Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e7711592
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e7711592
编写于
12月 12, 2022
作者:
W
Wen Sun
提交者:
GitHub
12月 12, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add dynamic checks for collective communication on NCCL (#48915)
* chore: unify `SingleTensor` * feat: dynamic check
上级
e66dbc38
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
474 addition
and
107 deletion
+474
-107
paddle/fluid/distributed/collective/CMakeLists.txt
paddle/fluid/distributed/collective/CMakeLists.txt
+1
-1
paddle/fluid/distributed/collective/NCCLTools.cc
paddle/fluid/distributed/collective/NCCLTools.cc
+1
-1
paddle/fluid/distributed/collective/NCCLTools.h
paddle/fluid/distributed/collective/NCCLTools.h
+12
-25
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
+126
-74
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
+2
-2
paddle/fluid/distributed/collective/check.cc
paddle/fluid/distributed/collective/check.cc
+290
-0
paddle/fluid/distributed/collective/check.h
paddle/fluid/distributed/collective/check.h
+42
-4
未找到文件。
paddle/fluid/distributed/collective/CMakeLists.txt
浏览文件 @
e7711592
...
...
@@ -21,7 +21,7 @@ endif()
if
(
WITH_NCCL OR WITH_RCCL
)
cc_library
(
processgroup_nccl
SRCS ProcessGroupNCCL.cc NCCLTools.cc Common.cc
static_
check.cc
SRCS ProcessGroupNCCL.cc NCCLTools.cc Common.cc check.cc
DEPS processgroup
processgroup_stream
place
...
...
paddle/fluid/distributed/collective/NCCLTools.cc
浏览文件 @
e7711592
...
...
@@ -14,7 +14,7 @@
#include "paddle/fluid/distributed/collective/NCCLTools.h"
#include "paddle/fluid/
distributed/collective/Types
.h"
#include "paddle/fluid/
platform/enforce
.h"
namespace
paddle
{
namespace
distributed
{
...
...
paddle/fluid/distributed/collective/NCCLTools.h
浏览文件 @
e7711592
...
...
@@ -21,42 +21,29 @@
#include <hip/hip_runtime.h>
#endif
#include <error.h>
#include <string>
#include "paddle/fluid/distributed/collective/Types.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/variable.h"
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
#include "paddle/fluid/platform/device_context.h"
#ifdef PADDLE_WITH_RCCL
#include "paddle/
fluid/platform
/dynload/rccl.h"
#include "paddle/
phi/backends
/dynload/rccl.h"
#else
#include "paddle/
fluid/platform
/dynload/nccl.h"
#include "paddle/
phi/backends
/dynload/nccl.h"
#endif
#include "paddle/fluid/platform/enforce.h"
#include "paddle/utils/variant.h"
namespace
paddle
{
namespace
distributed
{
#define NCCL_CHECK(cmd)
\
do {
\
ncclResult_t r = cmd;
\
if (r != ncclSuccess) {
\
printf("Failed, NCCL error %s:%d '%s'\n",
\
__FILE__,
\
__LINE__,
\
p
latform
::dynload::ncclGetErrorString(r)); \
exit(EXIT_FAILURE);
\
}
\
#define NCCL_CHECK(cmd) \
do { \
ncclResult_t r = cmd; \
if (r != ncclSuccess) { \
printf("Failed, NCCL error %s:%d '%s'\n", \
__FILE__, \
__LINE__, \
p
hi
::dynload::ncclGetErrorString(r)); \
exit(EXIT_FAILURE); \
} \
} while (0)
ncclRedOp_t
ToNCCLRedType
(
ReduceOp
reduction
);
...
...
paddle/fluid/distributed/collective/ProcessGroupNCCL.cc
浏览文件 @
e7711592
...
...
@@ -16,7 +16,7 @@
#include "paddle/fluid/distributed/collective/Common.h"
#include "paddle/fluid/distributed/collective/NCCLTools.h"
#include "paddle/fluid/distributed/collective/
static_
check.h"
#include "paddle/fluid/distributed/collective/check.h"
#include "paddle/fluid/distributed/collective/utils.h"
#include "paddle/fluid/platform/device/gpu/nccl_helper.h"
#include "paddle/fluid/platform/place.h"
...
