Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e93e8a3f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e93e8a3f
编写于
4月 14, 2023
作者:
H
huangjiyi
提交者:
GitHub
4月 14, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update (#52878)
上级
aac8da90
变更
19
展开全部
隐藏空白更改
内联
并排
Showing
19 changed file
with
101 addition
and
1288 deletion
+101
-1288
paddle/fluid/operators/amp/get_float_status_op.cc
paddle/fluid/operators/amp/get_float_status_op.cc
+3
-2
paddle/fluid/operators/collective/global_gather_op.cc
paddle/fluid/operators/collective/global_gather_op.cc
+9
-6
paddle/fluid/operators/collective/global_gather_op.cu.cc
paddle/fluid/operators/collective/global_gather_op.cu.cc
+10
-7
paddle/fluid/operators/collective/global_gather_op.h
paddle/fluid/operators/collective/global_gather_op.h
+1
-1
paddle/fluid/operators/collective/global_scatter_op.cc
paddle/fluid/operators/collective/global_scatter_op.cc
+9
-6
paddle/fluid/operators/collective/global_scatter_op.cu.cc
paddle/fluid/operators/collective/global_scatter_op.cu.cc
+10
-7
paddle/fluid/operators/collective/global_scatter_op.h
paddle/fluid/operators/collective/global_scatter_op.h
+1
-1
paddle/fluid/operators/detection/generate_mask_labels_op.cc
paddle/fluid/operators/detection/generate_mask_labels_op.cc
+7
-3
paddle/fluid/operators/detection/generate_proposal_labels_op.cc
.../fluid/operators/detection/generate_proposal_labels_op.cc
+7
-4
paddle/fluid/operators/gaussian_random_batch_size_like_op.cc
paddle/fluid/operators/gaussian_random_batch_size_like_op.cc
+8
-5
paddle/fluid/operators/gaussian_random_batch_size_like_op.cu
paddle/fluid/operators/gaussian_random_batch_size_like_op.cu
+10
-7
paddle/fluid/operators/graph_khop_sampler_op.cc
paddle/fluid/operators/graph_khop_sampler_op.cc
+7
-3
paddle/fluid/operators/graph_khop_sampler_op.cu
paddle/fluid/operators/graph_khop_sampler_op.cu
+7
-4
paddle/fluid/operators/graph_khop_sampler_op.h
paddle/fluid/operators/graph_khop_sampler_op.h
+1
-1
paddle/fluid/operators/group_norm_op.cc
paddle/fluid/operators/group_norm_op.cc
+0
-2
paddle/fluid/operators/group_norm_op.cu
paddle/fluid/operators/group_norm_op.cu
+0
-834
paddle/fluid/operators/group_norm_op.h
paddle/fluid/operators/group_norm_op.h
+0
-387
paddle/fluid/operators/l1_norm_op.cc
paddle/fluid/operators/l1_norm_op.cc
+9
-6
paddle/fluid/operators/l1_norm_op.h
paddle/fluid/operators/l1_norm_op.h
+2
-2
未找到文件。
paddle/fluid/operators/amp/get_float_status_op.cc
浏览文件 @
e93e8a3f
...
...
@@ -53,7 +53,7 @@ class GetFloatStatusMaker : public framework::OpProtoAndCheckerMaker {
}
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
,
typename
DeviceContext
>
class
GetFloatStatusKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
@@ -75,4 +75,5 @@ REGISTER_OPERATOR(
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OP_CPU_KERNEL
(
get_float_status
,
ops
::
GetFloatStatusKernel
<
CPU
,
float
>
);
PD_REGISTER_STRUCT_KERNEL
(
get_float_status
,
CPU
,
ALL_LAYOUT
,
ops
::
GetFloatStatusKernel
,
float
)
{}
paddle/fluid/operators/collective/global_gather_op.cc
浏览文件 @
e93e8a3f
...
...
@@ -111,9 +111,12 @@ REGISTER_OPERATOR(global_gather,
ops
::
GlobalGatherOpGradMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
GlobalGatherOpGradMaker
<
paddle
::
imperative
::
OpBase
>
)
REGISTER_OP_CPU_KERNEL
(
global_gather
,
ops
::
GlobalGatherOpCPUKernel
<
float
>
,
ops
::
GlobalGatherOpCPUKernel
<
double
>
,
ops
::
GlobalGatherOpCPUKernel
<
int
>
,
ops
::
GlobalGatherOpCPUKernel
<
int64_t
>
,
ops
::
GlobalGatherOpCPUKernel
<
plat
::
float16
>
);
PD_REGISTER_STRUCT_KERNEL
(
global_gather
,
CPU
,
ALL_LAYOUT
,
ops
::
GlobalGatherOpCPUKernel
,
float
,
double
,
int
,
int64_t
,
plat
::
float16
)
{}
paddle/fluid/operators/collective/global_gather_op.cu.cc
浏览文件 @
e93e8a3f
...
