Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ea2a34ee
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
ea2a34ee
编写于
12月 14, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Polish doc
test=develop
上级
5fff20c2
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
7 addition
and
7 deletion
+7
-7
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+7
-7
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
ea2a34ee
...
@@ -9182,19 +9182,19 @@ def psroi_pool(input,
...
@@ -9182,19 +9182,19 @@ def psroi_pool(input,
def
huber_loss
(
input
,
label
,
delta
):
def
huber_loss
(
input
,
label
,
delta
):
"""
"""
Huber
regression loss is a loss function used in robust regression
.
Huber
loss is a loss function used in robust
.
Huber
regression
loss can evaluate the fitness of input to label.
Huber loss can evaluate the fitness of input to label.
Different from MSE loss, Huber
regression
loss is more robust for outliers.
Different from MSE loss, Huber loss is more robust for outliers.
When the difference between input and label is large than delta
When the difference between input and label is large than delta
.. math::
.. math::
huber\_
regression\_
loss = delta * (label - input) - 0.5 * delta * delta
huber\_loss = delta * (label - input) - 0.5 * delta * delta
When the difference between input and label is less than delta
When the difference between input and label is less than delta
.. math::
.. math::
huber\_
regression\_
loss = 0.5 * (label - input) * (label - input)
huber\_loss = 0.5 * (label - input) * (label - input)
Args:
Args:
...
@@ -9202,11 +9202,11 @@ def huber_loss(input, label, delta):
...
@@ -9202,11 +9202,11 @@ def huber_loss(input, label, delta):
The first dimension is batch size, and the last dimension is 1.
The first dimension is batch size, and the last dimension is 1.
label (Variable): The groud truth whose first dimension is batch size
label (Variable): The groud truth whose first dimension is batch size
and last dimension is 1.
and last dimension is 1.
delta (float): The parameter of huber
regression
loss, which controls
delta (float): The parameter of huber loss, which controls
the range of outliers
the range of outliers
Returns:
Returns:
huber\_
regression\_loss (Variable): The huber regression
loss with shape [batch_size, 1].
huber\_
loss (Variable): The huber
loss with shape [batch_size, 1].
Examples:
Examples:
.. code-block:: python
.. code-block:: python
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录