Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e9fa7a7b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e9fa7a7b
编写于
2月 12, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
follow comments of qingqing and code refine
上级
99c9dbf5
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
66 addition
and
83 deletion
+66
-83
python/paddle/v2/fluid/layers/detection.py
python/paddle/v2/fluid/layers/detection.py
+52
-22
python/paddle/v2/fluid/tests/test_detection.py
python/paddle/v2/fluid/tests/test_detection.py
+14
-61
未找到文件。
python/paddle/v2/fluid/layers/detection.py
浏览文件 @
e9fa7a7b
...
...
@@ -18,10 +18,9 @@ All layers just related to the detection neural network.
from
..layer_helper
import
LayerHelper
from
..param_attr
import
ParamAttr
from
..framework
import
Variable
from
..nets
import
img_conv_with_bn
from
tensor
import
concat
from
ops
import
reshape
from
nn
import
transpose
import
tensor
import
ops
import
nn
import
math
__all__
=
[
...
...
@@ -184,10 +183,10 @@ def prior_box(inputs,
name(str, optional, None): Name of the prior box layer.
Returns:
boxes(Variable): the output prior boxes of PriorBox
Op
.
boxes(Variable): the output prior boxes of PriorBox.
The layout is [num_priors, 4]. num_priors is the total
box count of each position of inputs.
Variances(Variable): the expanded variances of PriorBox
Op
.
Variances(Variable): the expanded variances of PriorBox.
The layout is [num_priors, 4]. num_priors is the total
box count of each position of inputs
...
...
@@ -250,7 +249,7 @@ def prior_box(inputs,
new_shape
=
[
-
1
,
reduce
(
lambda
x
,
y
:
x
*
y
,
input
.
shape
[
axis
:
len
(
input
.
shape
)])
]
out
=
reshape
(
x
=
input
,
shape
=
new_shape
)
out
=
ops
.
reshape
(
x
=
input
,
shape
=
new_shape
)
return
out
assert
isinstance
(
inputs
,
list
),
'inputs should be a list.'
...
...
@@ -326,8 +325,8 @@ def prior_box(inputs,
reshaped_boxes
.
append
(
_reshape_with_axis_
(
box_results
[
i
],
axis
=
3
))
reshaped_vars
.
append
(
_reshape_with_axis_
(
var_results
[
i
],
axis
=
3
))
box
=
concat
(
reshaped_boxes
)
var
=
concat
(
reshaped_vars
)
box
=
tensor
.
concat
(
reshaped_boxes
)
var
=
tensor
.
concat
(
reshaped_vars
)
return
box
,
var
...
...
@@ -345,12 +344,14 @@ def multi_box_head(inputs,
pad
=
1
,
stride
=
1
,
use_batchnorm
=
False
,
base_size
=
None
,
name
=
None
):
base_size
=
None
):
"""
**Multi Box Head**
input many Variable, and return mbox_loc, mbox_conf
Generate prior boxes' location and confidence for SSD(Single
Shot MultiBox Detector)algorithm. The details of this algorithm,
please refer the section 2.1 of SSD paper (SSD: Single Shot
MultiBox Detector)<https://arxiv.org/abs/1512.02325>`_ .
Args:
inputs(list): The list of input Variables, the format
...
...
@@ -376,12 +377,12 @@ def multi_box_head(inputs,
Returns:
mbox_loc(list):
the output prior boxes of PriorBoxOp. The layout is
[num_priors, 4]. num_priors is the total box count of each
position of inputs
.
mbox_conf(list):
the expanded variances of PriorBoxOp. The layout
is [num_priors, 4]. num_priors is the total box count of each
position of inputs
mbox_loc(list):
The predicted boxes' location of the inputs.
The layout of each element is [N, H, W, Priors]. Priors
is the number of predicted boxof each position of each input
.
mbox_conf(list):
The predicted boxes' confidence of the inputs.
The layout of each element is [N, H, W, Priors]. Priors
is the number of predicted box of each position of each input.
Examples:
.. code-block:: python
...
...
@@ -396,6 +397,35 @@ def multi_box_head(inputs,
flip=True)
"""
def
_conv_with_bn_
(
input
,
conv_num_filter
,
conv_padding
=
1
,
conv_filter_size
=
3
,
conv_stride
=
1
,
conv_act
=
None
,
param_attr
=
None
,
conv_with_batchnorm
=
False
,
conv_batchnorm_drop_rate
=
0.0
,
use_cudnn
=
True
):
conv2d
=
nn
.
conv2d
(
input
=
input
,
num_filters
=
conv_num_filter
,
filter_size
=
conv_filter_size
,
padding
=
conv_padding
,
stride
=
conv_stride
,
param_attr
=
param_attr
,
act
=
conv_act
,
use_cudnn
=
use_cudnn
)
if
conv_with_batchnorm
:
conv2d
=
nn
.
batch_norm
(
input
=
conv2d
)
drop_rate
=
conv_batchnorm_drop_rate
if
abs
(
drop_rate
)
>
1e-5
:
conv2d
=
nn
.
dropout
(
x
=
conv2d
,
dropout_prob
=
drop_rate
)
return
conv2d
if
not
(
isinstance
(
inputs
,
list
)):
raise
ValueError
(
'inputs should be a list.'