...
@@ -261,7 +261,7 @@ struct GlobalGatherProcessGroupFunctor<phi::GPUContext, T> {
}
};
template
<
typename
T
>
template
<
typename
T
,
typename
DeivceContext
>
class
GlobalGatherOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
@@ -283,9 +283,12 @@ class GlobalGatherOpCUDAKernel : public framework::OpKernel<T> {
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
global_gather
,
ops
::
GlobalGatherOpCUDAKernel
<
float
>
,
ops
::
GlobalGatherOpCUDAKernel
<
double
>
,
ops
::
GlobalGatherOpCUDAKernel
<
int
>
,
ops
::
GlobalGatherOpCUDAKernel
<
int64_t
>
,
ops
::
GlobalGatherOpCUDAKernel
<
plat
::
float16
>
);
PD_REGISTER_STRUCT_KERNEL
(
global_gather
,
GPU
,
ALL_LAYOUT
,
ops
::
GlobalGatherOpCUDAKernel
,
float
,
double
,
int
,
int64_t
,
plat
::
float16
)
{}
paddle/fluid/operators/collective/global_gather_op.h
浏览文件 @
e93e8a3f
...
...
@@ -25,7 +25,7 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
template
<
typename
T
,
typename
DeviceContext
>
class
GlobalGatherOpCPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
paddle/fluid/operators/collective/global_scatter_op.cc
浏览文件 @
e93e8a3f
...
...
@@ -115,9 +115,12 @@ REGISTER_OPERATOR(global_scatter,
ops
::
GlobalScatterOpGradMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
GlobalScatterOpGradMaker
<
paddle
::
imperative
::
OpBase
>
)
REGISTER_OP_CPU_KERNEL
(
global_scatter
,
ops
::
GlobalScatterOpCPUKernel
<
float
>
,
ops
::
GlobalScatterOpCPUKernel
<
double
>
,
ops
::
GlobalScatterOpCPUKernel
<
int
>
,
ops
::
GlobalScatterOpCPUKernel
<
int64_t
>
,
ops
::
GlobalScatterOpCPUKernel
<
plat
::
float16
>
);
PD_REGISTER_STRUCT_KERNEL
(
global_scatter
,
CPU
,
ALL_LAYOUT
,
ops
::
GlobalScatterOpCPUKernel
,
float
,
double
,
int
,
int64_t
,
plat
::
float16
)
{}
paddle/fluid/operators/collective/global_scatter_op.cu.cc
浏览文件 @
e93e8a3f
...
...
@@ -259,7 +259,7 @@ struct GlobalScatterProcessGroupFunctor<phi::GPUContext, T> {
}
};
template
<
typename
T
>
template
<
typename
T
,
typename
DeviceContext
>
class
GlobalScatterOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
@@ -281,9 +281,12 @@ class GlobalScatterOpCUDAKernel : public framework::OpKernel<T> {
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
global_scatter
,
ops
::
GlobalScatterOpCUDAKernel
<
float
>
,
ops
::
GlobalScatterOpCUDAKernel
<
double
>
,
ops
::
GlobalScatterOpCUDAKernel
<
int
>
,
ops
::
GlobalScatterOpCUDAKernel
<
int64_t
>
,
ops
::
GlobalScatterOpCUDAKernel
<
plat
::
float16
>
);
PD_REGISTER_STRUCT_KERNEL
(
global_scatter
,
GPU
,
ALL_LAYOUT
,
ops
::
GlobalScatterOpCUDAKernel
,
float
,
double
,
int
,
int64_t
,
plat
::
float16
)
{}
paddle/fluid/operators/collective/global_scatter_op.h
浏览文件 @
e93e8a3f
...
...
@@ -25,7 +25,7 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
template
<
typename
T
,
typename
DeviceContext
>
class
GlobalScatterOpCPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
paddle/fluid/operators/detection/generate_mask_labels_op.cc
浏览文件 @
e93e8a3f
...
...
@@ -328,7 +328,7 @@ std::vector<phi::DenseTensor> SampleMaskForOneImage(
return
res
;
}
template
<
typename
T
>
template
<
typename
T
,
typename
DeviceContext
>
class
GenerateMaskLabelsKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
@@ -533,5 +533,9 @@ REGISTER_OPERATOR(
ops
::
GenerateMaskLabelsOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OP_CPU_KERNEL
(
generate_mask_labels
,
ops
::
GenerateMaskLabelsKernel
<
float
>
);
PD_REGISTER_STRUCT_KERNEL
(
generate_mask_labels
,
CPU
,
ALL_LAYOUT
,
ops
::
GenerateMaskLabelsKernel
,
float
)
{}
paddle/fluid/operators/detection/generate_proposal_labels_op.cc
浏览文件 @
e93e8a3f
...
