Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e906c8e5
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e906c8e5
编写于
10月 24, 2018
作者:
J
jerrywgz
提交者:
GitHub
10月 24, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14022 from jerrywgz/fix_rpn_target_assign_op
fix random fail in rpn target assign
上级
c7379a73
e35fd3b2
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
102 addition
and
37 deletion
+102
-37
paddle/fluid/operators/detection/rpn_target_assign_op.cc
paddle/fluid/operators/detection/rpn_target_assign_op.cc
+52
-16
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+11
-5
python/paddle/fluid/tests/test_detection.py
python/paddle/fluid/tests/test_detection.py
+5
-2
python/paddle/fluid/tests/unittests/test_rpn_target_assign_op.py
...paddle/fluid/tests/unittests/test_rpn_target_assign_op.py
+34
-14
未找到文件。
paddle/fluid/operators/detection/rpn_target_assign_op.cc
浏览文件 @
e906c8e5
...
...
@@ -52,6 +52,9 @@ class RpnTargetAssignOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"TargetBBox"
),
"Output(TargetBBox) of RpnTargetAssignOp should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BBoxInsideWeight"
),
"Output(BBoxInsideWeight) of RpnTargetAssignOp should not be null"
);
auto
anchor_dims
=
ctx
->
GetInputDim
(
"Anchor"
);
auto
gt_boxes_dims
=
ctx
->
GetInputDim
(
"GtBoxes"
);
...
...
@@ -68,6 +71,7 @@ class RpnTargetAssignOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
"ScoreIndex"
,
{
-
1
});
ctx
->
SetOutputDim
(
"TargetLabel"
,
{
-
1
,
1
});
ctx
->
SetOutputDim
(
"TargetBBox"
,
{
-
1
,
4
});
ctx
->
SetOutputDim
(
"BBoxInsideWeight"
,
{
-
1
,
4
});
}
protected:
...
...
@@ -169,6 +173,7 @@ void ScoreAssign(const T* anchor_by_gt_overlap_data,
const
float
rpn_positive_overlap
,
const
float
rpn_negative_overlap
,
std
::
vector
<
int
>*
fg_inds
,
std
::
vector
<
int
>*
bg_inds
,
std
::
vector
<
int
>*
tgt_lbl
,
std
::
vector
<
int
>*
fg_fake
,
std
::
vector
<
T
>*
bbox_inside_weight
,
std
::
minstd_rand
engine
,
bool
use_random
)
{
float
epsilon
=
0.00001
;
int
anchor_num
=
anchor_to_gt_max
.
dims
()[
0
];
...
...
@@ -201,12 +206,12 @@ void ScoreAssign(const T* anchor_by_gt_overlap_data,
// Reservoir Sampling
int
fg_num
=
static_cast
<
int
>
(
rpn_fg_fraction
*
rpn_batch_size_per_im
);
ReservoirSampling
(
fg_num
,
&
fg_inds_fake
,
engine
,
use_random
);
fg
_num
=
static_cast
<
int
>
(
fg_inds_fake
.
size
());
for
(
int64_t
i
=
0
;
i
<
fg_num
;
++
i
)
{
int
fg_fake
_num
=
static_cast
<
int
>
(
fg_inds_fake
.
size
());
for
(
int64_t
i
=
0
;
i
<
fg_
fake_
num
;
++
i
)
{
target_label
[
fg_inds_fake
[
i
]]
=
1
;
}
int
bg_num
=
rpn_batch_size_per_im
-
fg_num
;
int
bg_num
=
rpn_batch_size_per_im
-
fg_
fake_
num
;
for
(
int64_t
i
=
0
;
i
<
anchor_num
;
++
i
)
{
if
(
anchor_to_gt_max_data
[
i
]
<
rpn_negative_overlap
)
{
bg_inds_fake
.
push_back
(
i
);
...
...
@@ -214,12 +219,28 @@ void ScoreAssign(const T* anchor_by_gt_overlap_data,
}
ReservoirSampling
(
bg_num
,
&
bg_inds_fake
,
engine
,
use_random
);
bg_num
=
static_cast
<
int
>
(
bg_inds_fake
.
size
());
int
fake_num
=
0
;
for
(
int64_t
i
=
0
;
i
<
bg_num
;
++
i
)
{
// fg fake found
if
(
target_label
[
bg_inds_fake
[
i
]]
==
1
)
{
fake_num
++
;
fg_fake
->
emplace_back
(
fg_inds_fake
[
0
]);
for
(
int
j
=
0
;
j
<
4
;
++
j
)
{
bbox_inside_weight
->
emplace_back
(
T
(
0.