...
@@ -25,6 +25,8 @@
DECLARE_bool
(
nccl_blocking_wait
);
DECLARE_bool
(
use_stream_safe_cuda_allocator
);
// set this flag to `true` and recompile to enable dynamic checks
constexpr
bool
FLAGS_enable_nccl_dynamic_check
=
false
;
constexpr
int64_t
kWaitBlockTImeout
=
10
;
namespace
paddle
{
...
...
@@ -89,12 +91,10 @@ ProcessGroupNCCL::ProcessGroupNCCL(const std::shared_ptr<Store>& store,
:
ProcessGroupStream
(
rank
,
size
,
gid
),
store_
(
store
)
{}
void
ProcessGroupNCCL
::
GroupStart
()
{
NCCL_CHECK
(
p
latform
::
dynload
::
ncclGroupStart
());
NCCL_CHECK
(
p
hi
::
dynload
::
ncclGroupStart
());
}
void
ProcessGroupNCCL
::
GroupEnd
()
{
NCCL_CHECK
(
platform
::
dynload
::
ncclGroupEnd
());
}
void
ProcessGroupNCCL
::
GroupEnd
()
{
NCCL_CHECK
(
phi
::
dynload
::
ncclGroupEnd
());
}
phi
::
DeviceContext
*
ProcessGroupNCCL
::
GetDeviceContext
(
const
Place
&
place
)
const
{
...
...
@@ -146,7 +146,13 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
size_
);
return
RunFnInNCCLEnv
(
[
&
](
ncclComm_t
comm
,
gpuStream_t
stream
)
{
NCCL_CHECK
(
platform
::
dynload
::
ncclAllGather
(
if
(
FLAGS_enable_nccl_dynamic_check
)
{
CommDynamicCheck
::
CheckShape
(
*
out_tensor
,
/*root_rank*/
0
,
rank_
,
comm
);
}
NCCL_CHECK
(
phi
::
dynload
::
ncclAllGather
(
in_tensor_maybe_partial
.
data
(),
out_tensor
->
data
(),
in_tensor_maybe_partial
.
numel
(),
...
...
@@ -173,7 +179,13 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
size_
);
return
RunFnInNCCLEnv
(
[
&
](
ncclComm_t
comm
,
gpuStream_t
stream
)
{
NCCL_CHECK
(
platform
::
dynload
::
ncclAllReduce
(
if
(
FLAGS_enable_nccl_dynamic_check
)
{
CommDynamicCheck
::
CheckShape
(
*
out_tensor
,
/*root_rank*/
0
,
rank_
,
comm
);
}
NCCL_CHECK
(
phi
::
dynload
::
ncclAllReduce
(
in_tensor
.
data
(),
out_tensor
->
data
(),
in_tensor
.
numel
(),
...
...
@@ -219,9 +231,10 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
CheckSizeOnEachRank
(
out_dim
,
out_size_each_rank
,
size_
);
CheckSizeOnEachRank
(
in_dim
,
in_size_each_rank
,
size_
);
// NOTE: Since `all_to_all` needs other processes'
s
participation, it cannot
// NOTE: Since `all_to_all` needs other processes' participation, it cannot
// simply be covered by static checks. Factors are set to 0 here to skip the
// shape check. Its shape check will be done by dynamic checks in debug mode.
// shape check. Its shape check will be done by dynamic checks with
// FLAGS_enable_nccl_dynamic_check.
CommStaticCheck
::
CheckShape
(
*
out_tensor
,
in_tensor
,
/*dst_rank*/
rank_
,
...
...
