未验证 提交 e92f770c 编写于 作者: L lilong12 提交者: GitHub

Add collective ops (reduce) (#26340)

上级 bdb80550
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/c_reduce_op.h"
namespace paddle {
namespace operators {
class CReduceMaxOpMaker : public CReduceOpMaker {
protected:
std::string GetName() const override { return "Max"; }
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_WITHOUT_GRADIENT(c_reduce_max, ops::CReduceOp,
ops::CReduceMaxOpMaker);
REGISTER_OP_CPU_KERNEL(c_reduce_max,
ops::CReduceOpCPUKernel<ops::kRedMax, float>,
ops::CReduceOpCPUKernel<ops::kRedMax, double>,
ops::CReduceOpCPUKernel<ops::kRedMax, int>,
ops::CReduceOpCPUKernel<ops::kRedMax, int64_t>,
ops::CReduceOpCPUKernel<ops::kRedMax, plat::float16>);
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/c_reduce_op.h"
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(c_reduce_max,
ops::CReduceOpCUDAKernel<ops::kRedMax, float>,
ops::CReduceOpCUDAKernel<ops::kRedMax, double>,
ops::CReduceOpCUDAKernel<ops::kRedMax, int>,
ops::CReduceOpCUDAKernel<ops::kRedMax, int64_t>,
ops::CReduceOpCUDAKernel<ops::kRedMax, plat::float16>)
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/c_reduce_op.h"
namespace paddle {
namespace operators {
class CReduceMinOpMaker : public CReduceOpMaker {
protected:
std::string GetName() const override { return "Min"; }
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_WITHOUT_GRADIENT(c_reduce_min, ops::CReduceOp,
ops::CReduceMinOpMaker);
REGISTER_OP_CPU_KERNEL(c_reduce_min,
ops::CReduceOpCPUKernel<ops::kRedMin, float>,
ops::CReduceOpCPUKernel<ops::kRedMin, double>,
ops::CReduceOpCPUKernel<ops::kRedMin, int>,
ops::CReduceOpCPUKernel<ops::kRedMin, int64_t>,
ops::CReduceOpCPUKernel<ops::kRedMin, plat::float16>);
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/c_reduce_op.h"
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(c_reduce_min,
ops::CReduceOpCUDAKernel<ops::kRedMin, float>,
ops::CReduceOpCUDAKernel<ops::kRedMin, double>,
ops::CReduceOpCUDAKernel<ops::kRedMin, int>,
ops::CReduceOpCUDAKernel<ops::kRedMin, int64_t>,
ops::CReduceOpCUDAKernel<ops::kRedMin, plat::float16>)
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/nccl_helper.h"
#endif
namespace paddle {
namespace operators {
enum ReduceType { kRedSum, kRedMax, kRedMin, kRedProd };
class CReduceOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}
};
template <ReduceType red_type, typename T>
class CReduceOpCPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE_EQ(
true, false,
platform::errors::Unavailable("Unimplemented CReduceOpCPUKernel now."));
}
};
template <ReduceType red_type, typename T>
class CReduceOpCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_NCCL)
auto in = ctx.Input<framework::Tensor>("X");
auto out = ctx.Output<framework::Tensor>("Out");
auto place = ctx.GetPlace();
ncclDataType_t dtype = platform::ToNCCLDataType(in->type());
int64_t numel = in->numel();
const void* sendbuff = in->data<void>();
out->Resize(in->dims());
void* recvbuff = out->mutable_data<T>(place);
int rid = ctx.Attr<int>("ring_id");
int root = ctx.Attr<int>("root_id");
auto comm = platform::NCCLCommContext::Instance().Get(rid, place);
cudaStream_t stream = nullptr;
if (ctx.Attr<bool>("use_calc_stream")) {
auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
stream = static_cast<platform::CUDADeviceContext*>(dev_ctx)->stream();
} else {
stream = comm->stream();
}
ncclRedOp_t nccl_red_type = ncclSum;
switch (red_type) {
case kRedSum:
nccl_red_type = ncclSum;
break;
case kRedMax:
nccl_red_type = ncclMax;
break;
case kRedMin:
nccl_red_type = ncclMin;
break;
case kRedProd:
nccl_red_type = ncclProd;
break;
default:
PADDLE_ENFORCE_EQ(true, false, platform::errors::InvalidArgument(
"red_type must be one of kRedSum, "
"kRedMax, kRedMin, kRedProd."));
}
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclReduce(
sendbuff, recvbuff, numel, dtype, nccl_red_type, root, comm->comm(),
stream));
#else
PADDLE_ENFORCE_EQ(true, false,
platform::errors::Unavailable(
"PaddlePaddle should compile with GPU.."));
#endif
}
};
class CReduceOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("X", "(Tensor), tensor to be reduced.");
AddOutput("Out", "(Tensor) the reduced result.");
AddAttr<int>("ring_id", "(int default 0) communication ring id.")
