Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e8794250
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e8794250
编写于
11月 03, 2021
作者:
F
fuqianya
提交者:
GitHub
11月 03, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[PaddlePaddle Hackathon] add Squeezenet (#36066)
* add squeezenet
上级
db8425ec
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
258 addition
and
2 deletion
+258
-2
python/paddle/tests/test_pretrained_model.py
python/paddle/tests/test_pretrained_model.py
+3
-2
python/paddle/tests/test_vision_models.py
python/paddle/tests/test_vision_models.py
+6
-0
python/paddle/vision/__init__.py
python/paddle/vision/__init__.py
+3
-0
python/paddle/vision/models/__init__.py
python/paddle/vision/models/__init__.py
+6
-0
python/paddle/vision/models/squeezenet.py
python/paddle/vision/models/squeezenet.py
+240
-0
未找到文件。
python/paddle/tests/test_pretrained_model.py
浏览文件 @
e8794250
...
...
@@ -54,8 +54,9 @@ class TestPretrainedModel(unittest.TestCase):
def
test_models
(
self
):
arches
=
[
'mobilenet_v1'
,
'mobilenet_v2'
,
'resnet18'
,
'vgg16'
,
'alexnet'
,
'resnext50_32x4d'
,
'inception_v3'
,
'densenet121'
,
'googlenet'
,
'shufflenet_v2_x0_25'
,
'shufflenet_v2_swish'
'resnext50_32x4d'
,
'inception_v3'
,
'densenet121'
,
'squeezenet1_0'
,
'squeezenet1_1'
,
'googlenet'
,
'shufflenet_v2_x0_25'
,
'shufflenet_v2_swish'
]
for
arch
in
arches
:
self
.
infer
(
arch
)
...
...
python/paddle/tests/test_vision_models.py
浏览文件 @
e8794250
...
...
@@ -85,6 +85,12 @@ class TestVisonModels(unittest.TestCase):
def
test_densenet264
(
self
):
self
.
models_infer
(
'densenet264'
)
def
test_squeezenet1_0
(
self
):
self
.
models_infer
(
'squeezenet1_0'
)
def
test_squeezenet1_1
(
self
):
self
.
models_infer
(
'squeezenet1_1'
)
def
test_alexnet
(
self
):
self
.
models_infer
(
'alexnet'
)
...
...
python/paddle/vision/__init__.py
浏览文件 @
e8794250
...
...
@@ -38,6 +38,9 @@ from .models import MobileNetV1 # noqa: F401
from
.models
import
mobilenet_v1
# noqa: F401
from
.models
import
MobileNetV2
# noqa: F401
from
.models
import
mobilenet_v2
# noqa: F401
from
.models
import
SqueezeNet
# noqa: F401
from
.models
import
squeezenet1_0
# noqa: F401
from
.models
import
squeezenet1_1
# noqa: F401
from
.models
import
VGG
# noqa: F401
from
.models
import
vgg11
# noqa: F401
from
.models
import
vgg13
# noqa: F401
...
...
python/paddle/vision/models/__init__.py
浏览文件 @
e8794250
...
...
@@ -45,6 +45,9 @@ from .resnext import resnext152_32x4d # noqa: F401
from
.resnext
import
resnext152_64x4d
# noqa: F401
from
.inceptionv3
import
InceptionV3
# noqa: F401
from
.inceptionv3
import
inception_v3
# noqa: F401
from
.squeezenet
import
SqueezeNet
# noqa: F401
from
.squeezenet
import
squeezenet1_0
# noqa: F401
from
.squeezenet
import
squeezenet1_1
# noqa: F401
from
.googlenet
import
GoogLeNet
# noqa: F401
from
.googlenet
import
googlenet
# noqa: F401
from
.shufflenetv2
import
ShuffleNetV2
# noqa: F401
...
...
@@ -90,6 +93,9 @@ __all__ = [ #noqa
'resnext152_64x4d'
,
'InceptionV3'
,
'inception_v3'
,
'SqueezeNet'
,
'squeezenet1_0'
,
'squeezenet1_1'
,
'GoogLeNet'
,
'googlenet'
,
'ShuffleNetV2'
,
...