));
}
}
target_label
[
bg_inds_fake
[
i
]]
=
0
;
}
for
(
int64_t
i
=
0
;
i
<
(
fg_fake_num
-
fake_num
)
*
4
;
++
i
)
{
bbox_inside_weight
->
emplace_back
(
T
(
1.
));
}
for
(
int64_t
i
=
0
;
i
<
anchor_num
;
++
i
)
{
if
(
target_label
[
i
]
==
1
)
fg_inds
->
emplace_back
(
i
);
if
(
target_label
[
i
]
==
1
)
{
fg_inds
->
emplace_back
(
i
);
fg_fake
->
emplace_back
(
i
);
}
if
(
target_label
[
i
]
==
0
)
bg_inds
->
emplace_back
(
i
);
}
fg_num
=
fg_inds
->
size
();
...
...
@@ -248,7 +269,8 @@ std::vector<Tensor> SampleRpnFgBgGt(const platform::CPUDeviceContext& ctx,
std
::
vector
<
int
>
bg_inds
;
std
::
vector
<
int
>
gt_inds
;
std
::
vector
<
int
>
tgt_lbl
;
std
::
vector
<
int
>
fg_fake
;
std
::
vector
<
T
>
bbox_inside_weight
;
// Calculate the max IoU between anchors and gt boxes
// Map from anchor to gt box that has highest overlap
auto
place
=
ctx
.
GetPlace
();
...
...
@@ -275,32 +297,37 @@ std::vector<Tensor> SampleRpnFgBgGt(const platform::CPUDeviceContext& ctx,
// Follow the Faster RCNN's implementation
ScoreAssign
(
anchor_by_gt_overlap_data
,
anchor_to_gt_max
,
gt_to_anchor_max
,
rpn_batch_size_per_im
,
rpn_fg_fraction
,
rpn_positive_overlap
,
rpn_negative_overlap
,
&
fg_inds
,
&
bg_inds
,
&
tgt_lbl
,
engin
e
,
use_random
);
rpn_negative_overlap
,
&
fg_inds
,
&
bg_inds
,
&
tgt_lbl
,
&
fg_fak
e
,
&
bbox_inside_weight
,
engine
,
use_random
);
int
fg_num
=
fg_inds
.
size
();
int
bg_num
=
bg_inds
.
size
();
gt_inds
.
reserve
(
fg_num
);
for
(
int
i
=
0
;
i
<
fg_num
;
++
i
)
{
gt_inds
.
emplace_back
(
argmax
[
fg_inds
[
i
]]);
int
fg_fake_num
=
fg_fake
.
size
();
gt_inds
.
reserve
(
fg_fake_num
);
for
(
int
i
=
0
;
i
<
fg_fake_num
;
++
i
)
{
gt_inds
.
emplace_back
(
argmax
[
fg_fake
[
i
]]);
}
Tensor
loc_index_t
,
score_index_t
,
tgt_lbl_t
,
gt_inds_t
;
int
*
loc_index_data
=
loc_index_t
.
mutable_data
<
int
>
({
fg_num
},
place
);
Tensor
loc_index_t
,
score_index_t
,
tgt_lbl_t
,
gt_inds_t
,
bbox_inside_weight_t
;
int
*
loc_index_data
=
loc_index_t
.
mutable_data
<
int
>
({
fg_fake_num
},
place
);
int
*
score_index_data
=
score_index_t
.
mutable_data
<
int
>
({
fg_num
+
bg_num
},
place
);
int
*
tgt_lbl_data
=
tgt_lbl_t
.
mutable_data
<
int
>
({
fg_num
+
bg_num
},
place
);
int
*
gt_inds_data
=
gt_inds_t
.
mutable_data
<
int
>
({
fg_num
},
place
);
std
::
copy
(
fg_inds
.
begin
(),
fg_inds
.
end
(),
loc_index_data
);
int
*
gt_inds_data
=
gt_inds_t
.
mutable_data
<
int
>
({
fg_fake_num
},
place
);
T
*
bbox_inside_weight_data
=
bbox_inside_weight_t
.
