未验证 提交 e9df6fcd 编写于 作者: R Ryan 提交者: GitHub

[Dy2St] transforms.RandomErasing Support static mode (#49617)

* static.nn.cond ten

* add unitest

* update code style
上级 d4b3bfab
...@@ -168,6 +168,38 @@ class TestRandomRotation_expand_True(TestTransformUnitTestBase): ...@@ -168,6 +168,38 @@ class TestRandomRotation_expand_True(TestTransformUnitTestBase):
self.api = transforms.RandomRotation(degree_tuple, expand=True, fill=3) self.api = transforms.RandomRotation(degree_tuple, expand=True, fill=3)
class TestRandomErasing(TestTransformUnitTestBase):
def set_trans_api(self):
self.value = 100
self.scale = (0.02, 0.33)
self.ratio = (0.3, 3.3)
self.api = transforms.RandomErasing(
prob=1, value=self.value, scale=self.scale, ratio=self.ratio
)
def test_transform(self):
dy_res = self.dynamic_transform()
if isinstance(dy_res, paddle.Tensor):
dy_res = dy_res.numpy()
st_res = self.static_transform()
self.assert_test_erasing(dy_res)
self.assert_test_erasing(st_res)
def assert_test_erasing(self, arr):
_, h, w = arr.shape
area = h * w
height = (arr[2] == self.value).cumsum(1)[:, -1].max()
width = (arr[2] == self.value).cumsum(0)[-1].max()
erasing_area = height * width
assert self.ratio[0] < height / width < self.ratio[1]
assert self.scale[0] < erasing_area / area < self.scale[1]
class TestRandomResizedCrop(TestTransformUnitTestBase): class TestRandomResizedCrop(TestTransformUnitTestBase):
def set_trans_api(self, eps=10e-5): def set_trans_api(self, eps=10e-5):
c, h, w = self.get_shape() c, h, w = self.get_shape()
......
...@@ -1914,8 +1914,8 @@ class RandomErasing(BaseTransform): ...@@ -1914,8 +1914,8 @@ class RandomErasing(BaseTransform):
self.value = value self.value = value
self.inplace = inplace self.inplace = inplace
def _get_param(self, img, scale, ratio, value): def _dynamic_get_param(self, img, scale, ratio, value):
"""Get parameters for ``erase`` for a random erasing. """Get parameters for ``erase`` for a random erasing in dynamic mode.
Args: Args:
img (paddle.Tensor | np.array | PIL.Image): Image to be erased. img (paddle.Tensor | np.array | PIL.Image): Image to be erased.
...@@ -1964,13 +1964,104 @@ class RandomErasing(BaseTransform): ...@@ -1964,13 +1964,104 @@ class RandomErasing(BaseTransform):
return 0, 0, h, w, img return 0, 0, h, w, img
def _apply_image(self, img): def _static_get_param(self, img, scale, ratio, value):
"""Get parameters for ``erase`` for a random erasing in static mode.
Args:
img (paddle.static.Variable): Image to be erased.
scale (sequence, optional): The proportional range of the erased area to the input image.
ratio (sequence, optional): Aspect ratio range of the erased area.
value (sequence | None): The value each pixel in erased area will be replaced with.
If value is a sequence with length 3, the R, G, B channels will be ereased
respectively. If value is None, each pixel will be erased with random values.
Returns:
tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erase.
"""
c, h, w = img.shape[-3], img.shape[-2], img.shape[-1]
img_area = h * w
log_ratio = np.log(np.array(ratio))
def cond(counter, ten, erase_h, erase_w):
return counter < ten and (erase_h >= h or erase_w >= w)
def body(counter, ten, erase_h, erase_w):
erase_area = (
paddle.uniform([1], min=scale[0], max=scale[1]) * img_area
)
aspect_ratio = paddle.exp(
paddle.uniform([1], min=log_ratio[0], max=log_ratio[1])
)
erase_h = paddle.round(paddle.sqrt(erase_area * aspect_ratio)).cast(