@@ -231,6 +244,10 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
/*in_size_factor*/
0
);
return
RunFnInNCCLEnv
(
[
&
](
ncclComm_t
comm
,
gpuStream_t
stream
)
{
if
(
FLAGS_enable_nccl_dynamic_check
)
{
CommDynamicCheck
::
CheckShape
(
*
out_tensor
,
in_tensor
,
in_size_each_rank
,
rank_
,
size_
,
comm
);
}
int64_t
in_row_size
=
in_tensor
.
numel
()
/
in_dim
[
0
],
out_row_size
=
out_tensor
->
numel
()
/
out_dim
[
0
];
int64_t
in_offset
=
0
,
in_numel
=
0
,
out_offset
=
0
,
out_numel
=
0
;
...
...
@@ -240,7 +257,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
for
(
auto
i
=
0
;
i
<
size_
;
i
++
)
{
in_numel
=
in_size_each_rank
[
i
]
*
in_row_size
;
input_partial
=
GetPartialTensor
(
in_tensor
,
in_offset
,
in_numel
);
NCCL_CHECK
(
p
latform
::
dynload
::
ncclSend
(
NCCL_CHECK
(
p
hi
::
dynload
::
ncclSend
(
input_partial
.
data
(),
in_numel
,
platform
::
ToNCCLDataType
(
input_partial
.
dtype
()),
...
...
@@ -251,7 +268,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
out_numel
=
out_size_each_rank
[
i
]
*
out_row_size
;
output_partial
=
GetPartialTensor
(
*
out_tensor
,
out_offset
,
out_numel
);
NCCL_CHECK
(
p
latform
::
dynload
::
ncclRecv
(
NCCL_CHECK
(
p
hi
::
dynload
::
ncclRecv
(
output_partial
.
data
(),
out_numel
,
platform
::
ToNCCLDataType
(
output_partial
.
dtype
()),
...
...
@@ -304,7 +321,10 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
return
RunFnInNCCLEnv
(
[
&
](
ncclComm_t
comm
,
gpuStream_t
stream
)
{
int
root
=
opts
.
source_rank
+
opts
.
source_root
;
NCCL_CHECK
(
platform
::
dynload
::
ncclBroadcast
(
if
(
FLAGS_enable_nccl_dynamic_check
)
{
CommDynamicCheck
::
CheckShape
(
*
out_tensor
,
root
,
rank_
,
comm
);
}
NCCL_CHECK
(
phi
::
dynload
::
ncclBroadcast
(
in_tensor
.
data
(),
out_tensor
->
data
(),
in_tensor
.
numel
(),
...
...
@@ -332,7 +352,13 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
size_
);
return
RunFnInNCCLEnv
(
[
&
](
ncclComm_t
comm
,
gpuStream_t
stream
)
{
NCCL_CHECK
(
platform
::
dynload
::
ncclReduce
(
if
(
FLAGS_enable_nccl_dynamic_check
)
{
CommDynamicCheck
::
CheckShape
(
*
out_tensor
,
/*root_rank*/
opts
.
root_rank
,
rank_
,
comm
);
}
NCCL_CHECK
(
phi
::
dynload
::
ncclReduce
(
in_tensor
.
data
(),
out_tensor
->
data
(),
in_tensor
.
numel
(),
...
...
@@ -361,7 +387,13 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::ReduceScatter(
size_
);
return
RunFnInNCCLEnv
(
[
&
](
ncclComm_t
comm
,
gpuStream_t
stream
)
{
NCCL_CHECK
(
platform
::
dynload
::
ncclReduceScatter
(
if
(
FLAGS_enable_nccl_dynamic_check
)
{
CommDynamicCheck
::
CheckShape
(
*
out_tensor
,
/*root_rank*/
0
,
rank_
,
comm
);
}
NCCL_CHECK
(
phi
::
dynload
::
ncclReduceScatter
(
in_tensor
.
data
(),
out_tensor
->
data
(),
out_tensor
->
numel
(),
...
...
@@ -389,6 +421,12 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
size_
);
return
RunFnInNCCLEnv
(
[
&
](
ncclComm_t
comm
,
gpuStream_t
stream
)
{
if
(
FLAGS_enable_nccl_dynamic_check
)
{
CommDynamicCheck
::
CheckShape
(
*
out_tensor
,
/*root_rank*/
opts
.
root_rank
,
rank_
,
comm
);
}
int64_t
numel
=
in_tensor
.
numel
()
/
size_
;
if
(
rank_
==
opts
.
root_rank
)
{
int64_t
offset
=
0
;
...