...
python/paddle/vision/models/squeezenet.py
0 → 100644
浏览文件 @
e8794250
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle
import
paddle.nn
as
nn
import
paddle.nn.functional
as
F
from
paddle.nn
import
Conv2D
,
Dropout
from
paddle.nn
import
AdaptiveAvgPool2D
,
MaxPool2D
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.utils.download
import
get_weights_path_from_url
__all__
=
[]
model_urls
=
{
'squeezenet1_0'
:
(
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_0_pretrained.pdparams'
,
'30b95af60a2178f03cf9b66cd77e1db1'
),
'squeezenet1_1'
:
(
'https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SqueezeNet1_1_pretrained.pdparams'
,
'a11250d3a1f91d7131fd095ebbf09eee'
),
}
class
MakeFireConv
(
nn
.
Layer
):
def
__init__
(
self
,
input_channels
,
output_channels
,
filter_size
,
padding
=
0
):
super
(
MakeFireConv
,
self
).
__init__
()
self
.
_conv
=
Conv2D
(
input_channels
,
output_channels
,
filter_size
,
padding
=
padding
,
weight_attr
=
ParamAttr
(),
bias_attr
=
ParamAttr
())
def
forward
(
self
,
x
):
x
=
self
.
_conv
(
x
)
x
=
F
.
relu
(
x
)
return
x
class
MakeFire
(
nn
.
Layer
):
def
__init__
(
self
,
input_channels
,
squeeze_channels
,
expand1x1_channels
,
expand3x3_channels
):
super
(
MakeFire
,
self
).
__init__
()
self
.
_conv
=
MakeFireConv
(
input_channels
,
squeeze_channels
,
1
)
self
.
_conv_path1
=
MakeFireConv
(
squeeze_channels
,
expand1x1_channels
,
1
)
self
.
_conv_path2
=
MakeFireConv
(
squeeze_channels
,
expand3x3_channels
,
3
,
padding
=
1
)
def
forward
(
self
,
inputs
):
x
=
self
.
_conv
(
inputs
)
x1
=
self
.
_conv_path1
(
x
)
x2
=
self
.
_conv_path2
(
x
)
return
paddle
.
concat
([
x1
,
x2
],
axis
=
1
)
class
SqueezeNet
(
nn
.
Layer
):
"""SqueezeNet model from
`"SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size"
<https://arxiv.org/pdf/1602.07360.pdf>`_
Args:
version (str): version of squeezenet, which can be "1.0" or "1.1".
num_classes (int): output dim of last fc layer. Default: 1000.
with_pool (bool): use pool before the last fc layer or not. Default: True.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import SqueezeNet
# build v1.0 model
model = SqueezeNet(version='1.0')
# build v1.1 model
# model = SqueezeNet(version='1.1')
x = paddle.rand([1, 3, 224, 224])
out = model(x)
print(out.shape)
"""
def
__init__
(
self
,
version
,
num_classes
=
1000
,
with_pool
=
True
):
super
(
SqueezeNet
,
self
).
__init__
()
self
.
version
=
version
self
.
num_classes
=
num_classes
self
.
with_pool
=
with_pool
supported_versions
=
[
'1.0'
,
'1.1'
]
assert
version
in
supported_versions
,
\
"supported versions are {} but input version is {}"
.
format
(
supported_versions
,
version
)
if
self
.
version
==
"1.0"
:
self
.
_conv
=
Conv2D
(
3
,
96
,
7
,
stride
=
2
,
weight_attr
=
ParamAttr
(),
bias_attr
=
ParamAttr
())
self
.
_pool
=
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
,
padding
=
0
)
self
.
_conv1
=
MakeFire
(
96
,
16
,
64
,
64
)
self
.
_conv2
=
MakeFire
(
128
,
16
,
64
,
64
)
self
.
_conv3
=
MakeFire
(
128
,
32
,
128
,
128
)
self
.
_conv4
=
MakeFire
(
256
,
32
,
128
,
128
)
self
.
_conv5
=
MakeFire
(
256
,
48
,
192
,
192
)
self
.
_conv6
=
MakeFire
(
384
,
48
,
192
,
192
)
self
.
_conv7
=
MakeFire
(
384
,
64
,
256
,
256
)
self
.
_conv8
=
MakeFire
(
512
,
64
,
256
,
256
)
else
:
self
.
_conv
=
Conv2D
(
3
,
64
,
3
,
stride
=
2
,
padding
=
1
,
weight_attr
=
ParamAttr
(),
bias_attr
=
ParamAttr
())
self
.