...
@@ -510,7 +510,7 @@ std::vector<phi::DenseTensor> SampleRoisForOneImage(
return
res
;
}
template
<
typename
T
>
template
<
typename
T
,
typename
DeviceContext
>
class
GenerateProposalLabelsKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
...
...
@@ -811,9 +811,12 @@ REGISTER_OPERATOR(
ops
::
GenerateProposalLabelsOpMaker
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
framework
::
OpDesc
>
,
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OP_CPU_KERNEL
(
generate_proposal_labels
,
ops
::
GenerateProposalLabelsKernel
<
float
>
,
ops
::
GenerateProposalLabelsKernel
<
double
>
);
PD_REGISTER_STRUCT_KERNEL
(
generate_proposal_labels
,
CPU
,
ALL_LAYOUT
,
ops
::
GenerateProposalLabelsKernel
,
float
,
double
)
{}
REGISTER_OP_VERSION
(
generate_proposal_labels
)
.
AddCheckpoint
(
...
...
paddle/fluid/operators/gaussian_random_batch_size_like_op.cc
浏览文件 @
e93e8a3f
...
...
@@ -19,7 +19,7 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
template
<
typename
T
,
typename
DeviceContext
>
class
CPUGaussianRandomBatchSizeLikeKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
...
...
@@ -99,7 +99,10 @@ REGISTER_OPERATOR(
paddle
::
framework
::
EmptyGradOpMaker
<
paddle
::
imperative
::
OpBase
>
,
paddle
::
operators
::
BatchSizeLikeNoNeedBufferVarsInferer
);
REGISTER_OP_CPU_KERNEL
(
gaussian_random_batch_size_like
,
paddle
::
operators
::
CPUGaussianRandomBatchSizeLikeKernel
<
float
>
,
paddle
::
operators
::
CPUGaussianRandomBatchSizeLikeKernel
<
double
>
);
namespace
ops
=
paddle
::
operators
;
PD_REGISTER_STRUCT_KERNEL
(
gaussian_random_batch_size_like
,
CPU
,
ALL_LAYOUT
,
ops
::
CPUGaussianRandomBatchSizeLikeKernel
,
float
,
double
)
{}
paddle/fluid/operators/gaussian_random_batch_size_like_op.cu
浏览文件 @
e93e8a3f
...
...
@@ -47,7 +47,7 @@ struct GaussianGenerator {
}
};
template
<
typename
T
>
template
<
typename
T
,
typename
DeviceContext
>
class
GPUGaussianRandomBatchSizeLikeKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
...
...
@@ -78,9 +78,12 @@ class GPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
}
// namespace operators
}
// namespace paddle
REGISTER_OP_CUDA_KERNEL
(
gaussian_random_batch_size_like
,
paddle
::
operators
::
GPUGaussianRandomBatchSizeLikeKernel
<
paddle
::
platform
::
float16
>
,
paddle
::
operators
::
GPUGaussianRandomBatchSizeLikeKernel
<
float
>
,
paddle
::
operators
::
GPUGaussianRandomBatchSizeLikeKernel
<
double
>
);
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
PD_REGISTER_STRUCT_KERNEL
(
gaussian_random_batch_size_like
,
GPU
,
ALL_LAYOUT
,
ops
::
GPUGaussianRandomBatchSizeLikeKernel
,
float
,
double
,
plat
::
float16
)
{}
paddle/fluid/operators/graph_khop_sampler_op.cc
浏览文件 @
e93e8a3f
...
...
@@ -136,6 +136,10 @@ using CPU = phi::CPUContext;
REGISTER_OPERATOR
(
graph_khop_sampler
,
ops
::
GraphKhopSamplerOP
,
ops
::
GraphKhopSamplerOpMaker
);
REGISTER_OP_CPU_KERNEL
(
graph_khop_sampler
,
ops
::
GraphKhopSamplerOpKernel
<
CPU
,
int32_t
>
,
ops
::
GraphKhopSamplerOpKernel
<
CPU
,
int64_t
>
);
PD_REGISTER_STRUCT_KERNEL
(
graph_khop_sampler
,
CPU
,
ALL_LAYOUT
,
ops
::
GraphKhopSamplerOpKernel
,
int32_t
,
int64_t
)
{}
paddle/fluid/operators/graph_khop_sampler_op.cu
浏览文件 @
e93e8a3f
...
