提交 e9325ea8 编写于 作者: C chengduo 提交者: GitHub

Merge pull request #4676 from chengduoZH/fix_pool_op_doc_and_class_declarations

Fix pool op doc and class declarations
...@@ -112,7 +112,9 @@ set(DEPS_OPS ...@@ -112,7 +112,9 @@ set(DEPS_OPS
cond_op cond_op
cross_entropy_op cross_entropy_op
softmax_with_cross_entropy_op softmax_with_cross_entropy_op
sum_op) sum_op
pool_op
pool_with_index_op)
op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc
...@@ -121,6 +123,8 @@ op_library(cond_op SRCS cond_op.cc DEPS framework_proto tensor operator net_op) ...@@ -121,6 +123,8 @@ op_library(cond_op SRCS cond_op.cc DEPS framework_proto tensor operator net_op)
op_library(cross_entropy_op DEPS cross_entropy) op_library(cross_entropy_op DEPS cross_entropy)
op_library(softmax_with_cross_entropy_op DEPS cross_entropy softmax) op_library(softmax_with_cross_entropy_op DEPS cross_entropy softmax)
op_library(sum_op DEPS net_op) op_library(sum_op DEPS net_op)
op_library(pool_op DEPS pooling)
op_library(pool_with_index_op DEPS pooling)
list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS}) list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS})
foreach(src ${GENERAL_OPS}) foreach(src ${GENERAL_OPS})
......
if(WITH_GPU) if(WITH_GPU)
nv_library(math_function SRCS math_function.cc math_function.cu im2col.cc im2col.cu pooling.cc pooling.cu DEPS cblas device_context operator) nv_library(math_function SRCS math_function.cc math_function.cu im2col.cc im2col.cu DEPS cblas device_context operator)
nv_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor) nv_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor)
nv_library(softmax SRCS softmax.cc softmax.cu DEPS operator) nv_library(softmax SRCS softmax.cc softmax.cu DEPS operator)
nv_library(cross_entropy SRCS cross_entropy.cc cross_entropy.cu DEPS operator) nv_library(cross_entropy SRCS cross_entropy.cc cross_entropy.cu DEPS operator)
nv_library(pooling SRCS pooling.cc pooling.cu DEPS device_context)
nv_library(vol2col SRCS vol2col.cc vol2col.cu DEPS device_context) nv_library(vol2col SRCS vol2col.cc vol2col.cu DEPS device_context)
else() else()
cc_library(math_function SRCS math_function.cc im2col.cc pooling.cc DEPS cblas device_context operator) cc_library(math_function SRCS math_function.cc im2col.cc DEPS cblas device_context operator)
cc_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor) cc_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor)
cc_library(softmax SRCS softmax.cc DEPS operator) cc_library(softmax SRCS softmax.cc DEPS operator)
cc_library(cross_entropy SRCS cross_entropy.cc DEPS operator) cc_library(cross_entropy SRCS cross_entropy.cc DEPS operator)
cc_library(pooling SRCS pooling.cc DEPS device_context)
cc_library(vol2col SRCS vol2col.cc DEPS device_context) cc_library(vol2col SRCS vol2col.cc DEPS device_context)
endif() endif()
......
