Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e89bf25b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e89bf25b
编写于
2月 22, 2022
作者:
H
houj04
提交者:
GitHub
2月 22, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update unittests for nearest_interp_v2_op_xpu: 'sync' from gpu. test=kunlun (#39768)
上级
574f3402
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
177 addition
and
50 deletion
+177
-50
paddle/fluid/operators/interpolate_v2_op.h
paddle/fluid/operators/interpolate_v2_op.h
+7
-0
paddle/fluid/operators/interpolate_v2_op_xpu.cc
paddle/fluid/operators/interpolate_v2_op_xpu.cc
+3
-15
python/paddle/fluid/tests/unittests/xpu/test_nearest_interp_v2_op_xpu.py
...luid/tests/unittests/xpu/test_nearest_interp_v2_op_xpu.py
+167
-35
未找到文件。
paddle/fluid/operators/interpolate_v2_op.h
浏览文件 @
e89bf25b
...
...
@@ -65,6 +65,13 @@ inline std::vector<T> get_new_data_from_tensor(const Tensor* new_data_tensor) {
&
cpu_starts_tensor
);
new_data
=
cpu_starts_tensor
.
data
<
T
>
();
}
#endif
#ifdef PADDLE_WITH_XPU
if
(
platform
::
is_xpu_place
(
new_data_tensor
->
place
()))
{
paddle
::
framework
::
TensorCopySync
(
*
new_data_tensor
,
platform
::
CPUPlace
(),
&
cpu_starts_tensor
);
new_data
=
cpu_starts_tensor
.
data
<
T
>
();
}
#endif
vec_new_data
=
std
::
vector
<
T
>
(
new_data
,
new_data
+
new_data_tensor
->
numel
());
return
vec_new_data
;
...
...
paddle/fluid/operators/interpolate_v2_op_xpu.cc
浏览文件 @
e89bf25b
...
...
@@ -14,7 +14,7 @@
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/interpolate_op.h"
#include "paddle/fluid/operators/interpolate_
v2_
op.h"
#ifdef PADDLE_WITH_XPU
...
...
@@ -41,18 +41,6 @@ inline std::vector<int> get_new_shape_xpu(
return
vec_new_shape
;
}
template
<
typename
T
>
inline
std
::
vector
<
T
>
get_new_data_from_tensor_xpu
(
const
Tensor
*
new_data_tensor
)
{
std
::
vector
<
T
>
vec_new_data
;
framework
::
Tensor
cpu_starts_tensor
;
paddle
::
framework
::
TensorCopySync
(
*
new_data_tensor
,
platform
::
CPUPlace
(),
&
cpu_starts_tensor
);
auto
*
new_data
=
cpu_starts_tensor
.
data
<
T
>
();
vec_new_data
=
std
::
vector
<
T
>
(
new_data
,
new_data
+
new_data_tensor
->
numel
());
return
vec_new_data
;
}
template
<
typename
T
>
class
InterpolateV2XPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -90,7 +78,7 @@ class InterpolateV2XPUKernel : public framework::OpKernel<T> {
auto
scale_tensor
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
scale
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"scale"
);
if
(
scale_tensor
!=
nullptr
)
{
auto
scale_data
=
get_new_data_from_tensor
_xpu
<
float
>
(
scale_tensor
);
auto
scale_data
=
get_new_data_from_tensor
<
float
>
(
scale_tensor
);
if
(
scale_data
.
size
()
>
1
)
{
scale_h
=
scale_data
[
0
];
scale_w
=
scale_data
[
1
];
...
...
@@ -202,7 +190,7 @@ class InterpolateV2GradXPUKernel : public framework::OpKernel<T> {
auto
scale_tensor
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
scale
=
ctx
.
Attr
<
std
::
vector
<
float
>>
(
"scale"
);
if
(
scale_tensor
!=
nullptr
)
{
auto
scale_data
=
get_new_data_from_tensor
_xpu
<
float
>
(
scale_tensor
);
auto
scale_data
=
get_new_data_from_tensor
<
float
>
(
scale_tensor
);
if
(
scale_data
.
size
()
>
1
)
{
scale_h
=
scale_data
[
0
];
scale_w
=
scale_data
[
1
];
...