...
@@ -412,7 +412,7 @@ void ReindexFunc(const framework::ExecutionContext& ctx,
thrust
::
raw_pointer_cast
(
values
.
data
()));
}
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
,
typename
DeviceContext
>
class
GraphKhopSamplerOpCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
@@ -668,6 +668,9 @@ class GraphKhopSamplerOpCUDAKernel : public framework::OpKernel<T> {
using
CUDA
=
phi
::
GPUContext
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
graph_khop_sampler
,
ops
::
GraphKhopSamplerOpCUDAKernel
<
CUDA
,
int32_t
>
,
ops
::
GraphKhopSamplerOpCUDAKernel
<
CUDA
,
int64_t
>
);
PD_REGISTER_STRUCT_KERNEL
(
graph_khop_sampler
,
GPU
,
ALL_LAYOUT
,
ops
::
GraphKhopSamplerOpCUDAKernel
,
int32_t
,
int64_t
)
{}
paddle/fluid/operators/graph_khop_sampler_op.h
浏览文件 @
e93e8a3f
...
...
@@ -191,7 +191,7 @@ void SampleNeighbors(const T* src,
}
}
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
,
typename
DeviceContext
>
class
GraphKhopSamplerOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
paddle/fluid/operators/group_norm_op.cc
浏览文件 @
e93e8a3f
...
...
@@ -12,8 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/group_norm_op.h"
#include <memory>
#include <string>
#include <unordered_map>
...
...
paddle/fluid/operators/group_norm_op.cu
已删除
100644 → 0
浏览文件 @
aac8da90
此差异已折叠。
点击以展开。
paddle/fluid/operators/group_norm_op.h
已删除
100644 → 0
浏览文件 @
aac8da90
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <array>
#include <numeric>
#include <string>
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
namespace
paddle
{
namespace
operators
{
using
DataLayout
=
phi
::
DataLayout
;
template
<
typename
DeviceContext
,
typename
T
>
class
GroupNormKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
std
::
string
data_layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
const
DataLayout
data_layout
=
phi
::
StringToDataLayout
(
data_layout_str
);
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
*
scale
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"Scale"
);
auto
*
bias
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"Bias"
);
auto
*
x
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"X"
);
auto
*
y
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"Y"
);
auto
*
mean
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"Mean"
);
auto
*
var
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
"Variance"
);
const
auto
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
const
auto
x_dims
=
x
->
dims
();
const
int
C
=
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
const
int
group_size
=
C
/
groups
;
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
var
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
y_data
=
y
->
data
<
T
>
();
auto
*
mean_data
=
mean
->
data
<
T
>
();
auto
*
var_data
=
var
->
data
<
T
>
();
const
T
*
scale_data
=
nullptr
;
if
(
scale
)
scale_data
=
scale
->
data
<
T
>
();
const
T
*
bias_data
=
nullptr
;
if
(
bias
)
bias_data
=
bias
->
data
<
T
>
();
int
imsize
=
1
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
for
(
int
i
=
2
;
i
<
x_dims
.
size
();
++
i
)
{
imsize
*=
x_dims
[
i
];
}
}
else
{
for
(
int
i
=
1
;
i
<
x_dims
.
size
()
-
1
;
++
i
)
{
imsize
*=
x_dims
[
i
];
}
}
auto
*
iter_x_data
=
x_data
;
auto
*
iter_y_data
=
y_data
;
for
(
int
bid
=
0
;
bid
<
x_dims
[
0
];
bid
++
)
{
for
(
int
gid
=
0
;
gid
<
groups
;
gid
++
)
{
const
int64_t
M
=
8
;
std
::
array
<
T
,
M
>
x_mean_arr
;
std
::
array
<
T
,
M
>
x_var_arr
;
std
::
fill
(
x_mean_arr
.
begin
(),
x_mean_arr
.
end
(),
T
(
0
));
std
::
fill
(
x_var_arr
.
begin
(),
x_var_arr
.