...@@ -22,157 +22,181 @@ int OutputSizePool(int input_size, int filter_size, int padding, int stride) { ...@@ -22,157 +22,181 @@ int OutputSizePool(int input_size, int filter_size, int padding, int stride) {
return output_size; return output_size;
} }
class PoolOp : public framework::OperatorWithKernel { void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
public: PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
using framework::OperatorWithKernel::OperatorWithKernel; PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Out(Output) of Pooling should not be null.");
protected:
void InferShape(framework::InferShapeContext *ctx) const override { auto in_x_dims = ctx->GetInputDim("X");
PADDLE_ENFORCE(ctx->HasInput("X"),
"X(Input) of Pooling should not be null."); std::string pooling_type = ctx->Attrs().Get<std::string>("poolingType");
PADDLE_ENFORCE(ctx->HasOutput("Out"), std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
"Out(Output) of Pooling should not be null."); std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
auto in_x_dims = ctx->GetInputDim("X");
PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
std::string pooling_type = ctx->Attrs().Get<std::string>("poolingType"); "Pooling intput should be 4-D or 5-D tensor.");
std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides"); if (ctx->Attrs().Get<bool>("globalPooling")) {
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings"); ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
for (size_t i = 0; i < ksize.size(); ++i)
PADDLE_ENFORCE(pooling_type == "max" || pooling_type == "avg", ksize[i] = static_cast<int>(in_x_dims[i + 2]);
"pooling_type should be 'max' or 'avg'");
PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
"Pooling intput should be 4-D or 5-D");
if (ctx->Attrs().Get<bool>("globalPooling")) {
ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
for (size_t i = 0; i < ksize.size(); ++i)
ksize[i] = static_cast<int>(in_x_dims[i + 2]);
}
PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
"Input size and Pooling size should be consistent.");
PADDLE_ENFORCE(ksize.size() == 2 || ksize.size() == 3,
"Pooling size should be 2 elements. or 3 elements.");
PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
"strides size and pooling size should be the same.");
PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
"paddings size and pooling size should be the same.");
std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
for (size_t i = 0; i < ksize.size(); ++i) {
output_shape.push_back(
OutputSizePool(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
}
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
} }
};
PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
class PoolOpGrad : public framework::OperatorWithKernel { "Input size and pooling size should be consistent.");
public: PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
using framework::OperatorWithKernel::OperatorWithKernel; "Strides size and pooling size should be the same.");
PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
protected: "Paddings size and pooling size should be the same.");
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
"X(Input) of Pooling should not be null."); for (size_t i = 0; i < ksize.size(); ++i) {
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), output_shape.push_back(
"Input@Grad of Pooling should not be null."); OutputSizePool(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
} }
}; ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
}
class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
public: void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const {
Pool2dOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
: OpProtoAndCheckerMaker(proto, op_checker) { PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
AddInput( "Input(X@GRAD) should not be null.");
"X", ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
"The input tensor of pooling operator. " }
"The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of feature."); Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto,
AddOutput("Out", framework::OpAttrChecker *op_checker)
"The output tensor of pooling operator." : OpProtoAndCheckerMaker(proto, op_checker) {
"The format of output tensor is also NCHW."); AddInput(
"X",
AddAttr<std::string>("poolingType", "(Tensor) The input tensor of pooling operator. "
"PoolingType of pooling operator." "The format of input tensor is NCHW. Where N is batch size, C is the "
"Str constant equal to 'max' or 'avg'.") "number of channels, H and W is the height and width of feature.");
.InEnum({"max", "avg"}); AddOutput("Out",
AddAttr<std::vector<int>>( "(Tensor) The output tensor of pooling operator."
"ksize", "The format of output tensor is also NCHW."
"Pooling size(depth, height, width) of pooling operator." "Where N is batch size, C is "
"If globalPooling = true, ksize is ignored and need not be " "the number of channels, H and W is the height and "
"specified."); // TODO(Add checker) "width of feature.");
AddAttr<bool>(
"globalPooling", AddAttr<std::string>("poolingType",
"Whether to use the globalPooling." "PoolingType of pooling operator."
"Bool constant equal to false or true." "Str constant equal to 'max' or 'avg'.")
"Default false." .InEnum({"max", "avg"});
"If globalPooling = true, ksize is ignored and need not be specified.")
.SetDefault(false); AddAttr<std::vector<int>>(
AddAttr<std::vector<int>>("strides", "ksize",
"Strides(height, width) of pooling operator." "The pooling window size(height, width) of pooling operator."
"Default {1,1}") "If globalPooling = true, ksize is ignored and need not be "
.SetDefault({1, 1}); // TODO(Add checker) "specified."); // TODO(Chengduo): Add checker. (Currently,
AddAttr<std::vector<int>>("paddings", // TypedAttrChecker don't support vector type.)
"Paddings(height, width) of pooling operator." AddAttr<bool>(
"Default {0,0}.") "globalPooling",
.SetDefault({0, 0}); // TODO(Add checker) "Whether to use the globalPooling."
AddComment(R"DOC( "Bool constant equal to false or true."
"Default false."
"If globalPooling = true, ksize is ignored and need not be specified.")