mutable_data
<
T
>
({
fg_fake_num
,
4
},
place
);
std
::
copy
(
fg_fake
.
begin
(),
fg_fake
.
end
(),
loc_index_data
);
std
::
copy
(
fg_inds
.
begin
(),
fg_inds
.
end
(),
score_index_data
);
std
::
copy
(
bg_inds
.
begin
(),
bg_inds
.
end
(),
score_index_data
+
fg_num
);
std
::
copy
(
tgt_lbl
.
begin
(),
tgt_lbl
.
end
(),
tgt_lbl_data
);
std
::
copy
(
gt_inds
.
begin
(),
gt_inds
.
end
(),
gt_inds_data
);
std
::
copy
(
bbox_inside_weight
.
begin
(),
bbox_inside_weight
.
end
(),
bbox_inside_weight_data
);
std
::
vector
<
Tensor
>
loc_score_tgtlbl_gt
;
loc_score_tgtlbl_gt
.
emplace_back
(
loc_index_t
);
loc_score_tgtlbl_gt
.
emplace_back
(
score_index_t
);
loc_score_tgtlbl_gt
.
emplace_back
(
tgt_lbl_t
);
loc_score_tgtlbl_gt
.
emplace_back
(
gt_inds_t
);
loc_score_tgtlbl_gt
.
emplace_back
(
bbox_inside_weight_t
);
return
loc_score_tgtlbl_gt
;
}
...
...
@@ -318,6 +345,7 @@ class RpnTargetAssignKernel : public framework::OpKernel<T> {
auto
*
score_index
=
context
.
Output
<
LoDTensor
>
(
"ScoreIndex"
);
auto
*
tgt_bbox
=
context
.
Output
<
LoDTensor
>
(
"TargetBBox"
);
auto
*
tgt_lbl
=
context
.
Output
<
LoDTensor
>
(
"TargetLabel"
);
auto
*
bbox_inside_weight
=
context
.
Output
<
LoDTensor
>
(
"BBoxInsideWeight"
);
PADDLE_ENFORCE_EQ
(
gt_boxes
->
lod
().
size
(),
1UL
,
"RpnTargetAssignOp gt_boxes needs 1 level of LoD"
);
...
...
@@ -340,7 +368,7 @@ class RpnTargetAssignKernel : public framework::OpKernel<T> {
score_index
->
mutable_data
<
int
>
({
max_num
},
place
);
tgt_bbox
->
mutable_data
<
T
>
({
max_num
,
4
},
place
);
tgt_lbl
->
mutable_data
<
int
>
({
max_num
,
1
},
place
);
bbox_inside_weight
->
mutable_data
<
T
>
({
max_num
,
4
},
place
);
auto
&
dev_ctx
=
context
.
device_context
<
platform
::
CPUDeviceContext
>
();
std
::
random_device
rnd
;
...
...
@@ -394,6 +422,7 @@ class RpnTargetAssignKernel : public framework::OpKernel<T> {
Tensor
sampled_score_index
=
loc_score_tgtlbl_gt
[
1
];
Tensor
sampled_tgtlbl
=
loc_score_tgtlbl_gt
[
2
];
Tensor
sampled_gt_index
=
loc_score_tgtlbl_gt
[
3
];
Tensor
sampled_bbox_inside_weight
=
loc_score_tgtlbl_gt
[
4
];
int
loc_num
=
sampled_loc_index
.
dims
()[
0
];
int
score_num
=
sampled_score_index
.
dims
()[
0
];
...
...
@@ -432,6 +461,8 @@ class RpnTargetAssignKernel : public framework::OpKernel<T> {
AppendRpns
<
int
>
(
score_index
,
total_score_num
,
&
sampled_score_index_unmap
);
AppendRpns
<
T
>
(
tgt_bbox
,
total_loc_num
*
4
,
&
sampled_tgt_bbox
);
AppendRpns
<
int
>
(
tgt_lbl
,
total_score_num
,
&
sampled_tgtlbl
);
AppendRpns
<
T
>
(
bbox_inside_weight
,
total_loc_num
*
4
,
&
sampled_bbox_inside_weight
);
total_loc_num
+=
loc_num
;
total_score_num
+=
score_num
;
...
...