end
(),
T
(
0
));
T
x_mean
=
0
,
x_var
=
0
;
int
number
=
std
::
min
(
group_size
,
static_cast
<
int
>
(
C
-
gid
*
group_size
));
auto
*
tmp_x
=
iter_x_data
;
auto
*
x_src_data
=
iter_x_data
;
auto
*
tmp_y
=
iter_y_data
;
auto
*
y_src_data
=
iter_y_data
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
for
(
int
cid
=
0
;
cid
<
number
;
cid
++
)
{
int
imid
;
for
(
imid
=
0
;
imid
<
imsize
-
(
imsize
%
M
);
imid
+=
M
,
iter_x_data
+=
M
)
{
// TODO(gaoxiang): Because AVX/AVX2/AVX512 can not directly used
// in template class/function, before we complete high
// performance cpu vector extension, temporarily unrolling
// loop to get high precision and performance
x_mean_arr
[
0
]
+=
iter_x_data
[
0
];
x_var_arr
[
0
]
+=
iter_x_data
[
0
]
*
iter_x_data
[
0
];
x_mean_arr
[
1
]
+=
iter_x_data
[
1
];
x_var_arr
[
1
]
+=
iter_x_data
[
1
]
*
iter_x_data
[
1
];
x_mean_arr
[
2
]
+=
iter_x_data
[
2
];
x_var_arr
[
2
]
+=
iter_x_data
[
2
]
*
iter_x_data
[
2
];
x_mean_arr
[
3
]
+=
iter_x_data
[
3
];
x_var_arr
[
3
]
+=
iter_x_data
[
3
]
*
iter_x_data
[
3
];
x_mean_arr
[
4
]
+=
iter_x_data
[
4
];
x_var_arr
[
4
]
+=
iter_x_data
[
4
]
*
iter_x_data
[
4
];
x_mean_arr
[
5
]
+=
iter_x_data
[
5
];
x_var_arr
[
5
]
+=
iter_x_data
[
5
]
*
iter_x_data
[
5
];
x_mean_arr
[
6
]
+=
iter_x_data
[
6
];
x_var_arr
[
6
]
+=
iter_x_data
[
6
]
*
iter_x_data
[
6
];
x_mean_arr
[
7
]
+=
iter_x_data
[
7
];
x_var_arr
[
7
]
+=
iter_x_data
[
7
]
*
iter_x_data
[
7
];
}
x_mean
=
std
::
accumulate
(
x_mean_arr
.
cbegin
(),
x_mean_arr
.
cend
(),
x_mean
);
x_var
=
std
::
accumulate
(
x_var_arr
.
cbegin
(),
x_var_arr
.
cend
(),
x_var
);
std
::
fill
(
x_mean_arr
.
begin
(),
x_mean_arr
.
end
(),
T
(
0
));
std
::
fill
(
x_var_arr
.
begin
(),
x_var_arr
.
end
(),
T
(
0
));
for
(;
imid
<
imsize
;
imid
++
,
iter_x_data
++
)
{
x_mean
+=
iter_x_data
[
0
];
x_var
+=
iter_x_data
[
0
]
*
iter_x_data
[
0
];
}
}
}
else
{
for
(
int
cid
=
0
;
cid
<
number
;
cid
++
)
{
iter_x_data
=
tmp_x
+
cid
;
int
imid
;
for
(
imid
=
0
;
imid
<
imsize
-
(
imsize
%
M
);
imid
+=
M
,
iter_x_data
+=
M
*
C
)
{
// TODO(gaoxiang): Because AVX/AVX2/AVX512 can not directly used
// in template class/function, before we complete high
// performance cpu vector extension, temporarily unrolling
// loop to get high precision and performance
x_mean_arr
[
0
]
+=
iter_x_data
[
0
*
C
];
x_var_arr
[
0
]
+=
iter_x_data
[
0
*
C
]
*
iter_x_data
[
0
*
C
];
x_mean_arr
[
1
]
+=
iter_x_data
[
1
*
C
];
x_var_arr
[
1
]
+=
iter_x_data
[
1
*
C
]
*
iter_x_data
[
1
*
C
];
x_mean_arr
[
2
]
+=
iter_x_data
[
2
*
C
];
x_var_arr
[
2
]
+=
iter_x_data
[
2
*
C
]
*
iter_x_data
[
2
*
C
];
x_mean_arr
[
3
]
+=
iter_x_data
[
3
*
C
];
x_var_arr
[
3
]
+=
iter_x_data
[
3
*
C
]
*
iter_x_data
[
3
*
C
];
x_mean_arr
[
4
]
+=
iter_x_data
[
4
*
C
];
x_var_arr
[
4
]
+=
iter_x_data
[
4
*
C
]
*
iter_x_data
[
4
*
C
];
x_mean_arr
[
5
]
+=
iter_x_data
[
5
*
C
];
x_var_arr
[
5
]
+=
iter_x_data
[
5
*
C
]
*
iter_x_data
[
5
*
C
];
x_mean_arr
[
6
]
+=
iter_x_data
[
6
*
C
];
x_var_arr
[
6
]
+=
iter_x_data
[
6
*
C
]
*
iter_x_data
[
6
*
C
];
x_mean_arr
[
7
]
+=
iter_x_data
[
7
*
C
];
x_var_arr
[
7
]
+=
iter_x_data
[
7
*
C
]
*
iter_x_data
[
7
*
C
];
}
x_mean
=
std
::
accumulate
(
x_mean_arr
.