.SetDefault(false);
AddAttr<std::vector<int>>("strides",
"The strides(height, width) of pooling window."
"Default {1,1}.")
.SetDefault({1, 1}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddAttr<std::vector<int>>("paddings",
"The zero padding(height, width) size on both sides"
"Default {0,0}.")
.SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddComment(R"DOC(
The pooling2d operation calculates the output based on The pooling2d operation calculates the output based on
the input, poolingType and ksize, strides, paddings parameters. the input, poolingType and ksize, strides, paddings parameters.
Input(X) and output(Out) are in NCHW format. Where N is batch size, C is the
number of channels, H and W is the height and width of feature.
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different.
Example:
Input:
X shape: (N, C, H_in, W_in)
Output:
Out shape: (N, C, H_out, W_out)
Mask shape: (N, C, H_out, W_out)
where
H_out = (H_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
W_out = (W_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
)DOC"); )DOC");
} }
};
Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto,
class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker { framework::OpAttrChecker *op_checker)
public: : OpProtoAndCheckerMaker(proto, op_checker) {
Pool3dOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) AddInput(
: OpProtoAndCheckerMaker(proto, op_checker) { "X",
AddInput("X", "(Tensor) The input tensor of pooling operator. "
"The input tensor of pooling operator. " "The format of input tensor is NCDHW. Where N is batch size, C is "
"The format of input tensor is NCDHW. Where N is batch size, C is " "the number of channels, D, H and W is the depth, height and width of "
"the " "feature.");
"number of channels, D, H and W is the depth, height and width of " AddOutput("Out",
"feature."); "(Tensor) The output tensor of pooling operator."
AddOutput("Out", "The format of output tensor is also NCDHW."
"The output tensor of pooling operator." "Where N is batch size, C is "
"The format of output tensor is also NCDHW."); "the number of channels, D, H and W is the depth, height and "
"width of feature.");
AddAttr<std::string>("poolingType",
"PoolingType of pooling operator." AddAttr<std::string>("poolingType",
"str constant equal to 'max' or 'avg'.") "PoolingType of pooling operator."
.InEnum({"max", "avg"}); "Str constant equal to 'max' or 'avg'.")
AddAttr<std::vector<int>>( .InEnum({"max", "avg"});
"ksize",
"Pooling size(depth, height, width) of pooling operator." AddAttr<std::vector<int>>(
"If globalPooling = true, ksize is ignored and need not be " "ksize",
"specified."); // TODO(Add checker) "The pooling window size(depth, height, width) of pooling operator."
AddAttr<bool>( "If globalPooling = true, ksize is ignored and need not be "
"globalPooling", "specified."); // TODO(Chengduo): Add checker. (Currently,
"Whether to use the globalPooling." // TypedAttrChecker don't support vector type.)
"Bool constant equal to false or true." AddAttr<bool>(
"Default false." "globalPooling",
"If globalPooling = true, ksize is ignored and need not be specified.") "Whether to use the globalPooling."
.SetDefault(false); "Bool constant equal to false or true."
AddAttr<std::vector<int>>( "Default false."
"strides", "If globalPooling = true, ksize is ignored and need not be specified.")
"Strides(depth, height, width) of pooling operator." .SetDefault(false);
"Default {1,1,1}.") AddAttr<std::vector<int>>("strides",
.SetDefault({1, 1, 1}); // TODO(Add checker) "Strides(depth, height, width) of pooling operator."
AddAttr<std::vector<int>>( "Default {1,1,1}.")
"paddings", .SetDefault({1, 1, 1}); // TODO(Chengduo): Add checker. (Currently,
"Paddings(depth, height, width) of pooling operator." // TypedAttrChecker don't support vector type.)
"Default {0,0,0}.") AddAttr<std::vector<int>>(
.SetDefault({0, 0, 0}); // TODO(Add checker) "paddings",
AddComment(R"DOC( "Paddings(depth, height, width) of pooling operator."
"Default {0,0,0}.")
.SetDefault({0, 0, 0}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.)
AddComment(R"DOC(
The pooling3d operation calculates the output based on The pooling3d operation calculates the output based on
the input, poolingType and ksize, strides, paddings parameters. the input, poolingType and ksize, strides, paddings parameters.