.SetDefault(0);
AddAttr<int>("root_id", "(int default 0) root id.").SetDefault(0);
AddAttr<bool>(
"use_calc_stream",
"(bool default false) eject CUDA operations to calculation stream.")
.SetDefault(false);
AddComment(string::Sprintf(R"DOC(
CReduce %s Operator
Call collective Reduce with reduce type %s. If input and output are
the same variable, in-place reduce will be used.
)DOC",
GetName(), GetName()));
}
protected:
virtual std::string GetName() const = 0;
};
} // namespace operators
} // namespace paddle
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/c_reduce_op.h"
namespace paddle {
namespace operators {
class CReduceProdOpMaker : public CReduceOpMaker {
protected:
std::string GetName() const override { return "Prod"; }
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_WITHOUT_GRADIENT(c_reduce_prod, ops::CReduceOp,
ops::CReduceProdOpMaker);
REGISTER_OP_CPU_KERNEL(c_reduce_prod,
ops::CReduceOpCPUKernel<ops::kRedProd, float>,
ops::CReduceOpCPUKernel<ops::kRedProd, double>,
ops::CReduceOpCPUKernel<ops::kRedProd, int>,
ops::CReduceOpCPUKernel<ops::kRedProd, int64_t>,
ops::CReduceOpCPUKernel<ops::kRedProd, plat::float16>)
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/c_reduce_op.h"
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(c_reduce_prod,
ops::CReduceOpCUDAKernel<ops::kRedProd, float>,
ops::CReduceOpCUDAKernel<ops::kRedProd, double>,
ops::CReduceOpCUDAKernel<ops::kRedProd, int>,
ops::CReduceOpCUDAKernel<ops::kRedProd, int64_t>,
ops::CReduceOpCUDAKernel<ops::kRedProd, plat::float16>)
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/c_reduce_op.h"
namespace paddle {
namespace operators {
class CReduceSumOpMaker : public CReduceOpMaker {
protected:
std::string GetName() const override { return "Sum"; }
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_WITHOUT_GRADIENT(c_reduce_sum, ops::CReduceOp,
ops::CReduceSumOpMaker);
REGISTER_OP_CPU_KERNEL(c_reduce_sum,
ops::CReduceOpCPUKernel<ops::kRedSum, float>,
ops::CReduceOpCPUKernel<ops::kRedSum, double>,
ops::CReduceOpCPUKernel<ops::kRedSum, int>,
ops::CReduceOpCPUKernel<ops::kRedSum, int64_t>,
ops::CReduceOpCPUKernel<ops::kRedSum, plat::float16>)
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/c_reduce_op.h"
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(c_reduce_sum,
ops::CReduceOpCUDAKernel<ops::kRedSum, float>,
ops::CReduceOpCUDAKernel<ops::kRedSum, double>,
ops::CReduceOpCUDAKernel<ops::kRedSum, int>,
ops::CReduceOpCUDAKernel<ops::kRedSum, int64_t>,
ops::CReduceOpCUDAKernel<ops::kRedSum, plat::float16>)
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/c_scatter_op.h"
namespace paddle {
namespace operators {
class CScatterOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "CScatter");
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "CScatter");
int root_id = ctx->Attrs().Get<int>("root");
int ring_id = ctx->Attrs().Get<int>("ring_id");
int nranks = ctx->Attrs().Get<int>("nranks");
PADDLE_ENFORCE_GE(nranks, 2,
platform::errors::InvalidArgument(
"The number of ranks (%d) must be greater than 1 "
"to use collective op (c_scatter op).",
nranks));
PADDLE_ENFORCE_GE(
root_id, 0,
platform::errors::InvalidArgument(
"The root_id (%d) for c_scatter_op must be non-negative.",
root_id));
PADDLE_ENFORCE_GE(
ring_id, 0,
platform::errors::InvalidArgument(
