Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e802471c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e802471c
编写于
11月 07, 2016
作者:
L
luotao1
提交者:
GitHub
11月 07, 2016
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
abstract outputSize function in CNN-related layers (#314)
上级
f9849ac9
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
139 addition
and
184 deletion
+139
-184
paddle/gserver/layers/ConvBaseLayer.cpp
paddle/gserver/layers/ConvBaseLayer.cpp
+4
-5
paddle/gserver/layers/ConvBaseLayer.h
paddle/gserver/layers/ConvBaseLayer.h
+1
-25
paddle/gserver/layers/ConvOperator.cpp
paddle/gserver/layers/ConvOperator.cpp
+22
-50
paddle/gserver/layers/ConvProjection.h
paddle/gserver/layers/ConvProjection.h
+5
-7
paddle/gserver/layers/CudnnPoolLayer.cpp
paddle/gserver/layers/CudnnPoolLayer.cpp
+10
-10
paddle/gserver/layers/PoolLayer.h
paddle/gserver/layers/PoolLayer.h
+1
-10
paddle/gserver/layers/PoolProjectionLayer.cpp
paddle/gserver/layers/PoolProjectionLayer.cpp
+14
-15
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+27
-29
paddle/math/MathUtils.cpp
paddle/math/MathUtils.cpp
+13
-6
paddle/math/MathUtils.h
paddle/math/MathUtils.h
+16
-0
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+26
-27
未找到文件。
paddle/gserver/layers/ConvBaseLayer.cpp
浏览文件 @
e802471c
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/utils/Logging.h"
#include "ConvBaseLayer.h"
namespace
paddle
{
...
...
@@ -78,10 +77,10 @@ size_t ConvBaseLayer::calOutputSize() {
imgSizeH_
[
i
]
=
config_
.
inputs
(
i
).
conv_conf
().
img_size
();
if
(
imgSizeW_
[
i
]
==
0
)
imgSizeW_
[
i
]
=
config_
.
inputs
(
i
).
conv_conf
().
img_size
();
outputH_
.
push_back
(
outputSize
(
imgSizeH_
[
i
],
filterSizeY_
[
i
],
paddingY_
[
i
],
strideY_
[
i
]
));
outputW_
.
push_back
(
outputSize
(
imgSizeW_
[
i
],
filterSize_
[
i
],
padding_
[
i
],
stride_
[
i
]
));
outputH_
.
push_back
(
outputSize
(
imgSizeH_
[
i
],
filterSizeY_
[
i
],
paddingY_
[
i
],
strideY_
[
i
],
caffeMode_
));
outputW_
.
push_back
(
outputSize
(
imgSizeW_
[
i
],
filterSize_
[
i
],
padding_
[
i
],
stride_
[
i
],
caffeMode_
));
CHECK_EQ
(
outputH_
[
i
],
outputH_
[
0
]);
CHECK_EQ
(
outputW_
[
i
],
outputW_
[
0
]);
}
...
...
paddle/gserver/layers/ConvBaseLayer.h
浏览文件 @
e802471c
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#pragma once
#include "Layer.h"
#include "paddle/math/MathUtils.h"
namespace
paddle
{
/**
...
...
@@ -87,31 +88,6 @@ public:
virtual
size_t
calOutputSize
();
Weight
&
getWeight
(
int
idx
)
{
return
*
weights_
[
idx
];
}
/**
* Calculate output size based on caffeMode_.
* - input(+padding): 0123456789
* - imageSize(+padding) = 10;
* - filterSize = 3;
* - stride = 2;
* - caffeMode_ is true:
- output: (012), (234), (456), (678)
- outputSize = 4;
* - caffeMode_ is false:
* - output: (012), (234), (456), (678), (9)
* - outputSize = 5;
*/
int
outputSize
(
int
imageSize
,
int
filterSize
,
int
padding
,
int
stride
)
{
int
outputSize
;
if
(
!
caffeMode_
)
{
outputSize
=
(
imageSize
-
filterSize
+
2
*
padding
+
stride
-
1
)
/
stride
+
1
;
}
else
{
outputSize
=
(
imageSize
-
filterSize
+
2
*
padding
)
/
stride
+
1
;
}
CHECK_GE
(
outputSize
,
1
);
return
outputSize
;
}
};
}
// namespace paddle
paddle/gserver/layers/ConvOperator.cpp
浏览文件 @
e802471c
...
...
@@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/math/Matrix.h"
#include "paddle/math/MathUtils.h"
#include "Operator.h"
namespace
paddle
{
...
...