Input(X) and output(Out) are in NCDHW format. Where N is batch
size, C is the number of channels, D, H and W is the depth, height and
width of feature. Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively.
The input(X) size and output(Out) size may be different.
Example:
Input:
X shape: (N, C, D_in, H_in, W_in)
Output:
Out shape: (N, C, D_out, H_out, W_out)
Mask shape: (N, C, D_out, H_out, W_out)
where
D_out = (D_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
H_out = (H_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
W_out = (W_in - ksize[2] + 2 * paddings[2]) / strides[2] + 1;
)DOC"); )DOC");
} }
};
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
......
...@@ -24,6 +24,34 @@ namespace operators { ...@@ -24,6 +24,34 @@ namespace operators {
using Tensor = framework::Tensor; using Tensor = framework::Tensor;
class PoolOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override;
};
class PoolOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override;
};
class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Pool2dOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker);
};
class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker {
public:
Pool3dOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker);
};
template <typename Place, typename T> template <typename Place, typename T>
class PoolKernel : public framework::OpKernel<T> { class PoolKernel : public framework::OpKernel<T> {
public: public:
......
...@@ -43,7 +43,7 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel { ...@@ -43,7 +43,7 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings"); std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5, PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
"Pooling intput should be 4-D or 5-D"); "Pooling intput should be 4-D or 5-D tensor.");
if (ctx->Attrs().Get<bool>("globalPooling")) { if (ctx->Attrs().Get<bool>("globalPooling")) {
ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2); ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
...@@ -52,7 +52,7 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel { ...@@ -52,7 +52,7 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
} }
PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U, PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
"Intput size and pooling size should be consistent."); "Input size and pooling size should be consistent.");
PADDLE_ENFORCE_EQ(ksize.size(), strides.size(), PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
"Strides size and pooling size should be the same."); "Strides size and pooling size should be the same.");
PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(), PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
...@@ -74,6 +74,7 @@ class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel { ...@@ -74,6 +74,7 @@ class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
protected: protected:
void InferShape(framework::InferShapeContext *ctx) const override { void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Mask"), "Input(Mask) must not be null.");
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null."); PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
"Input(X@GRAD) should not be null."); "Input(X@GRAD) should not be null.");
...@@ -88,17 +89,17 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -88,17 +89,17 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput( AddInput(
"X", "X",
"The input tensor of pooling operator. " "(Tensor) The input tensor of pooling operator. "
"The format of input tensor is NCHW. Where N is batch size, C is the " "The format of input tensor is NCHW. Where N is batch size, C is the "
"number of channels, H and W is the height and width of image."); "number of channels, H and W is the height and width of image.");
AddOutput("Out", AddOutput("Out",
"The output tensor of pooling operator." "(Tensor) The output tensor of pooling operator."
"The format of output tensor is also NCHW." "The format of output tensor is also NCHW."
"Where N is batch size, C is " "Where N is batch size, C is "
"the number of channels, H and W is the height and " "the number of channels, H and W is the height and "
"width of image."); "width of image.");
AddOutput("Mask", AddOutput("Mask",
"The Mask tensor of pooling operator." "(Tensor) The Mask tensor of pooling operator."
"The format of output tensor is also NCHW." "The format of output tensor is also NCHW."
"Where N is batch size, C is the number of channels, H and W " "Where N is batch size, C is the number of channels, H and W "
"is the height and width of image." "is the height and width of image."
...@@ -106,7 +107,7 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -106,7 +107,7 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<std::vector<int>>( AddAttr<std::vector<int>>(
"ksize", "ksize",
"The pooling size(height, width) of pooling operator." "The pooling window size(height, width) of pooling operator."
"If globalPooling = true, ksize is ignored and need not be " "If globalPooling = true, ksize is ignored and need not be "
"specified."); // TODO(Chengduo): Add checker. (Currently, "specified."); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
...@@ -118,13 +119,14 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -118,13 +119,14 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
"If globalPooling = true, ksize is ignored and need not be specified.") "If globalPooling = true, ksize is ignored and need not be specified.")
.SetDefault(false); .SetDefault(false);
AddAttr<std::vector<int>>("strides", AddAttr<std::vector<int>>("strides",
"Strides(height, width) of pooling operator." "The strides(height, width) of pooling window."