"The ring_id (%d) for c_scatter_op must be non-negative.",
root_id));
framework::DDim dim = ctx->GetInputDim("X");
dim[0] = dim[0] / nranks;
if (dim[0] < 0) dim[0] = -1;
ctx->SetOutputDim("Out", dim);
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}
};
class CScatterOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("X", "(Tensor) tensor to be broadcasted.");
AddOutput("Out", "(Tensor) the result of broadcast.");
AddAttr<int>("ring_id", "(int default 0) nccl communication ring id.")
.SetDefault(0);
AddAttr<int>("root", "(int default 0) root id for broadcasting.")
.SetDefault(0);
AddAttr<int>("nranks", "(int default 1) number of ranks.").SetDefault(0);
AddAttr<bool>(
"use_calc_stream",
"(bool default false) eject CUDA operations to calculation stream.")
.SetDefault(false);
AddComment(R"DOC(
CScatter Operator
Scatter the source to all participators.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_WITHOUT_GRADIENT(c_scatter, ops::CScatterOp, ops::CScatterOpMaker);
REGISTER_OP_CPU_KERNEL(c_scatter, ops::CScatterOpCPUKernel<float>,
ops::CScatterOpCPUKernel<double>,
ops::CScatterOpCPUKernel<int>,
ops::CScatterOpCPUKernel<int64_t>,
ops::CScatterOpCPUKernel<plat::float16>);
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/collective/c_scatter_op.h"
#if defined(PADDLE_WITH_NCCL)
#include "paddle/fluid/platform/collective_helper.h"
#include "paddle/fluid/platform/nccl_helper.h"
#endif
namespace paddle {
namespace operators {
template <typename T>
class CScatterOpCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
#if defined(PADDLE_WITH_NCCL)
auto x = ctx.Input<framework::LoDTensor>("X");
auto out = ctx.Output<framework::LoDTensor>("Out");
int numel = x->numel();
ncclDataType_t dtype = platform::ToNCCLDataType(x->type());
int nranks = ctx.Attr<int>("nranks");
int root_id = ctx.Attr<int>("root");
int ring_id = ctx.Attr<int>("ring_id");
auto place = ctx.GetPlace();
auto comm = platform::NCCLCommContext::Instance().Get(ring_id, place);
PADDLE_ENFORCE_EQ(nranks, comm->nranks(),
platform::errors::InvalidArgument(
"The number of ranks (%d) you set of must "
"be equal to comm->nranks (%d).",
nranks, comm->nranks()));
PADDLE_ENFORCE_GE(
root_id, 0,
platform::errors::InvalidArgument(
"The root_id (%d) for c_scatter_op must be non-negative.",
root_id));
PADDLE_ENFORCE_GE(
ring_id, 0,
platform::errors::InvalidArgument(
"The ring_id (%d) for c_scatter_op must be non-negative.",
ring_id));
cudaStream_t stream = nullptr;
if (ctx.Attr<bool>("use_calc_stream")) {
auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
stream = static_cast<platform::CUDADeviceContext*>(dev_ctx)->stream();
} else {
stream = comm->stream();
}
framework::DDim x_dims = x->dims();
framework::DDim out_dims(x_dims);
framework::Tensor temp;
auto in_data_ptr = x->data<T>();
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclBroadcast(
reinterpret_cast<const void*>(in_data_ptr),
temp.mutable_data<T>(out_dims, place), numel, dtype, root_id,
comm->comm(), stream));
VLOG(3) << "rank " << comm->rank() << " invoke Scatter.";
out_dims[0] = out_dims[0] / nranks;
auto start_index = out_dims[0] * comm->rank();
auto end_index = start_index + out_dims[0];
temp = temp.Slice(start_index, end_index);
temp.Resize(out_dims);
out->mutable_data<T>(out_dims, place);