@@ -448,10 +479,12 @@ class RpnTargetAssignKernel : public framework::OpKernel<T> {
score_index
->
set_lod
(
loc_score
);
tgt_bbox
->
set_lod
(
lod_loc
);
tgt_lbl
->
set_lod
(
loc_score
);
bbox_inside_weight
->
set_lod
(
lod_loc
);
loc_index
->
Resize
({
total_loc_num
});
score_index
->
Resize
({
total_score_num
});
tgt_bbox
->
Resize
({
total_loc_num
,
4
});
tgt_lbl
->
Resize
({
total_score_num
,
1
});
bbox_inside_weight
->
Resize
({
total_loc_num
,
4
});
}
};
...
...
@@ -514,6 +547,9 @@ class RpnTargetAssignOpMaker : public framework::OpProtoAndCheckerMaker {
"TargetLabel"
,
"(Tensor<int>), The target labels of each anchor with shape "
"[F + B, 1], F and B are sampled foreground and backgroud number."
);
AddOutput
(
"BBoxInsideWeight"
,
"(Tensor), The bbox inside weight with shape "
"[F, 4], F is the sampled foreground number."
);
AddComment
(
R"DOC(
This operator can be, for a given set of ground truth bboxes and the
anchors, to assign classification and regression targets to each prediction.
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
e906c8e5
...
...
@@ -116,8 +116,8 @@ def rpn_target_assign(bbox_pred,
Returns:
tuple:
A tuple(predicted_scores, predicted_location, target_label,
target_bbox
) is returned. The predicted_scores and
predicted_location is the predicted result of the RPN.
target_bbox
, bbox_inside_weight) is returned. The predicted_scores
and
predicted_location is the predicted result of the RPN.
The target_label and target_bbox is the ground truth,
respectively. The predicted_location is a 2D Tensor with shape
[F, 4], and the shape of target_bbox is same as the shape of
...
...
@@ -126,6 +126,8 @@ def rpn_target_assign(bbox_pred,
[F + B, 1], and the shape of target_label is same as the shape
of the predicted_scores, B is the number of the background
anchors, the F and B is depends on the input of this operator.
Bbox_inside_weight represents whether the predicted loc is fake_fg
or not and the shape is [F, 4].
Examples:
.. code-block:: python
...
...
@@ -138,7 +140,7 @@ def rpn_target_assign(bbox_pred,
append_batch_size=False, dtype='float32')
gt_boxes = layers.data(name='gt_boxes', shape=[10, 4],
append_batch_size=False, dtype='float32')
loc_pred, score_pred, loc_target, score_target =
loc_pred, score_pred, loc_target, score_target
, bbox_inside_weight
=
fluid.layers.rpn_target_assign(bbox_pred=bbox_pred,
cls_logits=cls_logits,
anchor_box=anchor_box,
...
...
@@ -152,6 +154,8 @@ def rpn_target_assign(bbox_pred,
target_label
=
helper
.
create_variable_for_type_inference
(
dtype
=
'int32'
)
target_bbox
=
helper
.
create_variable_for_type_inference
(
dtype
=
anchor_box
.
dtype
)
bbox_inside_weight
=
helper
.
create_variable_for_type_inference
(
dtype
=
anchor_box
.
dtype
)
helper
.
append_op
(
type
=
"rpn_target_assign"
,
inputs
=
{
...
...
@@ -164,7 +168,8 @@ def rpn_target_assign(bbox_pred,
'LocationIndex'
:
loc_index
,
'ScoreIndex'
:
score_index
,
'TargetLabel'
:
target_label
,
'TargetBBox'
:
target_bbox
'TargetBBox'
:
target_bbox
,
'BBoxInsideWeight'
:
bbox_inside_weight
},
attrs
=
{
'rpn_batch_size_per_im'
:
rpn_batch_size_per_im
,
...
...
@@ -179,13 +184,14 @@ def rpn_target_assign(bbox_pred,
score_index
.
stop_gradient
=
True
target_label
.
stop_gradient
=
True
target_bbox
.
stop_gradient
=
True
bbox_inside_weight
.
stop_gradient
=
True
cls_logits
=
nn
.
reshape
(
x
=
cls_logits
,
shape
=
(
-
1
,
1
))
bbox_pred
=
nn
.
reshape
(
x
=
bbox_pred
,
shape
=
(
-
1
,
4
))
predicted_cls_logits
=
nn
.
gather
(
cls_logits
,
score_index
)
predicted_bbox_pred
=
nn
.
gather
(
bbox_pred
,
loc_index
)
return
predicted_cls_logits
,
predicted_bbox_pred
,
target_label
,
target_bbox
return
predicted_cls_logits
,
predicted_bbox_pred
,
target_label
,
target_bbox
,
bbox_inside_weight
def
detection_output
(
loc
,
...