"Default {1,1}.") "Default {1,1}.")
.SetDefault({1, 1}); // TODO(Chengduo): Add checker. (Currently, .SetDefault({1, 1}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
AddAttr<std::vector<int>>("paddings", AddAttr<std::vector<int>>(
"Paddings(height, width) of pooling operator." "paddings",
"Default {0,0}.") "The zero padding(height, width) size on both sides"
"Default {0,0}.")
.SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently, .SetDefault({0, 0}); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
...@@ -135,6 +137,17 @@ output(Out, Mask) are in NCHW format. Where N is batch size, C is the ...@@ -135,6 +137,17 @@ output(Out, Mask) are in NCHW format. Where N is batch size, C is the
number of channels, H and W is the height and width of feature. number of channels, H and W is the height and width of feature.
Parameters(ksize, strides, paddings) are two elements. Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively. These two elements represent height and width, respectively.
The input(X) size and output(Out, Mask) size may be different.
Example:
Input:
X shape: (N, C, H_in, W_in)
Output:
Out shape: (N, C, H_out, W_out)
Mask shape: (N, C, H_out, W_out)
where
H_out = (H_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
W_out = (W_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
)DOC"); )DOC");
} }
}; };
...@@ -146,18 +159,18 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -146,18 +159,18 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput( AddInput(
"X", "X",
"The input tensor of pooling operator. " "(Tensor) The input tensor of pooling operator. "
"The format of input tensor is NCDHW. Where N is batch size, C is " "The format of input tensor is NCDHW. Where N is batch size, C is "
"the number of channels, D, H and W is the depth, height and width of " "the number of channels, D, H and W is the depth, height and width of "
"image."); "image.");
AddOutput("Out", AddOutput("Out",
"The output tensor of pooling operator." "(Tensor) The output tensor of pooling operator."
"The format of output tensor is also NCDHW." "The format of output tensor is also NCDHW."
"Where N is batch size, C is " "Where N is batch size, C is "
"the number of channels, D, H and W is the depth, height and " "the number of channels, D, H and W is the depth, height and "
"width of image."); "width of image.");
AddOutput("Mask", AddOutput("Mask",
"The Mask tensor of pooling operator." "(Tensor) The Mask tensor of pooling operator."
"The format of output tensor is also NCDHW." "The format of output tensor is also NCDHW."
"Where N is batch size, C is the number of channels, D, H and W " "Where N is batch size, C is the number of channels, D, H and W "
"is the depth, height and width of image." "is the depth, height and width of image."
...@@ -165,7 +178,7 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -165,7 +178,7 @@ class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<std::vector<int>>( AddAttr<std::vector<int>>(
"ksize", "ksize",
"The pooling size(depth, height, width) of pooling operator." "The pooling window size(depth, height, width) of pooling operator."
"If globalPooling = true, ksize is ignored and need not be " "If globalPooling = true, ksize is ignored and need not be "
"specified."); // TODO(Chengduo): Add checker. (Currently, "specified."); // TODO(Chengduo): Add checker. (Currently,
// TypedAttrChecker don't support vector type.) // TypedAttrChecker don't support vector type.)
...@@ -196,6 +209,18 @@ Input(X) and output(Out, Mask) are in NCDHW format. Where N is batch ...@@ -196,6 +209,18 @@ Input(X) and output(Out, Mask) are in NCDHW format. Where N is batch
size, C is the number of channels, D, H and W is the depth, height and size, C is the number of channels, D, H and W is the depth, height and
width of feature. Parameters(ksize, strides, paddings) are three elements. width of feature. Parameters(ksize, strides, paddings) are three elements.
These three elements represent depth, height and width, respectively. These three elements represent depth, height and width, respectively.
The input(X) size and output(Out, Mask) size may be different.
Example:
Input:
X shape: (N, C, D_in, H_in, W_in)
Output:
Out shape: (N, C, D_out, H_out, W_out)
Mask shape: (N, C, D_out, H_out, W_out)
where
D_out = (D_in - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
H_out = (H_in - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
W_out = (W_in - ksize[2] + 2 * paddings[2]) / strides[2] + 1;
)DOC"); )DOC");
} }
}; };
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册