@@ -35,8 +35,8 @@ public:
*/
virtual
~
ConvOperator
()
{
if
(
workSpaceInBytes_
!=
0
)
{
hl_free_mem_device
(
workSpace_
);
workSpaceInBytes_
=
0
;
hl_free_mem_device
(
workSpace_
);
workSpaceInBytes_
=
0
;
}
hl_destroy_tensor_descriptor
(
inputDesc_
);
...
...
@@ -83,33 +83,6 @@ private:
filterSize_
*
filterSizeY_
*
channels_
*
numFilters_
);
}
/**
* Calculate output size.
*/
int
outputSize
(
int
imageSize
,
int
filterSize
,
int
padding
,
int
stride
)
{
int
outputSize
;
if
(
!
caffeMode_
)
{
/* input(+padding): 0123456789
* imageSize(+padding) = 10;
* filterSize = 3;
* stride = 2;
* output: (012), (234), (456), (678), (9)
* outputSize = 5;
*/
outputSize
=
(
imageSize
-
filterSize
+
2
*
padding
+
stride
-
1
)
/
stride
+
1
;
}
else
{
/* input(+padding): 0123456789
* imageSize(+padding) = 10;
* filterSize = 3;
* stride = 2;
* output: (012), (234), (456), (678)
* outputSize = 4;
*/
outputSize
=
(
imageSize
-
filterSize
+
2
*
padding
)
/
stride
+
1
;
}
return
outputSize
;
}
/// Most of member variables are same with CudnnConvLayer.
/// There is no explanation here.
int
imageH_
,
imageW_
,
outputH_
,
outputW_
;
...
...
@@ -129,7 +102,7 @@ private:
int
fwdAlgo_
,
bwdFilterAlgo_
,
bwdDataAlgo_
;
size_t
fwdLimitBytes_
,
bwdDataLimitBytes_
,
bwdFilterLimitBytes_
;
size_t
workSpaceInBytes_
;
void
*
workSpace_
;
void
*
workSpace_
;
bool
isSelectAlgo_
;
};
...
...
@@ -160,7 +133,7 @@ ConvOperator::ConvOperator(const OperatorConfig &config, bool useGpu)
void
ConvOperator
::
allocConvWorkSpace
(
size_t
maxWorkSpace
)
{
if
(
maxWorkSpace
>
workSpaceInBytes_
)
{
if
(
workSpaceInBytes_
!=
0
)
{
hl_free_mem_device
(
workSpace_
);
hl_free_mem_device
(
workSpace_
);
}
// total amount of storage needed
workSpace_
=
hl_malloc_device
(
maxWorkSpace
);
...
...
@@ -168,14 +141,13 @@ void ConvOperator::allocConvWorkSpace(size_t maxWorkSpace) {
}
}
void
ConvOperator
::
reshape
(
int
batchSize
)
{
imageH_
=
ins_
[
0
]
->
getFrameHeight
();
imageW_
=
ins_
[
0
]
->
getFrameWidth
();
if
(
imageH_
==
0
)
imageH_
=
imgSize_
;
if
(
imageW_
==
0
)
imageW_
=
imgSize_
;
outputH_
=
outputSize
(
imageH_
,
filterSizeY_
,
paddingY_
,
strideY_
);
outputW_
=
outputSize
(
imageW_
,
filterSize_
,
padding_
,
stride_
);
outputH_
=
outputSize
(
imageH_
,
filterSizeY_
,
paddingY_
,
strideY_
,
caffeMode_
);
outputW_
=
outputSize
(
imageW_
,
filterSize_
,
padding_
,
stride_
,
caffeMode_
);
out_
->
setFrameHeight
(
outputH_
);
out_
->
setFrameWidth
(
outputW_
);
...
...
@@ -183,10 +155,10 @@ void ConvOperator::reshape(int batchSize) {
reshapeImageDescriptors
();
if
(
!
isSelectAlgo_
)
{
hl_conv_workspace
(
inputDesc_
,
outputDesc_
,
filterDesc_
,
convDesc_
,
&
fwdAlgo_
,
&
fwdLimitBytes
_
,
&
bwdDataAlgo_
,
&
bwdDataLimitBytes
_
,
&
bwdFilterAlgo_
,
&
bwdFilterLimitBytes_
);
hl_conv_workspace
(
inputDesc_
,
outputDesc_
,
filterDesc_
,
convDesc_
,
&
fwdAlgo_
,
&
fwdLimitBytes_
,
&
bwdDataAlgo
_
,
&
bwdDataLimitBytes_
,
&
bwdFilterAlgo
_
,
&
bwdFilterLimitBytes_
);
size_t
maxWorkSpace
=
0
;
maxWorkSpace
=
std
::
max
(
fwdLimitBytes_
,
bwdDataLimitBytes_
);
...