cbegin
(),
x_mean_arr
.
cend
(),
x_mean
);
x_var
=
std
::
accumulate
(
x_var_arr
.
cbegin
(),
x_var_arr
.
cend
(),
x_var
);
std
::
fill
(
x_mean_arr
.
begin
(),
x_mean_arr
.
end
(),
T
(
0
));
std
::
fill
(
x_var_arr
.
begin
(),
x_var_arr
.
end
(),
T
(
0
));
for
(;
imid
<
imsize
;
imid
++
,
iter_x_data
+=
C
)
{
x_mean
+=
iter_x_data
[
0
];
x_var
+=
iter_x_data
[
0
]
*
iter_x_data
[
0
];
}
}
iter_x_data
=
tmp_x
+
group_size
;
}
x_mean
/=
number
*
imsize
;
x_var
/=
number
*
imsize
;
x_var
=
std
::
max
(
x_var
-
x_mean
*
x_mean
,
T
(
0
));
T
var_inv
=
T
(
1
)
/
std
::
sqrt
(
x_var
+
epsilon
);
mean_data
[
bid
*
groups
+
gid
]
=
x_mean
;
var_data
[
bid
*
groups
+
gid
]
=
x_var
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
for
(
int
cid
=
0
;
cid
<
number
;
cid
++
)
{
for
(
int
imid
=
0
;
imid
<
imsize
;
imid
++
,
tmp_x
++
,
iter_y_data
++
)
{
T
val
=
(
tmp_x
[
0
]
-
x_mean
)
*
var_inv
;
if
(
scale_data
)
val
*=
scale_data
[
gid
*
group_size
+
cid
];
if
(
bias_data
)
val
+=
bias_data
[
gid
*
group_size
+
cid
];
iter_y_data
[
0
]
=
val
;
}
}
}
else
{
for
(
int
cid
=
0
;
cid
<
number
;
cid
++
)
{
tmp_x
=
x_src_data
+
cid
;
iter_y_data
=
y_src_data
+
cid
;
for
(
int
imid
=
0
;
imid
<
imsize
;
imid
++
,
tmp_x
+=
C
,
iter_y_data
+=
C
)
{
T
val
=
(
tmp_x
[
0
]
-
x_mean
)
*
var_inv
;
if
(
scale_data
)
val
*=
scale_data
[
gid
*
group_size
+
cid
];
if
(
bias_data
)
val
+=
bias_data
[
gid
*
group_size
+
cid
];
iter_y_data
[
0
]
=
val
;
}
}
iter_y_data
=
tmp_y
+
group_size
;
}
}
if
(
data_layout
==
DataLayout
::
kNHWC
)
{
iter_x_data
=
x_data
+
(
bid
+
1
)
*
C
*
imsize
;
iter_y_data
=
y_data
+
(
bid
+
1
)
*
C
*
imsize
;
}
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
GroupNormGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
std
::
string
data_layout_str
=
ctx
.
Attr
<
std
::
string
>
(
"data_layout"
);
const
DataLayout
data_layout
=
phi
::
StringToDataLayout
(
data_layout_str
);
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
*
x
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"Y"
);
auto
*
var
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"Variance"
);
auto
*
scale
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"Scale"
);
auto
*
bias
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
"Bias"
);
auto
*
d_y
=
ctx
.
Input
<
phi
::
DenseTensor
>
(
framework
::
GradVarName
(
"Y"
));
const
auto
groups
=
ctx
.
Attr
<
int
>
(
"groups"
);
// init output
auto
*
d_x
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
phi
::
DenseTensor
>
(
framework
::
GradVarName
(
"Bias"
));
const
auto
&
x_dims
=
x
->
dims
();
const
int
C
=
(
data_layout
==
DataLayout
::
kNCHW
?
x_dims
[
1
]
:
x_dims
[
x_dims
.
size
()
-
1
]);
const
int
group_size
=
C
/
groups
;
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
phi
::
funcs
::
SetConstant
<
DeviceContext
,
T
>
set_zero
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
d_x_data
=
d_x
->
data
<
T
>
();
auto
*
y_data
=
d_y
->
data
<
T
>
();
auto
*
var_data
=
var
->
data
<
T
>
();
T
*
d_scale_data
=
nullptr
;
if
(
d_scale
)
{
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
d_scale
,
static_cast
<
T
>
(
0
));
d_scale_data
=
d_scale
->
data
<
T
>
();
}
T
*
d_bias_data
=
nullptr
;
if
(
d_bias
)
{
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
set_zero
(
dev_ctx
,
d_bias
,
static_cast
<
T
>
(
0
));
d_bias_data
=
d_bias
->
data
<
T
>
();
}
const
T
*
scale_data
=
nullptr
;
if
(
scale
)
scale_data
=
scale
->
data
<
T
>
();
const
T
*
bias_data
=
nullptr
;
if
(
bias
)
bias_data
=
bias
->
data
<
T
>
();
int
imsize
=
1
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
for
(
int
i
=
2
;
i
<
x_dims
.