...
python/paddle/fluid/tests/unittests/xpu/test_nearest_interp_v2_op_xpu.py
浏览文件 @
e89bf25b
...
...
@@ -81,7 +81,80 @@ def nearest_neighbor_interp_np(X,
if
data_layout
==
"NHWC"
:
out
=
np
.
transpose
(
out
,
(
0
,
2
,
3
,
1
))
# NCHW => NHWC
# out = np.expand_dims(out, 2)
return
out
.
astype
(
X
.
dtype
)
def
nearest_neighbor_interp3d_np
(
X
,
out_d
,
out_h
,
out_w
,
scale_d
=
0
,
scale_h
=
0
,
scale_w
=
0
,
out_size
=
None
,
actual_shape
=
None
,
align_corners
=
True
,
data_layout
=
'NCHW'
):
"""nearest neighbor interpolation implement in shape [N, C, H, W]"""
if
data_layout
==
"NHWC"
:
X
=
np
.
transpose
(
X
,
(
0
,
4
,
1
,
2
,
3
))
# NDHWC => NCDHW
if
out_size
is
not
None
:
out_d
=
out_size
[
0
]
out_h
=
out_size
[
1
]
out_w
=
out_size
[
2
]
if
actual_shape
is
not
None
:
out_d
=
actual_shape
[
0
]
out_h
=
actual_shape
[
1
]
out_w
=
actual_shape
[
2
]
n
,
c
,
in_d
,
in_h
,
in_w
=
X
.
shape
ratio_d
=
ratio_h
=
ratio_w
=
0.0
if
(
out_d
>
1
):
if
(
align_corners
):
ratio_d
=
(
in_d
-
1.0
)
/
(
out_d
-
1.0
)
else
:
if
scale_d
>
0
:
ratio_d
=
1.0
/
scale_d
else
:
ratio_d
=
1.0
*
in_d
/
out_d
if
(
out_h
>
1
):
if
(
align_corners
):
ratio_h
=
(
in_h
-
1.0
)
/
(
out_h
-
1.0
)
else
:
if
scale_h
>
0
:
ratio_h
=
1.0
/
scale_h
else
:
ratio_h
=
1.0
*
in_h
/
out_h
if
(
out_w
>
1
):
if
(
align_corners
):
ratio_w
=
(
in_w
-
1.0
)
/
(
out_w
-
1.0
)
else
:
if
scale_w
>
0
:
ratio_w
=
1.0
/
scale_w
else
:
ratio_w
=
1.0
*
in_w
/
out_w
out
=
np
.
zeros
((
n
,
c
,
out_d
,
out_h
,
out_w
))
if
align_corners
:
for
d
in
range
(
out_d
):
in_d
=
int
(
ratio_d
*
d
+
0.5
)
for
i
in
range
(
out_h
):
in_i
=
int
(
ratio_h
*
i
+
0.5
)
for
j
in
range
(
out_w
):
in_j
=
int
(
ratio_w
*
j
+
0.5
)
out
[:,
:,
d
,
i
,
j
]
=
X
[:,
:,
in_d
,
in_i
,
in_j
]
else
:
for
d
in
range
(
out_d
):
in_d
=
int
(
ratio_d
*
d
)
for
i
in
range
(
out_h
):
in_i
=
int
(
ratio_h
*
i
)
for
j
in
range
(
out_w
):
in_j
=
int
(
ratio_w
*
j
)
out
[:,
:,
d
,
i
,
j
]
=
X
[:,
:,
in_d
,
in_i
,
in_j
]
if
data_layout
==
"NDHWC"
:
out
=
np
.
transpose
(
out
,
(
0
,
2
,
3
,
4
,
1
))
# NCDHW => NDHWC
return
out
.
astype
(
X
.
dtype
)
...
...