...
@@ -202,7 +174,8 @@ void ConvOperator::computeConvSizes() {
hl_create_filter_descriptor
(
&
filterDesc_
,
channels_
,
numFilters_
,
filterSizeY_
,
filterSize_
);
hl_create_tensor_descriptor
(
&
inputDesc_
);
int
outputX
=
outputSize
(
imgSize_
,
filterSize_
,
padding_
,
stride_
);
int
outputX
=
outputSize
(
imgSize_
,
filterSize_
,
padding_
,
stride_
,
caffeMode_
);
CHECK_EQ
(
outputX
,
outputX_
);
hl_create_tensor_descriptor
(
&
outputDesc_
);
hl_create_convolution_descriptor
(
&
convDesc_
,
inputDesc_
,
filterDesc_
,
...
...
@@ -211,13 +184,13 @@ void ConvOperator::computeConvSizes() {
void
ConvOperator
::
reshapeImageDescriptors
()
{
hl_tensor_reshape
(
inputDesc_
,
1
,
channels_
,
imageH_
,
imageW_
,
channels_
*
imageH_
*
imageW_
,
imageH_
*
imageW_
,
imageW_
,
1
);
channels_
*
imageH_
*
imageW_
,
imageH_
*
imageW_
,
imageW_
,
1
);
hl_tensor_reshape
(
outputDesc_
,
1
,
numFilters_
,
outputH_
,
outputW_
,
numFilters_
*
outputH_
*
outputW_
,
outputH_
*
outputW_
,
outputW_
,
1
);
hl_reset_convolution_descriptor
(
convDesc_
,
inputDesc_
,
filterDesc_
,
padding
Y_
,
padding
_
,
strideY_
,
stride_
);
hl_reset_convolution_descriptor
(
convDesc_
,
inputDesc_
,
filterDesc_
,
paddingY_
,
padding_
,
strideY_
,
stride_
);
inputOffset_
=
channels_
*
imageH_
*
imageW_
;
outputOffset_
=
numFilters_
*
outputH_
*
outputW_
;
weightOffset_
=
numFilters_
*
channels_
*
filterSize_
*
filterSize_
;
...
...
@@ -273,18 +246,17 @@ void ConvOperator::backward() {
real
*
weightGrad
=
ins_
[
1
]
->
grad
->
getData
()
+
weightOffset_
*
batchId
;
hl_convolution_backward_filter
(
inputDesc_
,
inputData
,
outputDesc_
,
outGrad
,
filterDesc_
,
weightGrad
,
convDesc_
,
workSpace_
,
workSpaceInBytes_
,
bwdFilterAlgo_
);
convDesc_
,
workSpace_
,
workSpaceInBytes_
,
bwdFilterAlgo_
);
}
MatrixPtr
preGrad
=
ins_
[
0
]
->
grad
;
if
(
NULL
!=
preGrad
)
{
real
*
inputGrad
=
preGrad
->
getData
()
+
inputOffset_
*
batchId
;
real
*
wgtData
=
ins_
[
1
]
->
value
->
getData
()
+
weightOffset_
*
batchId
;
hl_convolution_backward_data
(
inputDesc_
,
inputGrad
,
outputDesc_
,
outGrad
,
filterDesc_
,
wgtData
,
convDesc_
,
workSpace_
,
workSpaceInBytes_
,
bwdDataAlgo_
);
hl_convolution_backward_data
(
inputDesc_
,
inputGrad
,
outputDesc_
,
outGrad
,
filterDesc_
,
wgtData
,
convDesc_
,
workSpace_
,
workSpaceInBytes_
,
bwdDataAlgo_
);
}
}
}
...
...
paddle/gserver/layers/ConvProjection.h
浏览文件 @
e802471c
...
...
@@ -12,10 +12,10 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "Projection.h"
#include "paddle/math/MathUtils.h"
namespace
paddle
{
...
...
@@ -42,17 +42,15 @@ protected:
void
reshapeTensorDesc
(
int
batchSize
);
void
reshape
(
int
batchSize
);
int
outputSize
(
int
imageSize
,
int
filterSize
,
int
padding
,
int
stride
)
{
return
(
imageSize
-
filterSize
+
2
*
padding
)
/
stride
+
1
;
}
size_t
calOutputSize
()
{
imageH_
=
in_
->
getFrameHeight
();
imageW_
=
in_
->
getFrameWidth
();
if
(
imageH_
==
0
)
imageH_
=
configImgH_
;
if
(
imageW_
==
0
)
imageW_
=
configImgW_
;
outputH_
=
outputSize
(
imageH_
,
filterH_
,
paddingH_
,
strideH_
);
outputW_
=
outputSize
(
imageW_
,
filterW_
,
paddingW_
,
strideW_
);
outputH_
=
outputSize
(
imageH_
,
filterH_
,
paddingH_
,
strideH_
,
/* caffeMode */
true
);
outputW_
=
outputSize
(
imageW_
,
filterW_
,
paddingW_
,
strideW_
,
/* caffeMode */
true
);
const_cast
<
Argument
*>
(
out_
)
->
setFrameHeight
(
outputH_
);
const_cast
<
Argument
*>
(
out_
)
->
setFrameWidth
(
outputW_
);
...