framework::TensorCopySync(*static_cast<const framework::Tensor*>(&temp),
place, static_cast<framework::Tensor*>(out));
out->Resize(out_dims);
#else
PADDLE_ENFORCE_EQ(
true, false,
platform::errors::Unavailable("PaddlePaddle should compile with GPU."));
#endif
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(c_scatter, ops::CScatterOpCUDAKernel<float>,
ops::CScatterOpCUDAKernel<double>,
ops::CScatterOpCUDAKernel<int>,
ops::CScatterOpCUDAKernel<int64_t>,
ops::CScatterOpCUDAKernel<plat::float16>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename T>
class CScatterOpCPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
PADDLE_ENFORCE_EQ(true, false,
platform::errors::Unavailable(
"Unimplemented cpu kernel for CScatterOp."));
}
};
} // namespace operators
} // namespace paddle
......@@ -55,6 +55,8 @@ if(NOT WITH_GPU OR WIN32)
LIST(REMOVE_ITEM TEST_OPS test_allgather)
LIST(REMOVE_ITEM TEST_OPS test_allreduce)
LIST(REMOVE_ITEM TEST_OPS test_broadcast)
LIST(REMOVE_ITEM TEST_OPS test_collective_reduce)
LIST(REMOVE_ITEM TEST_OPS test_collective_scatter)
LIST(REMOVE_ITEM TEST_OPS test_reducescatter)
LIST(REMOVE_ITEM TEST_OPS test_reducescatter_api)
endif()
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import argparse
import os
import sys
import signal
import time
import socket
from contextlib import closing
from six import string_types
import math
import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
import paddle.fluid.unique_name as nameGen
from paddle.fluid import core
import unittest
from multiprocessing import Process
import paddle.fluid.layers as layers
from functools import reduce
from test_collective_base import TestCollectiveRunnerBase, runtime_main
class TestCollectiveReduce(TestCollectiveRunnerBase):
def __init__(self):
self.global_ring_id = 0
def get_model(self, main_prog, startup_program):
ring_id = 0
rootid = 1
with fluid.program_guard(main_prog, startup_program):
tindata = layers.data(
name="tindata", shape=[10, 1000], dtype='float32')
toutdata = main_prog.current_block().create_var(
name="outofreduce",
dtype='float32',
type=core.VarDesc.VarType.LOD_TENSOR,
persistable=False,
stop_gradient=False)
main_prog.global_block().append_op(
type="c_reduce_sum",
inputs={'X': tindata},
attrs={'ring_id': ring_id,
'root_id': rootid},
outputs={'Out': toutdata})
main_prog.global_block().append_op(
type="c_sync_comm_stream",
inputs={'X': toutdata},
outputs={'Out': toutdata},
attrs={'ring_id': ring_id})
return toutdata
if __name__ == "__main__":
runtime_main(TestCollectiveReduce, "reduce", 0)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import argparse
import os
import sys
import signal
import time
import socket
from contextlib import closing
from six import string_types
import math
import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
import paddle.fluid.unique_name as nameGen
from paddle.fluid import core
import unittest
from multiprocessing import Process
import paddle.fluid.layers as layers
from functools import reduce
from test_collective_base import TestCollectiveRunnerBase, runtime_main
class TestCollectiveReduce(TestCollectiveRunnerBase):
def __init__(self):
self.global_ring_id = 0
def get_model(self, main_prog, startup_program):
ring_id = 0
rootid = 1
with fluid.program_guard(main_prog, startup_program):
tindata = layers.data(