@@ -90,46 +163,86 @@ class TestNearestInterpOp(XPUOpTest):
self
.
use_xpu
=
True
self
.
out_size
=
None
self
.
actual_shape
=
None
self
.
data_layout
=
'NCHW'
self
.
init_test_case
()
self
.
op_type
=
"nearest_interp_v2"
self
.
shape_by_1Dtensor
=
False
self
.
scale_by_1Dtensor
=
False
self
.
attrs
=
{
'interp_method'
:
self
.
interp_method
,
'align_corners'
:
self
.
align_corners
,
}
input_np
=
np
.
random
.
random
(
self
.
input_shape
).
astype
(
"float32"
)
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
scale_by_1Dtensor
:
self
.
inputs
[
'Scale'
]
=
np
.
array
([
self
.
scale
]).
astype
(
"float32"
)
elif
self
.
scale
:
if
self
.
data_layout
==
"NCHW"
and
len
(
self
.
input_shape
)
==
4
:
in_d
=
1
in_h
=
self
.
input_shape
[
2
]
in_w
=
self
.
input_shape
[
3
]
else
:
in_d
=
1
in_h
=
self
.
input_shape
[
1
]
in_w
=
self
.
input_shape
[
2
]
if
self
.
data_layout
==
"NCDHW"
and
len
(
self
.
input_shape
)
==
5
:
in_d
=
self
.
input_shape
[
2
]
in_h
=
self
.
input_shape
[
3
]
in_w
=
self
.
input_shape
[
4
]
else
:
in_d
=
self
.
input_shape
[
1
]
in_h
=
self
.
input_shape
[
2
]
in_w
=
self
.
input_shape
[
3
]
scale_d
=
0
scale_h
=
0
scale_w
=
0
if
self
.
scale
:
if
isinstance
(
self
.
scale
,
float
)
or
isinstance
(
self
.
scale
,
int
):
if
self
.
scale
>
0
:
scale_h
=
scale_w
=
float
(
self
.
scale
)
scale_
d
=
scale_
h
=
scale_w
=
float
(
self
.
scale
)
if
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
==
1
:
scale_w
=
scale_h
=
self
.
scale
[
0
]
scale_
d
=
scale_
w
=
scale_h
=
self
.
scale
[
0
]
elif
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
>
1
:
scale_w
=
self
.
scale
[
1
]
scale_h
=
self
.
scale
[
0
]
out_h
=
int
(
self
.
input_shape
[
2
]
*
scale_h
)
out_w
=
int
(
self
.
input_shape
[
3
]
*
scale_w
)
if
len
(
self
.
scale
)
==
5
:
scale_w
=
self
.
scale
[
2
]
scale_h
=
self
.
scale
[
1
]
scale_d
=
self
.
scale
[
0
]
else
:
scale_w
=
self
.
scale
[
1
]
scale_h
=
self
.
scale
[
0
]
out_h
=
int
(
in_h
*
scale_h
)
out_w
=
int
(
in_w
*
scale_w
)
out_d
=
int
(
in_d
*
scale_d
)
else
:
if
len
(
self
.
input_shape
)
==
5
:
out_d
=
self
.
out_d
out_h
=
self
.
out_h
out_w
=
self
.
out_w
if
self
.
shape_by_1Dtensor
:
if
len
(
self
.
input_shape
)
==
4
:
output_np
=
nearest_neighbor_interp_np
(
input_np
,
out_h
,
out_w
,
scale_h
,
scale_w
,
self
.
out_size
,
self
.
actual_shape
,
self
.
align_corners
,
self
.
data_layout
)
elif
len
(
self
.
input_shape
)
==
5
:
output_np
=
nearest_neighbor_interp3d_np
(
input_np
,
out_d
,
out_h
,
out_w
,
scale_d
,
scale_h
,
scale_w
,
self
.
out_size
,
self
.
actual_shape
,
self
.
align_corners
,
self
.
data_layout
)
self
.
inputs
=
{
'X'
:
input_np
}
if
self
.
out_size
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
out_size
elif
self
.
out_size
is
not
None
:
size_tensor
=
[]
for
index
,
ele
in
enumerate
(
self
.
out_size
):
size_tensor
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
inputs
[
'SizeTensor'
]
=
size_tensor
self
.
attrs
[
'out_h'
]
=
self
.
out_h
self
.
attrs
[
'out_w'
]
=
self
.
out_w
if
self
.
actual_shape
is
not
None
:
self
.
inputs
[
'OutSize'
]
=
self
.