...
paddle/gserver/layers/CudnnPoolLayer.cpp
浏览文件 @
e802471c
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include "paddle/math/Matrix.h"
...
...
@@ -62,9 +61,9 @@ bool CudnnPoolLayer::init(const LayerMap &layerMap,
strideHeight
=
strideY_
;
strideWidth
=
stride_
;
hl_create_pooling_descriptor
(
&
poolingDesc_
,
mode_
,
windowHeight
,
windowWidth
,
heightPadding
,
widthPadding
,
stride
Height
,
stride
Width
);
hl_create_pooling_descriptor
(
&
poolingDesc_
,
mode_
,
windowHeight
,
windowWidth
,
heightPadding
,
widthPadding
,
strideHeight
,
strideWidth
);
return
true
;
}
...
...
@@ -80,8 +79,10 @@ void CudnnPoolLayer::reshape(int batchSize) {
}
CHECK_EQ
(
inputLayers_
[
0
]
->
getOutput
().
value
->
getWidth
(),
channels_
*
imageH_
*
imageW_
);
outputH_
=
outputSize
(
imageH_
,
sizeY_
,
confPaddingY_
,
strideY_
);
outputW_
=
outputSize
(
imageW_
,
sizeX_
,
confPadding_
,
stride_
);
outputH_
=
outputSize
(
imageH_
,
sizeY_
,
confPaddingY_
,
strideY_
,
/* caffeMode */
false
);
outputW_
=
outputSize
(
imageW_
,
sizeX_
,
confPadding_
,
stride_
,
/* caffeMode */
false
);
getOutput
().
setFrameHeight
(
outputH_
);
getOutput
().
setFrameWidth
(
outputW_
);
...
...
@@ -99,8 +100,7 @@ void CudnnPoolLayer::forward(PassType passType) {
real
*
inputData
=
getInputValue
(
0
)
->
getData
();
real
*
outData
=
getOutputValue
()
->
getData
();
hl_pooling_forward
(
inputDesc_
,
inputData
,
outputDesc_
,
outData
,
poolingDesc_
);
hl_pooling_forward
(
inputDesc_
,
inputData
,
outputDesc_
,
outData
,
poolingDesc_
);
}
void
CudnnPoolLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
...
...
@@ -113,8 +113,8 @@ void CudnnPoolLayer::backward(const UpdateCallback &callback) {
real
*
inputGrad
=
getInputGrad
(
0
)
->
getData
();
real
*
outData
=
getOutputValue
()
->
getData
();
real
*
outGrad
=
getOutputGrad
()
->
getData
();
hl_pooling_backward
(
inputDesc_
,
inputData
,
inputGrad
,
outputDesc_
,
out
Data
,
out
Grad
,
poolingDesc_
);
hl_pooling_backward
(
inputDesc_
,
inputData
,
inputGrad
,
outputDesc_
,
outData
,
outGrad
,
poolingDesc_
);
}
CudnnPoolLayer
::~
CudnnPoolLayer
()
{
...
...
paddle/gserver/layers/PoolLayer.h
浏览文件 @
e802471c
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include "Layer.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/MathUtils.h"
#include <vector>
namespace
paddle
{
...
...
@@ -47,16 +48,6 @@ public:
static
Layer
*
create
(
const
LayerConfig
&
config
);
virtual
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
);
/**
* Calculate output size according window size and padding size.
*/
int
outputSize
(
int
imageSize
,
int
windowSize
,
int
padding
,
int
stride
)
{
int
outputSize
;
outputSize
=
(
imageSize
-
windowSize
+
2
*
padding
+
stride
-
1
)
/
stride
+
1
;
return
outputSize
;
}
};
}
// namespace paddle
paddle/gserver/layers/PoolProjectionLayer.cpp
浏览文件 @
e802471c
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
#include "PoolProjectionLayer.h"
...
...
