astype
(
self
,
dtype
):
...
...
@@ -118,11 +128,20 @@ def monkey_patch_variable():
tmp_name
=
unique_tmp_name
()
out
=
self
.
block
.
create_var
(
name
=
tmp_name
,
dtype
=
lhs_dtype
)
axis
=
-
1
if
other_var
.
shape
[
0
]
==
-
1
:
axis
=
0
assert
len
(
self
.
shape
)
>=
len
(
other_var
.
shape
),
(
"The rank of the first argument of an binary operator cannot "
"be smaller than the rank of its second argument: %s vs %s"
%
(
len
(
self
.
shape
),
len
(
other_var
.
shape
)))
self
.
block
.
append_op
(
type
=
op_type
,
inputs
=
{
'X'
:
[
self
],
'Y'
:
[
other_var
]},
outputs
=
{
'Out'
:
out
})
outputs
=
{
'Out'
:
out
},
attrs
=
{
'axis'
:
axis
})
return
out
comment
=
OpProtoHolder
.
instance
().
get_op_proto
(
op_type
).
comment
...
...
@@ -131,7 +150,7 @@ def monkey_patch_variable():
{0}
Args:
self(Variable): left hand variable
other_var(Variable|float|int): right hand variable
other_var(Variable|float|int): right hand variable
Returns:
Variable
...
...
python/paddle/fluid/tests/unittests/test_elementwise_add_op.py
浏览文件 @
eac2c3cf
...
...
@@ -50,6 +50,16 @@ class TestElementwiseAddOp_scalar(TestElementwiseOp):
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
+
self
.
inputs
[
'Y'
]}
class
TestElementwiseAddOp_scalar2
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_add"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
4
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
1
,
1
).
astype
(
np
.
float32
)
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
+
self
.
inputs
[
'Y'
]}
class
TestElementwiseAddOp_Vector
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_add"
...
...
@@ -115,6 +125,20 @@ class TestElementwiseAddOp_broadcast_3(TestElementwiseOp):
}
class
TestElementwiseAddOp_broadcast_4
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_add"
self
.
inputs
=
{
'X'
:
np
.
random
.
rand
(
2
,
3
,
4
,
5
).
astype
(
np
.
float32
),
'Y'
:
np
.
random
.
rand
(
2
,
1
).
astype
(
np
.
float32
)
}
self
.
attrs
=
{
'axis'
:
0
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
+
self
.
inputs
[
'Y'
].
reshape
(
2
,
1
,
1
,
1
)
}
class
TestElementwiseAddOp_rowwise_add_0
(
TestElementwiseOp
):
def
setUp
(
self
):
self
.
op_type
=
"elementwise_add"
...
...
python/paddle/fluid/tests/unittests/test_math_op_patch.py
浏览文件 @
eac2c3cf
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
...
@@ -23,13 +23,21 @@ class TestMathOpPatches(unittest.TestCase):
def
test_add_scalar
(
self
):
a
=
fluid
.
layers
.
data
(
name
=
"a"
,
shape
=
[
1
])
b
=
a
+
10
ab
=
fluid
.
layers
.
concat
(
input
=
[
a
,
b
],
axis
=
1
)
c
=
ab
+
10
d
=
ab
+
a
# e = a + ab
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
a_np
=
numpy
.
random
.
random
(
size
=
[
10
,
1
]).
astype
(
'float32'
)
b_np
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"a"
:
a_np
},
fetch_list
=
[
b
])
b_np
,
c_np
,
d_np
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"a"
:
a_np
},
fetch_list
=
[
b
,
c
,
d
])
self
.
assertTrue
(
numpy
.
allclose
(
a_np
+
10
,
b_np
))
ab_np
=
numpy
.
concatenate
([
a_np
,
b_np
],
axis
=
1
)
self
.
assertTrue
(
numpy
.
allclose
(
ab_np
+
10
,
c_np
))
d_expected
=
ab_np
+
numpy
.
concatenate
([
a_np
,
a_np
],
axis
=
1
)
self
.
assertTrue
(
numpy
.
allclose
(
d_expected
,
d_np
))
@
decorators
.
prog_scope
()
def
test_radd_scalar
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录