size
();
++
i
)
{
imsize
*=
x_dims
[
i
];
}
}
else
{
for
(
int
i
=
1
;
i
<
x_dims
.
size
()
-
1
;
++
i
)
{
imsize
*=
x_dims
[
i
];
}
}
auto
*
iter_x_data
=
x_data
;
auto
*
iter_d_x_data
=
d_x_data
;
auto
*
iter_y_data
=
y_data
;
for
(
int
bid
=
0
;
bid
<
x_dims
[
0
];
bid
++
)
{
for
(
int
gid
=
0
;
gid
<
groups
;
gid
++
)
{
T
x_var
=
var_data
[
bid
*
groups
+
gid
];
T
var_inv
=
1.0
/
sqrt
(
x_var
+
epsilon
);
int
number
=
std
::
min
(
group_size
,
static_cast
<
int
>
(
C
-
gid
*
group_size
));
T
number_inv
=
1.0
/
(
number
*
imsize
);
auto
*
tmp_x
=
iter_x_data
;
auto
*
tmp_y
=
iter_y_data
;
auto
*
tmp_d_x
=
iter_d_x_data
;
auto
*
x_src_data
=
iter_x_data
;
auto
*
y_src_data
=
iter_y_data
;
auto
*
iter_x_data_backup
=
iter_x_data
;
auto
*
iter_y_data_backup
=
iter_y_data
;
auto
*
iter_d_x_data_backup
=
iter_d_x_data
;
T
dp_scale
=
0
,
dp_bias
=
0
;
if
(
data_layout
==
DataLayout
::
kNCHW
)
{
for
(
int
cid
=
0
;
cid
<
number
;
cid
++
)
{
for
(
int
imid
=
0
;
imid
<
imsize
;
imid
++
,
iter_x_data
++
,
iter_y_data
++
)
{
T
val
=
iter_x_data
[
0
];
if
(
bias_data
)
val
-=
bias_data
[
gid
*
group_size
+
cid
];
T
dval
=
iter_y_data
[
0
];
dp_scale
+=
val
*
dval
;
if
(
scale_data
)
dp_bias
+=
dval
*
scale_data
[
gid
*
group_size
+
cid
];
if
(
scale_data
&&
scale_data
[
gid
*
group_size
+
cid
]
!=
0
)
val
/=
scale_data
[
gid
*
group_size
+
cid
];
if
(
d_bias_data
)
d_bias_data
[
gid
*
group_size
+
cid
]
+=
dval
;
if
(
d_scale_data
)
d_scale_data
[
gid
*
group_size
+
cid
]
+=
val
*
dval
;
}
}
for
(
int
cid
=
0
;
cid
<
number
;
cid
++
)
{
for
(
int
imid
=
0
;
imid
<
imsize
;
imid
++
,
iter_d_x_data
++
,
tmp_x
++
,
tmp_y
++
)
{
T
v_y
=
tmp_x
[
0
];
T
dly
=
tmp_y
[
0
];
T
dss
=
dp_scale
;
T
dbs
=
dp_bias
;
T
v_scale
=
1.
,
v_bias
=
0.