@@ -31,8 +30,10 @@ size_t PoolProjectionLayer::getSize() {
imgSizeW_
=
imgSize_
;
}
outputH_
=
outputSize
(
imgSizeH_
,
sizeY_
,
confPaddingY_
,
strideY_
);
outputW_
=
outputSize
(
imgSizeW_
,
sizeX_
,
confPadding_
,
stride_
);
outputH_
=
outputSize
(
imgSizeH_
,
sizeY_
,
confPaddingY_
,
strideY_
,
/* caffeMode */
false
);
outputW_
=
outputSize
(
imgSizeW_
,
sizeX_
,
confPadding_
,
stride_
,
/* caffeMode */
false
);
layerSize
=
outputH_
*
outputW_
*
channels_
;
...
...
@@ -53,9 +54,9 @@ void MaxPoolProjectionLayer::forward(PassType passType) {
MatrixPtr
outV
=
getOutputValue
();
outV
->
maxPoolForward
(
*
input
,
imgSizeH_
,
imgSizeW_
,
channels_
,
s
izeX_
,
sizeY_
,
strideY_
,
stride
_
,
outputH_
,
outputW_
,
confPaddingY_
,
confPadding_
);
outV
->
maxPoolForward
(
*
input
,
imgSizeH_
,
imgSizeW_
,
channels_
,
sizeX_
,
sizeY_
,
s
trideY_
,
stride_
,
outputH_
,
outputW_
,
confPaddingY
_
,
confPadding_
);
}
void
MaxPoolProjectionLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
...
...
@@ -72,9 +73,8 @@ void MaxPoolProjectionLayer::backward(const UpdateCallback& callback) {
MatrixPtr
inputGrad
=
getInputGrad
(
0
);
inputGrad
->
maxPoolBackward
(
*
inputV
,
imgSizeH_
,
imgSizeW_
,
*
outGrad
,
*
outV
,
sizeX_
,
sizeY_
,
strideY_
,
stride_
,
outputH_
,
outputW_
,
1
,
1
,
confPaddingY_
,
confPadding_
);
sizeX_
,
sizeY_
,
strideY_
,
stride_
,
outputH_
,
outputW_
,
1
,
1
,
confPaddingY_
,
confPadding_
);
}
void
AvgPoolProjectionLayer
::
forward
(
PassType
passType
)
{
...
...
@@ -89,9 +89,9 @@ void AvgPoolProjectionLayer::forward(PassType passType) {
MatrixPtr
outV
=
getOutputValue
();
outV
->
avgPoolForward
(
*
input
,
imgSizeH_
,
imgSizeW_
,
channels_
,
s
izeX_
,
sizeY_
,
strideY_
,
stride
_
,
outputH_
,
outputW_
,
confPaddingY_
,
confPadding_
);
outV
->
avgPoolForward
(
*
input
,
imgSizeH_
,
imgSizeW_
,
channels_
,
sizeX_
,
sizeY_
,
s
trideY_
,
stride_
,
outputH_
,
outputW_
,
confPaddingY
_
,
confPadding_
);
}
void
AvgPoolProjectionLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
...
...
@@ -103,9 +103,8 @@ void AvgPoolProjectionLayer::backward(const UpdateCallback& callback) {
/* Do derivation */
MatrixPtr
outputGrad
=
getOutputGrad
();
MatrixPtr
inputGrad
=
getInputGrad
(
0
);
inputGrad
->
avgPoolBackward
(
*
outputGrad
,
imgSizeH_
,
imgSizeW_
,
sizeX_
,
sizeY_
,
strideY_
,
stride_
,
outputH_
,
outputW_
,
1
,
1
,
inputGrad
->
avgPoolBackward
(
*
outputGrad
,
imgSizeH_
,
imgSizeW_
,
sizeX_
,
sizeY_
,
strideY_
,
stride_
,
outputH_
,
outputW_
,
1
,
1
,
confPaddingY_
,
confPadding_
);
}
}
// namespace paddle
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
e802471c
...
...
@@ -18,6 +18,7 @@ limitations under the License. */
#include "paddle/gserver/layers/DataLayer.h"
#include "ModelConfig.pb.h"
#include "paddle/trainer/Trainer.h"
#include "paddle/math/MathUtils.h"
#include "TestUtil.h"
#include "LayerGradUtil.h"
...
...
@@ -134,7 +135,6 @@ TEST(Projection, identity) {
}
}
#ifndef PADDLE_ONLY_CPU
TEST
(
Projection
,
conv
)
{
const
int
NUM_FILTERS
=
16
;
...
...