...
@@ -396,7 +434,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
GroupStart
();
for
(
auto
i
=
0
;
i
<
size_
;
i
++
)
{
partial_tensor
=
GetPartialTensor
(
in_tensor
,
offset
,
numel
);
NCCL_CHECK
(
p
latform
::
dynload
::
ncclSend
(
NCCL_CHECK
(
p
hi
::
dynload
::
ncclSend
(
partial_tensor
.
data
(),
numel
,
platform
::
ToNCCLDataType
(
partial_tensor
.
dtype
()),
...
...
@@ -405,7 +443,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
stream
));
offset
+=
numel
;
}
NCCL_CHECK
(
p
latform
::
dynload
::
ncclRecv
(
NCCL_CHECK
(
p
hi
::
dynload
::
ncclRecv
(
out_tensor
->
data
(),
numel
,
platform
::
ToNCCLDataType
(
out_tensor
->
dtype
()),
...
...
@@ -414,7 +452,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
stream
));
GroupEnd
();
}
else
{
NCCL_CHECK
(
p
latform
::
dynload
::
ncclRecv
(
NCCL_CHECK
(
p
hi
::
dynload
::
ncclRecv
(
out_tensor
->
data
(),
numel
,
platform
::
ToNCCLDataType
(
out_tensor
->
dtype
()),
...
...
@@ -443,16 +481,22 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
tensor
=
&
partial_tensor
;
}
CommStaticCheck
::
SingleTensor
(
*
tensor
,
rank_
,
size_
);
CommStaticCheck
::
CheckShape
(
*
tensor
,
rank_
,
size_
);
return
RunFnInNCCLEnv
(
[
&
](
ncclComm_t
comm
,
gpuStream_t
stream
)
{
NCCL_CHECK
(
platform
::
dynload
::
ncclRecv
(
tensor
->
data
(),
tensor
->
numel
(),
platform
::
ToNCCLDataType
(
tensor
->
dtype
()),
src_rank
,
comm
,
stream
));
if
(
FLAGS_enable_nccl_dynamic_check
)
{
CommDynamicCheck
::
CheckShape
(
*
tensor
,
/*root_rank*/
src_rank
,
rank_
,
comm
);
}
NCCL_CHECK
(
phi
::
dynload
::
ncclRecv
(
tensor
->
data
(),
tensor
->
numel
(),
platform
::
ToNCCLDataType
(
tensor
->
dtype
()),
src_rank
,
comm
,
stream
));
},
*
tensor
,
CommType
::
RECV
,
...
...
@@ -471,10 +515,16 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
const
phi
::
DenseTensor
&
tensor_maybe_partial
=
numel
>
0
?
GetPartialTensor
(
tensor
,
offset
,
numel
)
:
tensor
;
CommStaticCheck
::
SingleTensor
(
tensor_maybe_partial
,
rank_
,
size_
);
CommStaticCheck
::
CheckShape
(
tensor_maybe_partial
,
rank_
,
size_
);
return
RunFnInNCCLEnv
(
[
&
](
ncclComm_t
comm
,
gpuStream_t
stream
)
{
NCCL_CHECK
(
platform
::
dynload
::
ncclSend
(
if
(
FLAGS_enable_nccl_dynamic_check
)
{
CommDynamicCheck
::
CheckShape
(
tensor_maybe_partial
,
/*root_rank*/
rank_
,
rank_
,
comm
);
}
NCCL_CHECK
(
phi
::
dynload
::
ncclSend
(
tensor_maybe_partial
.
data
(),
tensor_maybe_partial
.
numel
(),
platform
::
ToNCCLDataType
(
tensor_maybe_partial
.
dtype
()),
...
...