...
python/paddle/fluid/tests/test_detection.py
浏览文件 @
e906c8e5
...
...
@@ -301,7 +301,7 @@ class TestRpnTargetAssign(unittest.TestCase):
dtype
=
'float32'
,
lod_level
=
1
,
append_batch_size
=
False
)
pred_scores
,
pred_loc
,
tgt_lbl
,
tgt_bbox
=
layers
.
rpn_target_assign
(
pred_scores
,
pred_loc
,
tgt_lbl
,
tgt_bbox
,
bbox_inside_weight
=
layers
.
rpn_target_assign
(
bbox_pred
=
bbox_pred
,
cls_logits
=
cls_logits
,
anchor_box
=
anchor_box
,
...
...
@@ -313,15 +313,18 @@ class TestRpnTargetAssign(unittest.TestCase):
rpn_straddle_thresh
=
0.0
,
rpn_fg_fraction
=
0.5
,
rpn_positive_overlap
=
0.7
,
rpn_negative_overlap
=
0.3
)
rpn_negative_overlap
=
0.3
,
use_random
=
False
)
self
.
assertIsNotNone
(
pred_scores
)
self
.
assertIsNotNone
(
pred_loc
)
self
.
assertIsNotNone
(
tgt_lbl
)
self
.
assertIsNotNone
(
tgt_bbox
)
self
.
assertIsNotNone
(
bbox_inside_weight
)
assert
pred_scores
.
shape
[
1
]
==
1
assert
pred_loc
.
shape
[
1
]
==
4
assert
pred_loc
.
shape
[
1
]
==
tgt_bbox
.
shape
[
1
]
print
(
str
(
program
))
class
TestGenerateProposals
(
unittest
.
TestCase
):
...
...
python/paddle/fluid/tests/unittests/test_rpn_target_assign_op.py
浏览文件 @
e906c8e5
...
...
@@ -50,8 +50,10 @@ def rpn_target_assign(anchor_by_gt_overlap,
fg_inds
,
size
=
(
len
(
fg_inds
)
-
num_fg
),
replace
=
False
)
else
:
disable_inds
=
fg_inds
[
num_fg
:]
labels
[
disable_inds
]
=
-
1
fg_inds
=
np
.
where
(
labels
==
1
)[
0
]
bbox_inside_weight
=
np
.
zeros
((
len
(
fg_inds
),
4
),
dtype
=
np
.
float32
)
num_bg
=
rpn_batch_size_per_im
-
np
.
sum
(
labels
==
1
)
bg_inds
=
np
.
where
(
anchor_to_gt_max
<
rpn_negative_overlap
)[
0
]
...
...
@@ -59,18 +61,27 @@ def rpn_target_assign(anchor_by_gt_overlap,
enable_inds
=
bg_inds
[
np
.
random
.
randint
(
len
(
bg_inds
),
size
=
num_bg
)]
else
:
enable_inds
=
bg_inds
[:
num_bg
]
fg_fake_inds
=
np
.
array
([],
np
.
int32
)
fg_value
=
np
.
array
([
fg_inds
[
0
]],
np
.
int32
)
fake_num
=
0
for
bg_id
in
enable_inds
:
if
bg_id
in
fg_inds
:
fake_num
+=
1
fg_fake_inds
=
np
.
hstack
([
fg_fake_inds
,
fg_value
])
labels
[
enable_inds
]
=
0
bbox_inside_weight
[
fake_num
:,
:]
=
1
fg_inds
=
np
.
where
(
labels
==
1
)[
0
]
bg_inds
=
np
.
where
(
labels
==
0
)[
0
]
loc_index
=
fg_inds
score_index
=
np
.
hstack
((
fg_inds
,
bg_inds
))
loc_index
=
np
.
hstack
([
fg_fake_inds
,
fg_inds
])
score_index
=
np
.
hstack
([
fg_inds
,
bg_inds
])
labels
=
labels
[
score_index
]
assert
not
np
.
any
(
labels
==
-
1
),
"Wrong labels with -1"
gt_inds
=
anchor_to_gt_argmax
[
fg_inds
]
gt_inds
=
anchor_to_gt_argmax
[
loc_index
]
return
loc_index
,
score_index
,
labels
,
gt_inds
return
loc_index
,
score_index
,
labels
,
gt_inds
,
bbox_inside_weight
def
get_anchor
(
n
,
c
,
h
,
w
):
...