@@ -158,21 +158,23 @@ TEST(Projection, conv) {
conv
->
set_groups
(
1
);
conv
->
set_filter_channels
(
conv
->
channels
()
/
conv
->
groups
());
conv
->
set_img_size
(
IMAGE_SIZE
);
int
outputSize
=
(
2
*
conv
->
padding
()
+
conv
->
img_size
()
-
conv
->
filter_size
())
/
conv
->
stride
()
+
1
;
int
outputSizeY
=
(
2
*
conv
->
padding_y
()
+
conv
->
img_size
()
-
conv
->
filter_size_y
())
/
conv
->
stride_y
()
+
1
;
conv
->
set_output_x
(
outputSize
);
int
output_x
=
outputSize
(
conv
->
img_size
(),
conv
->
filter_size
(),
conv
->
padding
(),
conv
->
stride
(),
/* caffeMode */
true
);
int
output_y
=
outputSize
(
conv
->
img_size
(),
conv
->
filter_size_y
(),
conv
->
padding_y
(),
conv
->
stride_y
(),
/* caffeMode */
true
);
conv
->
set_output_x
(
output_x
);
conf
.
set_input_size
(
IMAGE_SIZE
*
IMAGE_SIZE
*
CHANNELS
);
conf
.
set_output_size
(
output
Size
*
outputSizeY
*
NUM_FILTERS
);
conf
.
set_output_size
(
output
_x
*
output_y
*
NUM_FILTERS
);
testProjectionGrad
(
conf
,
INPUT_DATA
,
testProjectionGrad
(
conf
,
INPUT_DATA
,
/* parameterSize */
NUM_FILTERS
*
CHANNELS
*
FILTER_SIZE
*
FILTER_SIZE_Y
,
/* batchSize */
100
,
true
,
false
,
NUM_FILTERS
,
true
);
}
#endif
TEST
(
Layer
,
concat
)
{
TestConfig
config
;
config
.
biasSize
=
0
;
...
...
@@ -293,10 +295,9 @@ void testConvLayer(const string& type, bool trans, bool useGpu) {
conv
->
set_groups
(
1
);
conv
->
set_filter_channels
(
conv
->
channels
()
/
conv
->
groups
());
conv
->
set_img_size
(
16
);
conv
->
set_output_x
(
(
2
*
conv
->
padding
()
+
conv
->
img_size
()
-
conv
->
filter_size
())
/
((
float
)
conv
->
stride
())
+
1.5
);
conv
->
set_output_x
(
outputSize
(
conv
->
img_size
(),
conv
->
filter_size
(),
conv
->
padding
(),
conv
->
stride
(),
/* caffeMode */
true
));
config
.
layerConfig
.
set_size
(
conv
->
output_x
()
*
conv
->
output_x
()
*
config
.
layerConfig
.
num_filters
());
...
...
@@ -329,15 +330,13 @@ TEST(Layer, blockExpandLayer) {
blockExpand
->
set_stride_x
(
2
);
blockExpand
->
set_stride_y
(
2
);
blockExpand
->
set_output_x
(
1
+
(
2
*
blockExpand
->
padding_x
()
+
blockExpand
->
img_size_x
()
-
blockExpand
->
block_x
()
+
blockExpand
->
stride_x
()
-
1
)
/
blockExpand
->
stride_x
());
outputSize
(
blockExpand
->
img_size_x
(),
blockExpand
->
block_x
(),
blockExpand
->
padding_x
(),
blockExpand
->
stride_x
(),
/* caffeMode */
false
));
blockExpand
->
set_output_y
(
1
+
(
2
*
blockExpand
->
padding_y
()
+
blockExpand
->
img_size_y
()
-
blockExpand
->
block_y
()
+
blockExpand
->
stride_y
()
-
1
)
/
blockExpand
->
stride_y
());
outputSize
(
blockExpand
->
img_size_y
(),
blockExpand
->
block_y
(),
blockExpand
->
padding_y
(),
blockExpand
->
stride_y
(),
/* caffeMode */
false
));
config
.
layerConfig
.
set_size
(
blockExpand
->
block_x
()
*
blockExpand
->
block_y
()
*
blockExpand
->
channels
());
...
...
@@ -862,8 +861,8 @@ void setPoolConfig(TestConfig* config, PoolConfig* pool,
pool
->
set_stride
(
sw
);
pool
->
set_stride_y
(
sh
);
int
ow
=
(
pool
->
img_size
()
-
kw
+
2
*
pw
+
sw
-
1
)
/
sw
+
1
;
int
oh
=
(
pool
->
img_size_y
()
-
kh
+
2
*
ph
+
sh
-
1
)
/
sh
+
1
;
int
ow
=
outputSize
(
pool
->
img_size
(),
kw
,
pw
,
sw
,
/* caffeMode */
false
)
;
int
oh
=
outputSize
(
pool
->
img_size_y
(),
kh
,
ph
,
sh
,
/* caffeMode */
false
)
;
pool
->
set_output_x
(
ow
);
pool
->
set_output_y
(
oh
);
}
...