)
...
...
@@ -469,26 +499,26 @@ def multi_box_head(inputs,
if
share_location
:
num_loc_output
*=
num_classes
mbox_loc
=
img_conv_with_bn
(
mbox_loc
=
_conv_with_bn_
(
input
=
input
,
conv_num_filter
=
num_loc_output
,
conv_padding
=
pad
,
conv_stride
=
stride
,
conv_filter_size
=
kernel_size
,
conv_with_batchnorm
=
use_batchnorm
)
mbox_loc
=
transpose
(
mbox_loc
,
perm
=
[
0
,
2
,
3
,
1
])
mbox_loc
=
nn
.
transpose
(
mbox_loc
,
perm
=
[
0
,
2
,
3
,
1
])
mbox_locs
.
append
(
mbox_loc
)
# get conf_loc
num_conf_output
=
num_priors_per_location
*
num_classes
conf_loc
=
img_conv_with_bn
(
conf_loc
=
_conv_with_bn_
(
input
=
input
,
conv_num_filter
=
num_conf_output
,
conv_padding
=
pad
,
conv_stride
=
stride
,
conv_filter_size
=
kernel_size
,
conv_with_batchnorm
=
use_batchnorm
)
conf_loc
=
transpose
(
conf_loc
,
perm
=
[
0
,
2
,
3
,
1
])
conf_loc
=
nn
.
transpose
(
conf_loc
,
perm
=
[
0
,
2
,
3
,
1
])
mbox_confs
.
append
(
conf_loc
)
return
mbox_locs
,
mbox_confs
python/paddle/v2/fluid/tests/test_detection.py
浏览文件 @
e9fa7a7b
...
...
@@ -47,7 +47,7 @@ class TestBook(unittest.TestCase):
out
=
layers
.
detection_output
(
scores
=
scores
,
loc
=
loc
,
prior_box
=
pb
,
prior_box_var
=
pbv
)
self
.
assertIsNotNone
(
out
)
print
(
str
(
program
))
#
print(str(program))
class
TestPriorBox
(
unittest
.
TestCase
):
...
...
@@ -62,36 +62,11 @@ class TestPriorBox(unittest.TestCase):
def
prior_box_output
(
self
,
data_shape
):
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
conv1
=
fluid
.
layers
.
conv2d
(
input
=
images
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv2
=
fluid
.
layers
.
conv2d
(
input
=
conv1
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv3
=
fluid
.
layers
.
conv2d
(
input
=
conv2
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv4
=
fluid
.
layers
.
conv2d
(
input
=
conv3
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv5
=
fluid
.
layers
.
conv2d
(
input
=
conv4
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv1
=
fluid
.
layers
.
conv2d
(
images
,
3
,
3
,
2
)
conv2
=
fluid
.
layers
.
conv2d
(
conv1
,
3
,
3
,
2
)
conv3
=
fluid
.
layers
.
conv2d
(
conv2
,
3
,
3
,
2
)
conv4
=
fluid
.
layers
.
conv2d
(
conv3
,
3
,
3
,
2
)
conv5
=
fluid
.
layers
.
conv2d
(
conv4
,
3
,
3
,
2
)
box
,
var
=
detection
.
prior_box
(
inputs
=
[
conv1
,
conv2
,
conv3
,
conv4
,
conv5
,
conv5
],
...
...
@@ -112,39 +87,17 @@ class TestMultiBoxHead(unittest.TestCase):
data_shape
=
[
3
,
224
,
224
]
mbox_locs
,
mbox_confs
=
self
.
multi_box_output
(
data_shape
)
for
loc
,
conf
in
zip
(
mbox_locs
,
mbox_confs
):
assert
loc
.
shape
[
1
:
3
]
==
conf
.
shape
[
1
:
3
]
def
multi_box_output
(
self
,
data_shape
):
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
conv1
=
fluid
.
layers
.
conv2d
(
input
=
images
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv2
=
fluid
.
layers
.
conv2d
(
input
=
conv1
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv3
=
fluid
.
layers
.
conv2d
(
input
=
conv2
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv4
=
fluid
.
layers
.
conv2d
(
input
=
conv3
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv5
=
fluid
.
layers
.
conv2d
(
input
=
conv4
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv1
=
fluid
.
layers
.
conv2d
(
images
,
3
,
3
,
2
)
conv2
=
fluid
.
layers
.
conv2d
(
conv1
,
3
,
3
,
2
)
conv3
=
fluid
.
layers
.
conv2d
(
conv2
,
3
,
3
,
2
)
conv4
=
fluid
.
layers
.
conv2d
(
conv3
,
3
,
3
,
2
)
conv5
=
fluid
.
layers
.
conv2d
(
conv4
,
3
,
3
,
2
)
mbox_locs
,
mbox_confs
=
detection
.
multi_box_head
(
inputs
=
[
conv1
,
conv2
,
conv3
,
conv4
,
conv5
,
conv5
],
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录