...
@@ -123,9 +134,12 @@ def rpn_target_assign_in_python(all_anchors,
gt_boxes_slice
=
gt_boxes_slice
[
not_crowd_inds
]
iou
=
_bbox_overlaps
(
inside_anchors
,
gt_boxes_slice
)
loc_inds
,
score_inds
,
labels
,
gt_inds
=
rpn_target_assign
(
iou
,
rpn_batch_size_per_im
,
rpn_positive_overlap
,
rpn_negative_overlap
,
rpn_fg_fraction
,
use_random
)
loc_inds
,
score_inds
,
labels
,
gt_inds
,
bbox_inside_weight
=
\
rpn_target_assign
(
iou
,
rpn_batch_size_per_im
,
rpn_positive_overlap
,
rpn_negative_overlap
,
rpn_fg_fraction
,
use_random
)
# unmap to all anchor
loc_inds
=
inds_inside
[
loc_inds
]
score_inds
=
inds_inside
[
score_inds
]
...
...
@@ -139,6 +153,7 @@ def rpn_target_assign_in_python(all_anchors,
score_indexes
=
score_inds
tgt_labels
=
labels
tgt_bboxes
=
box_deltas
bbox_inside_weights
=
bbox_inside_weight
else
:
loc_indexes
=
np
.
concatenate
(
[
loc_indexes
,
loc_inds
+
i
*
anchor_num
])
...
...
@@ -146,8 +161,10 @@ def rpn_target_assign_in_python(all_anchors,
[
score_indexes
,
score_inds
+
i
*
anchor_num
])
tgt_labels
=
np
.
concatenate
([
tgt_labels
,
labels
])
tgt_bboxes
=
np
.
vstack
([
tgt_bboxes
,
box_deltas
])
bbox_inside_weights
=
np
.
vstack
([
bbox_inside_weights
,
\
bbox_inside_weight
])
return
loc_indexes
,
score_indexes
,
tgt_bboxes
,
tgt_labels
return
loc_indexes
,
score_indexes
,
tgt_bboxes
,
tgt_labels
,
bbox_inside_weights
class
TestRpnTargetAssignOp
(
OpTest
):
...
...
@@ -182,10 +199,12 @@ class TestRpnTargetAssignOp(OpTest):
rpn_fg_fraction
=
0.5
use_random
=
False
loc_index
,
score_index
,
tgt_bbox
,
labels
=
rpn_target_assign_in_python
(
all_anchors
,
gt_boxes
,
is_crowd
,
im_info
,
lod
,
rpn_straddle_thresh
,
rpn_batch_size_per_im
,
rpn_positive_overlap
,
rpn_negative_overlap
,
rpn_fg_fraction
,
use_random
)
loc_index
,
score_index
,
tgt_bbox
,
labels
,
bbox_inside_weights
=
\
rpn_target_assign_in_python
(
all_anchors
,
gt_boxes
,
is_crowd
,
im_info
,
lod
,
rpn_straddle_thresh
,
rpn_batch_size_per_im
,
rpn_positive_overlap
,
rpn_negative_overlap
,
rpn_fg_fraction
,
use_random
)
labels
=
labels
[:,
np
.
newaxis
]
self
.
op_type
=
"rpn_target_assign"
...
...
@@ -207,7 +226,8 @@ class TestRpnTargetAssignOp(OpTest):
'LocationIndex'
:
loc_index
.
astype
(
'int32'
),
'ScoreIndex'
:
score_index
.
astype
(
'int32'
),
'TargetBBox'
:
tgt_bbox
.
astype
(
'float32'
),
'TargetLabel'
:
labels
.
astype
(
'int32'
)
'TargetLabel'
:
labels
.
astype
(
'int32'
),
'BBoxInsideWeight'
:
bbox_inside_weights
.
astype
(
'float32'
)
}
def
test_check_output
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录