...
@@ -1255,12 +1254,11 @@ TEST(Operator, conv) {
conv
->
set_groups
(
1
);
conv
->
set_filter_channels
(
conv
->
channels
()
/
conv
->
groups
());
conv
->
set_img_size
(
IMAGE_SIZE
);
int
outputSize
=
int
(
1.0
*
(
2
*
conv
->
padding
()
+
conv
->
img_size
()
-
conv
->
filter_size
())
/
conv
->
stride
())
+
1
;
conv
->
set_output_x
(
outputSize
);
config
.
layerConfig
.
set_size
(
outputSize
*
outputSize
*
int
output_x
=
outputSize
(
conv
->
img_size
(),
conv
->
filter_size
(),
conv
->
padding
(),
conv
->
stride
(),
/* caffeMode */
true
);
conv
->
set_output_x
(
output_x
);
config
.
layerConfig
.
set_size
(
output_x
*
output_x
*
config
.
layerConfig
.
num_filters
());
config
.
layerConfig
.
set_size
(
conv
->
output_x
()
*
conv
->
output_x
()
*
NUM_FILTERS
);
...
...
paddle/math/MathUtils.cpp
浏览文件 @
e802471c
...
...
@@ -12,7 +12,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MathUtils.h"
#include <algorithm>
#include "paddle/utils/Logging.h"
...
...
@@ -24,11 +23,7 @@ namespace paddle {
* major is rows and minor is cols, according to
* major value to initialize minor value"
*/
void
sparseRand
(
int
*
major
,
int
*
minor
,
int
nnz
,
int
majorLen
,
int
minorMax
,
void
sparseRand
(
int
*
major
,
int
*
minor
,
int
nnz
,
int
majorLen
,
int
minorMax
,
bool
useGpu
)
{
CHECK
(
size_t
(
nnz
)
>
size_t
(
1
));
int
*
cpuMajor
;
...
...
@@ -72,5 +67,17 @@ void sparseRand(int* major,
}
}
int
outputSize
(
int
imageSize
,
int
filterSize
,
int
padding
,
int
stride
,
bool
caffeMode
)
{
int
outputSize
;
if
(
!
caffeMode
)
{
outputSize
=
(
imageSize
-
filterSize
+
2
*
padding
+
stride
-
1
)
/
stride
+
1
;
}
else
{
outputSize
=
(
imageSize
-
filterSize
+
2
*
padding
)
/
stride
+
1
;
}
CHECK_GE
(
outputSize
,
1
);
return
outputSize
;
}
}
// namespace paddle
paddle/math/MathUtils.h
浏览文件 @
e802471c
...
...
@@ -44,4 +44,20 @@ namespace paddle {
void
sparseRand
(
int
*
major
,
int
*
minor
,
int
nnz
,
int
majorLen
,
int
minorMax
,
bool
useGpu
);
/**
* Calculate output size based on caffeMode_.
* - input(+padding): 0123456789
* - imageSize(+padding) = 10;
* - filterSize = 3;
* - stride = 2;
* - caffeMode is true:
- output: (012), (234), (456), (678)
- outputSize = 4;
* - caffeMode is false:
* - output: (012), (234), (456), (678), (9)
* - outputSize = 5;
*/
int
outputSize
(
int
imageSize
,
int
filterSize
,
int
padding
,
int
stride
,
bool
caffeMode
);
}
// namespace paddle
python/paddle/trainer/config_parser.py
浏览文件 @
e802471c
...
...
@@ -1006,6 +1006,17 @@ def TestData(data_config, async_load_data=None):
" Data definition"
)
g_config
.
test_data_config
.
async_load_data
=
async_load_data
'''
caffe_mode: compute the output size using floor instead of ceil,
which is consistent of caffe and CuDNN's convention.
'''
def
cnn_output_size
(
img_size
,
filter_size
,
padding
,
stride
,
caffe_mode
):
output
=
(
2
*
padding
+
img_size
-
filter_size
)
/
float
(
stride
)
if
caffe_mode
:
return
1
+
int
(
math
.
floor
(
output
))
else
:
return
1
+
int
(
math
.
ceil
(
output
))
def
parse_pool
(
pool
,
input_layer_name
,
pool_conf
):
pool_conf
.
pool_type
=
pool
.
pool_type
config_assert
(
pool
.
pool_type
in
[
'max-projection'
,
'avg-projection'
,
...
...