name="tindata", shape=[10, 1000], dtype='float32')
toutdata = main_prog.current_block().create_var(
name="outofreduce",
dtype='float32',
type=core.VarDesc.VarType.LOD_TENSOR,
persistable=False,
stop_gradient=False)
main_prog.global_block().append_op(
type="c_reduce_sum",
inputs={'X': tindata},
attrs={
'ring_id': ring_id,
'use_calc_stream': True,
'root_id': rootid
},
outputs={'Out': toutdata})
main_prog.global_block().append_op(
type="c_sync_comm_stream",
inputs={'X': toutdata},
outputs={'Out': toutdata},
attrs={'ring_id': ring_id})
return toutdata
if __name__ == "__main__":
runtime_main(TestCollectiveReduce, "reduce", 0)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import numpy as np
import argparse
import os
import sys
import signal
import time
import socket
from contextlib import closing
from six import string_types
import math
import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
import paddle.fluid.unique_name as nameGen
from paddle.fluid import core
import unittest
from multiprocessing import Process
import paddle.fluid.layers as layers
from functools import reduce
from test_collective_base import TestCollectiveRunnerBase, runtime_main
class TestCollectiveScatter(TestCollectiveRunnerBase):
def __init__(self):
self.global_ring_id = 0
def get_model(self, main_prog, startup_program):
ring_id = 0
rootid = 1
with fluid.program_guard(main_prog, startup_program):
tindata = layers.data(
name="tindata", shape=[10, 1000], dtype='float32')
toutdata = main_prog.current_block().create_var(
name="outofreduce",
dtype='float32',
type=core.VarDesc.VarType.LOD_TENSOR,
persistable=False,
stop_gradient=False)
main_prog.global_block().append_op(
type="c_scatter",
inputs={'X': tindata},
attrs={'ring_id': ring_id,
'root': rootid,
'nranks': 2},
outputs={'Out': toutdata})
main_prog.global_block().append_op(
type="c_sync_comm_stream",
inputs={'X': toutdata},
outputs={'Out': toutdata},
attrs={'ring_id': ring_id})
return toutdata
if __name__ == "__main__":
runtime_main(TestCollectiveScatter, "scatter", 0)
......@@ -241,6 +241,15 @@ class TestDistBase(unittest.TestCase):
need_result = input2
self.assertTrue(np.allclose(tr0_out, need_result))
self.assertTrue(np.allclose(tr1_out, need_result))
elif col_type == "reduce":
need_result = input1 + input2
self.assertTrue(np.allclose(tr1_out, need_result))
elif col_type == "scatter":
need_result = input2
need_result1 = need_result[0:need_result.shape[0] // 2]
need_result2 = need_result[need_result.shape[0] // 2:]
self.assertTrue(np.allclose(tr0_out, need_result1))
self.assertTrue(np.allclose(tr1_out, need_result2))
elif col_type == "allreduce":
need_result = input1 + input2
self.assertTrue(
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from test_collective_base import TestDistBase
class TestCReduceOp(TestDistBase):
def _setup_config(self):
pass
def test_reduce(self):
self.check_with_place("collective_reduce_op.py", "reduce")
def test_reduce_calc_stream(self):
self.check_with_place("collective_reduce_op_calc_stream.py", "reduce")
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from test_collective_base import TestDistBase
class TestCScatterOp(TestDistBase):
def _setup_config(self):
pass
def test_scatter(self):
self.check_with_place("collective_scatter_op.py", "scatter")
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册