actual_shape
if
len
(
self
.
input_shape
)
==
5
:
self
.
attrs
=
{
'out_d'
:
self
.
out_d
,
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
,
'interp_method'
:
self
.
interp_method
,
'align_corners'
:
self
.
align_corners
,
'data_layout'
:
self
.
data_layout
}
else
:
self
.
attrs
=
{
'out_h'
:
self
.
out_h
,
'out_w'
:
self
.
out_w
,
'interp_method'
:
self
.
interp_method
,
'align_corners'
:
self
.
align_corners
,
'data_layout'
:
self
.
data_layout
}
if
self
.
scale
:
if
isinstance
(
self
.
scale
,
float
)
or
isinstance
(
self
.
scale
,
int
):
if
self
.
scale
>
0
:
...
...
@@ -137,9 +250,6 @@ class TestNearestInterpOp(XPUOpTest):
if
isinstance
(
self
.
scale
,
list
)
and
len
(
self
.
scale
)
==
1
:
self
.
scale
=
[
self
.
scale
[
0
],
self
.
scale
[
0
]]
self
.
attrs
[
'scale'
]
=
self
.
scale
output_np
=
nearest_neighbor_interp_np
(
input_np
,
out_h
,
out_w
,
0
,
0
,
self
.
out_size
,
self
.
actual_shape
,
self
.
align_corners
)
self
.
outputs
=
{
'Out'
:
output_np
}
def
test_check_output
(
self
):
...
...
@@ -154,22 +264,26 @@ class TestNearestInterpOp(XPUOpTest):
def
init_test_case
(
self
):
self
.
interp_method
=
'nearest'
self
.
input_shape
=
[
2
,
5
,
4
,
4
]
self
.
out_h
=
3
self
.
out_w
=
3
self
.
input_shape
=
[
2
,
3
,
4
,
5
]
self
.
out_h
=
2
self
.
out_w
=
2
self
.
scale
=
0.
self
.
out_size
=
[
3
,
3
]
self
.
out_size
=
np
.
array
([
3
,
3
]).
astype
(
"int32"
)
self
.
align_corners
=
True
"""
# case copied form gpu but disabled in xpu: not support 5-dim input_shape
class TestNearestNeighborInterpCase1(TestNearestInterpOp):
def init_test_case(self):
self.interp_method = 'nearest'
self
.
input_shape
=
[
4
,
1
,
7
,
8
]
self.input_shape = [4, 1, 1, 7, 8]
self.out_d = 1
self.out_h = 1
self.out_w = 1
self.scale = 0.
self.align_corners = True
"""
class
TestNearestNeighborInterpCase2
(
TestNearestInterpOp
):
...
...
@@ -246,6 +360,8 @@ class TestNearestNeighborInterpActualShape(TestNearestInterpOp):
self
.
align_corners
=
True
"""
# case copied form gpu but disabled in xpu: not support NHWC data_layout
class TestNearestNeighborInterpDataLayout(TestNearestInterpOp):
def init_test_case(self):
self.interp_method = 'nearest'
...
...
@@ -256,6 +372,7 @@ class TestNearestNeighborInterpDataLayout(TestNearestInterpOp):
self.out_size = np.array([3, 8]).astype("int32")
self.align_corners = True
self.data_layout = "NHWC"
"""
class
TestNearestInterpWithoutCorners
(
TestNearestInterpOp
):
...
...
@@ -296,6 +413,21 @@ class TestNearestNeighborInterpScale3(TestNearestInterpOp):
self
.
align_corners
=
True
"""
# case copied form gpu but disabled in xpu: not support 5-dim input_shape
class TestNearestNeighbor3DInterp(TestNearestInterpOp):
def init_test_case(self):
self.interp_method = 'nearest'
self.input_shape = [3, 2, 4, 7, 5]
self.out_d = 8
self.out_h = 64
self.out_w = 32
self.scale = [4.0, 2.0, 3.0]
self.out_size = np.array([8, 66, 40]).astype("int32")
self.align_corners = True
"""
class
TestNearestInterpOp_attr_tensor
(
XPUOpTest
):
def
setUp
(
self
):
self
.
use_xpu
=
True
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录