;
if
(
scale_data
)
v_scale
=
scale_data
[
gid
*
group_size
+
cid
];
if
(
bias_data
)
v_bias
=
bias_data
[
gid
*
group_size
+
cid
];
v_y
-=
v_bias
;
if
(
v_scale
!=
0
)
v_y
/=
v_scale
;
iter_d_x_data
[
0
]
=
(
dly
*
v_scale
-
number_inv
*
dss
*
v_y
-
number_inv
*
dbs
)
*
var_inv
;
}
}
}
else
{
for
(
int
cid
=
0
;
cid
<
number
;
cid
++
)
{
iter_x_data
=
x_src_data
+
cid
;
iter_y_data
=
y_src_data
+
cid
;
for
(
int
imid
=
0
;
imid
<
imsize
;
imid
++
,
iter_x_data
+=
C
,
iter_y_data
+=
C
)
{
T
val
=
iter_x_data
[
0
];
if
(
bias_data
)
val
-=
bias_data
[
gid
*
group_size
+
cid
];
T
dval
=
iter_y_data
[
0
];
dp_scale
+=
val
*
dval
;
if
(
scale_data
)
dp_bias
+=
dval
*
scale_data
[
gid
*
group_size
+
cid
];
if
(
scale_data
&&
scale_data
[
gid
*
group_size
+
cid
]
!=
0
)
val
/=
scale_data
[
gid
*
group_size
+
cid
];
if
(
d_bias_data
)
d_bias_data
[
gid
*
group_size
+
cid
]
+=
dval
;
if
(
d_scale_data
)
d_scale_data
[
gid
*
group_size
+
cid
]
+=
val
*
dval
;
}
}
for
(
int
cid
=
0
;
cid
<
number
;
cid
++
)
{
tmp_x
=
x_src_data
+
cid
;
tmp_y
=
y_src_data
+
cid
;
iter_d_x_data
=
tmp_d_x
+
cid
;
for
(
int
imid
=
0
;
imid
<
imsize
;
imid
++
,
iter_d_x_data
+=
C
,
tmp_x
+=
C
,
tmp_y
+=
C
)
{
T
v_y
=
tmp_x
[
0
];
T
dly
=
tmp_y
[
0
];
T
dss
=
dp_scale
;
T
dbs
=
dp_bias
;
T
v_scale
=
1.0
,
v_bias
=
0.
;
if
(
scale_data
)
v_scale
=
scale_data
[
gid
*
group_size
+
cid
];
if
(
bias_data
)
v_bias
=
bias_data
[
gid
*
group_size
+
cid
];
v_y
-=
v_bias
;
if
(
v_scale
!=
0
)
v_y
/=
v_scale
;
iter_d_x_data
[
0
]
=
(
dly
*
v_scale
-
number_inv
*
dss
*
v_y
-
number_inv
*
dbs
)
*
var_inv
;
}
}
iter_x_data
=
iter_x_data_backup
+
group_size
;
iter_y_data
=
iter_y_data_backup
+
group_size
;
iter_d_x_data
=
iter_d_x_data_backup
+
group_size
;
}
}
if
(
data_layout
==
DataLayout
::
kNHWC
)
{
iter_x_data
=
x_data
+
(
bid
+
1
)
*
C
*
imsize
;
iter_d_x_data
=
d_x_data
+
(
bid
+
1
)
*
C
*
imsize
;
iter_y_data
=
y_data
+
(
bid
+
1
)
*
C
*
imsize
;
}
}
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/l1_norm_op.cc
浏览文件 @
e93e8a3f
...
...
@@ -91,10 +91,13 @@ REGISTER_OPERATOR(l1_norm,
ops
::
L1NormGradMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
L1NormGradMaker
<
paddle
::
imperative
::
OpBase
>
);
REGISTER_OPERATOR
(
l1_norm_grad
,
ops
::
L1NormGradOp
);
REGISTER_OP_CPU_KERNEL
(
l1_norm
,
ops
::
L1NormKernel
<
phi
::
CPUContext
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
l1_norm_grad
,
ops
::
L1NormGradKernel
<
phi
::
CPUContext
,
float
>
);
REGISTER_OP_CUDA_KERNEL
(
l1_norm
,
ops
::
L1NormKernel
<
phi
::
GPUContext
,
float
>
);
REGISTER_OP_CUDA_KERNEL
(
l1_norm_grad
,
ops
::
L1NormGradKernel
<
phi
::
GPUContext
,
float
>
);
PD_REGISTER_STRUCT_KERNEL
(
l1_norm
,
CPU
,
ALL_LAYOUT
,
ops
::
L1NormKernel
,
float
)
{}
PD_REGISTER_STRUCT_KERNEL
(
l1_norm_grad
,
CPU
,
ALL_LAYOUT
,
ops
::
L1NormGradKernel
,
float
)
{}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_STRUCT_KERNEL
(
l1_norm
,
GPU
,
ALL_LAYOUT
,
ops
::
L1NormKernel
,
float
)
{}
PD_REGISTER_STRUCT_KERNEL
(
l1_norm_grad
,
GPU
,
ALL_LAYOUT
,
ops
::
L1NormGradKernel
,
float
)
{}
#endif
paddle/fluid/operators/l1_norm_op.h
浏览文件 @
e93e8a3f
...
...
@@ -21,7 +21,7 @@ namespace paddle {
namespace
operators
{
// Out = sum(abs(X))
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
,
typename
DeviceContext
>
class
L1NormKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
...
...
@@ -39,7 +39,7 @@ class L1NormKernel : public framework::OpKernel<T> {
};
// dX = dout * sign(X)
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
,
typename
DeviceContext
>
class
L1NormGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录