_pool
=
MaxPool2D
(
kernel_size
=
3
,
stride
=
2
,
padding
=
0
)
self
.
_conv1
=
MakeFire
(
64
,
16
,
64
,
64
)
self
.
_conv2
=
MakeFire
(
128
,
16
,
64
,
64
)
self
.
_conv3
=
MakeFire
(
128
,
32
,
128
,
128
)
self
.
_conv4
=
MakeFire
(
256
,
32
,
128
,
128
)
self
.
_conv5
=
MakeFire
(
256
,
48
,
192
,
192
)
self
.
_conv6
=
MakeFire
(
384
,
48
,
192
,
192
)
self
.
_conv7
=
MakeFire
(
384
,
64
,
256
,
256
)
self
.
_conv8
=
MakeFire
(
512
,
64
,
256
,
256
)
self
.
_drop
=
Dropout
(
p
=
0.5
,
mode
=
"downscale_in_infer"
)
self
.
_conv9
=
Conv2D
(
512
,
num_classes
,
1
,
weight_attr
=
ParamAttr
(),
bias_attr
=
ParamAttr
())
self
.
_avg_pool
=
AdaptiveAvgPool2D
(
1
)
def
forward
(
self
,
inputs
):
x
=
self
.
_conv
(
inputs
)
x
=
F
.
relu
(
x
)
x
=
self
.
_pool
(
x
)
if
self
.
version
==
"1.0"
:
x
=
self
.
_conv1
(
x
)
x
=
self
.
_conv2
(
x
)
x
=
self
.
_conv3
(
x
)
x
=
self
.
_pool
(
x
)
x
=
self
.
_conv4
(
x
)
x
=
self
.
_conv5
(
x
)
x
=
self
.
_conv6
(
x
)
x
=
self
.
_conv7
(
x
)
x
=
self
.
_pool
(
x
)
x
=
self
.
_conv8
(
x
)
else
:
x
=
self
.
_conv1
(
x
)
x
=
self
.
_conv2
(
x
)
x
=
self
.
_pool
(
x
)
x
=
self
.
_conv3
(
x
)
x
=
self
.
_conv4
(
x
)
x
=
self
.
_pool
(
x
)
x
=
self
.
_conv5
(
x
)
x
=
self
.
_conv6
(
x
)
x
=
self
.
_conv7
(
x
)
x
=
self
.
_conv8
(
x
)
if
self
.
num_classes
>
0
:
x
=
self
.
_drop
(
x
)
x
=
self
.
_conv9
(
x
)
if
self
.
with_pool
:
x
=
F
.
relu
(
x
)
x
=
self
.
_avg_pool
(
x
)
x
=
paddle
.
squeeze
(
x
,
axis
=
[
2
,
3
])
return
x
def
_squeezenet
(
arch
,
version
,
pretrained
,
**
kwargs
):
model
=
SqueezeNet
(
version
,
**
kwargs
)
if
pretrained
:
assert
arch
in
model_urls
,
"{} model do not have a pretrained model now, you should set pretrained=False"
.
format
(
arch
)
weight_path
=
get_weights_path_from_url
(
model_urls
[
arch
][
0
],
model_urls
[
arch
][
1
])
param
=
paddle
.
load
(
weight_path
)
model
.
set_dict
(
param
)
return
model
def
squeezenet1_0
(
pretrained
=
False
,
**
kwargs
):
"""SqueezeNet v1.0 model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
from paddle.vision.models import squeezenet1_0
# build model
model = squeezenet1_0()
# build model and load imagenet pretrained weight
# model = squeezenet1_0(pretrained=True)
"""
return
_squeezenet
(
'squeezenet1_0'
,
'1.0'
,
pretrained
,
**
kwargs
)
def
squeezenet1_1
(
pretrained
=
False
,
**
kwargs
):
"""SqueezeNet v1.1 model
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet. Default: False.
Examples:
.. code-block:: python
from paddle.vision.models import squeezenet1_1
# build model
model = squeezenet1_1()
# build model and load imagenet pretrained weight
# model = squeezenet1_1(pretrained=True)
"""
return
_squeezenet
(
'squeezenet1_1'
,
'1.1'
,
pretrained
,
**
kwargs
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录