"int32"
)
erase_w = paddle.round(paddle.sqrt(erase_area / aspect_ratio)).cast(
"int32"
)
counter += 1
return [counter, ten, erase_h, erase_w]
h = paddle.assign([h]).astype("int32")
w = paddle.assign([w]).astype("int32")
erase_h, erase_w = h.clone(), w.clone()
counter = paddle.full(
shape=[1], fill_value=0, dtype='int32'
) # loop counter
ten = paddle.full(
shape=[1], fill_value=10, dtype='int32'
) # loop length
counter, ten, erase_h, erase_w = paddle.static.nn.while_loop(
cond, body, [counter, ten, erase_h, erase_w]
)
if value is None:
v = paddle.normal(shape=[c, erase_h, erase_w]).astype(img.dtype)
else:
v = value[:, None, None]
zero = paddle.zeros([1]).astype("int32")
top = paddle.static.nn.cond(
erase_h < h and erase_w < w,
lambda: paddle.uniform(
shape=[1], min=0, max=h - erase_h + 1
).astype("int32"),
lambda: zero,
)
left = paddle.static.nn.cond(
erase_h < h and erase_w < w,
lambda: paddle.uniform(
shape=[1], min=0, max=w - erase_w + 1
).astype("int32"),
lambda: zero,
)
erase_h = paddle.static.nn.cond(
erase_h < h and erase_w < w, lambda: erase_h, lambda: h
)
erase_w = paddle.static.nn.cond(
erase_h < h and erase_w < w, lambda: erase_w, lambda: w
)
v = paddle.static.nn.cond(
erase_h < h and erase_w < w, lambda: v, lambda: img
)
return top, left, erase_h, erase_w, v, counter
def _dynamic_apply_image(self, img):
""" """
Args: Args:
img (paddle.Tensor | np.array | PIL.Image): Image to be Erased. img (paddle.Tensor | np.array | PIL.Image): Image to be Erased.
Returns: Returns:
output (paddle.Tensor np.array | PIL.Image): A random erased image. output (paddle.Tensor | np.array | PIL.Image): A random erased image.
""" """
if random.random() < self.prob: if random.random() < self.prob:
...@@ -1984,8 +2075,45 @@ class RandomErasing(BaseTransform): ...@@ -1984,8 +2075,45 @@ class RandomErasing(BaseTransform):
raise ValueError( raise ValueError(
"Value should be a single number or a sequence with length equals to image's channel." "Value should be a single number or a sequence with length equals to image's channel."
) )
top, left, erase_h, erase_w, v = self._get_param( top, left, erase_h, erase_w, v = self._dynamic_get_param(
img, self.scale, self.ratio, value img, self.scale, self.ratio, value
) )
return F.erase(img, top, left, erase_h, erase_w, v, self.inplace) return F.erase(img, top, left, erase_h, erase_w, v, self.inplace)
return img return img
def _static_apply_image(self, img):
"""
Args:
img (paddle.static.Variable): Image to be Erased.
Returns:
output (paddle.static.Variable): A random erased image.
"""
if isinstance(self.value, numbers.Number):
value = paddle.assign([self.value]).astype(img.dtype)
elif isinstance(self.value, str):
value = None
else:
value = paddle.assign(self.value).astype(img.dtype)
if value is not None and not (
value.shape[0] == 1 or value.shape[0] == 3
):
raise ValueError(
"Value should be a single number or a sequence with length equals to image's channel."
)
top, left, erase_h, erase_w, v, counter = self._static_get_param(
img, self.scale, self.ratio, value
)
return F.erase(img, top, left, erase_h, erase_w, v, self.inplace)
def _apply_image(self, img):
if paddle.in_dynamic_mode():
return self._dynamic_apply_image(img)
else:
return paddle.static.nn.cond(
paddle.rand([1]) < self.prob,
lambda: self._static_apply_image(img),
lambda: img,
)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册