@@ -1036,12 +1047,10 @@ def parse_pool(pool, input_layer_name, pool_conf):
if
pool
.
padding
is
not
None
:
pool_conf
.
padding
=
pool
.
padding
pool_conf
.
padding_y
=
default
(
pool
.
padding_y
,
pool_conf
.
padding
)
pool_conf
.
output_x
=
int
(
math
.
ceil
((
pool_conf
.
img_size
+
\
2
*
pool_conf
.
padding
-
pool_conf
.
size_x
)
/
\
float
(
pool_conf
.
stride
)))
+
1
pool_conf
.
output_y
=
int
(
math
.
ceil
((
pool_conf
.
img_size_y
+
\
2
*
pool_conf
.
padding_y
-
pool_conf
.
size_y
)
/
\
float
(
pool_conf
.
stride_y
)))
+
1
pool_conf
.
output_x
=
cnn_output_size
(
pool_conf
.
img_size
,
pool_conf
.
size_x
,
pool_conf
.
padding
,
pool_conf
.
stride
,
False
)
pool_conf
.
output_y
=
cnn_output_size
(
pool_conf
.
img_size_y
,
pool_conf
.
size_y
,
pool_conf
.
padding_y
,
pool_conf
.
stride_y
,
False
)
def
parse_image
(
image
,
input_layer_name
,
image_conf
):
image_conf
.
channels
=
image
.
channels
...
...
@@ -1072,10 +1081,7 @@ def parse_norm(norm, input_layer_name, norm_conf):
norm_conf
.
scale
/=
norm
.
size
else
:
norm_conf
.
scale
/=
norm
.
size
**
2
'''
caffe_mode: compute the output size using floor instead of ceil,
which is consistent of caffe and CuDNN's convention.
'''
def
parse_conv
(
conv
,
input_layer_name
,
conv_conf
):
conv_conf
.
filter_size
=
conv
.
filter_size
conv_conf
.
filter_size_y
=
conv
.
filter_size_y
...
...
@@ -1096,14 +1102,9 @@ def parse_conv(conv, input_layer_name, conv_conf):
(
"Input layer %s: Incorrect input image size %d for input "
+
"image pixels %d"
)
%
(
input_layer_name
,
conv_conf
.
img_size
,
img_pixels
))
if
conv
.
caffe_mode
:
conv_conf
.
output_x
=
\
1
+
int
(
math
.
floor
((
2
*
conv
.
padding
+
conv_conf
.
img_size
\
-
conv
.
filter_size
)
/
float
(
conv
.
stride
)))
else
:
conv_conf
.
output_x
=
\
1
+
int
(
math
.
ceil
((
2
*
conv
.
padding
+
conv_conf
.
img_size
\
-
conv
.
filter_size
)
/
float
(
conv
.
stride
)))
conv_conf
.
output_x
=
cnn_output_size
(
conv_conf
.
img_size
,
conv_conf
.
filter_size
,
conv_conf
.
padding
,
conv_conf
.
stride
,
conv_conf
.
caffe_mode
)
def
parse_block_expand
(
block_expand
,
input_layer_name
,
block_expand_conf
):
block_expand_conf
.
channels
=
block_expand
.
channels
...
...
@@ -1118,18 +1119,16 @@ def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
if
block_expand_conf
.
img_size_x
==
0
:
block_expand_conf
.
output_x
=
0
else
:
block_expand_conf
.
output_x
=
\
1
+
\
int
(
math
.
ceil
((
2
*
block_expand
.
padding_x
+
block_expand
.
img_size_x
\
-
block_expand
.
block_x
)
/
float
(
block_expand
.
stride_x
)))
block_expand_conf
.
output_x
=
cnn_output_size
(
block_expand
.
img_size_x
,
block_expand
.
block_x
,
block_expand
.
padding_x
,
block_expand
.
stride_x
,
False
)
if
block_expand_conf
.
img_size_y
==
0
:
block_expand_conf
.
output_y
=
0
block_expand_conf
.
output_y
=
0
else
:
block_expand_conf
.
output_y
=
\
1
+
\
int
(
math
.
ceil
((
2
*
block_expand
.
padding_y
+
block_expand
.
img_size_y
\
-
block_expand
.
block_y
)
/
float
(
block_expand
.
stride_y
)))
block_expand_conf
.
output_y
=
cnn_output_size
(
block_expand
.
img_size_y
,
block_expand
.
block_y
,
block_expand
.
padding_y
,
block_expand
.
stride_y
,
False
)
def
parse_maxout
(
maxout
,
input_layer_name
,
maxout_conf
):
maxout_conf
.
channels
=
maxout
.
channels
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录