@@ -520,7 +570,7 @@ void ProcessGroupNCCL::CreateNCCLEnvCache(const Place& place,
ncclUniqueId
nccl_id
;
if
(
rank_
==
0
)
{
NCCL_CHECK
(
p
latform
::
dynload
::
ncclGetUniqueId
(
&
nccl_id
));
NCCL_CHECK
(
p
hi
::
dynload
::
ncclGetUniqueId
(
&
nccl_id
));
}
BroadcastUniqueNCCLID
(
&
nccl_id
);
...
...
@@ -532,7 +582,7 @@ void ProcessGroupNCCL::CreateNCCLEnvCache(const Place& place,
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
));
auto
comm_ctx
=
std
::
make_unique
<
phi
::
GPUContext
>
(
place
);
ncclComm_t
nccl_comm
;
NCCL_CHECK
(
p
latform
::
dynload
::
ncclCommInitRank
(
NCCL_CHECK
(
p
hi
::
dynload
::
ncclCommInitRank
(
&
nccl_comm
,
GetSize
(),
nccl_id
,
GetRank
()));
comm_ctx
->
set_nccl_comm
(
nccl_comm
);
...
...
@@ -589,6 +639,10 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::RunFnInNCCLEnv(
task
->
UpdateWaitChain
(
*
comm_ctx
);
}
if
(
FLAGS_enable_nccl_dynamic_check
)
{
task
->
SetBlockCPUInWait
();
task
->
Wait
();
}
return
task
;
}
...
...
@@ -633,7 +687,7 @@ void ProcessGroupNCCL::CreateNCCLManagerCache(
ncclUniqueId
nccl_id
;
if
(
rank_
==
0
)
{
NCCL_CHECK
(
p
latform
::
dynload
::
ncclGetUniqueId
(
&
nccl_id
));
NCCL_CHECK
(
p
hi
::
dynload
::
ncclGetUniqueId
(
&
nccl_id
));
}
BroadcastUniqueNCCLID
(
&
nccl_id
);
...
...
@@ -654,7 +708,7 @@ void ProcessGroupNCCL::CreateNCCLManagerCache(
dev_ctx
[
i
].
reset
(
new
phi
::
GPUContext
(
places
[
i
]));
ncclComm_t
nccl_comm
;
NCCL_CHECK
(
p
latform
::
dynload
::
ncclCommInitRank
(
NCCL_CHECK
(
p
hi
::
dynload
::
ncclCommInitRank
(
&
nccl_comm
,
GetSize
(),
nccl_id
,
GetRank
()));
dev_ctx
[
i
]
->
set_nccl_comm
(
nccl_comm
);
dev_ctx_raw
[
i
]
=
dev_ctx
[
i
].
get
();
...
...
@@ -791,7 +845,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllReduce(
phi
::
DenseTensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
return
p
latform
::
dynload
::
ncclAllReduce
(
return
p
hi
::
dynload
::
ncclAllReduce
(
input
.
data
(),
output
.
data
(),
input
.
numel
(),
...
...
@@ -821,7 +875,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Broadcast(
const
gpuStream_t
&
stream
)
{
const
auto
root
=
opts
.
source_rank
*
in_tensors
.
size
()
+
opts
.
source_root
;
return
p
latform
::
dynload
::
ncclBroadcast
(
return
p
hi
::
dynload
::
ncclBroadcast
(
input
.
data
(),
output
.
data
(),
input
.
numel
(),
...
...
@@ -871,13 +925,12 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Send(
ncclComm_t
comm
,
const
gpuStream_t
&
stream
,
int
dst_rank
)
{
return
platform
::
dynload
::
ncclSend
(
input
.
data
(),
input
.
numel
(),
platform
::
ToNCCLDataType
(
input
.
dtype
()),
dst_rank
,
comm
,
stream
);
return
phi
::
dynload
::
ncclSend
(
input
.
data
(),
input
.
numel
(),
platform
::
ToNCCLDataType
(
input
.
dtype
()),
dst_rank
,
comm
,
stream
);
},
dst_rank
,
CommType
::
SEND
);
...
...
@@ -894,13 +947,12 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Recv(
ncclComm_t
comm
,
const
gpuStream_t
&
stream
,
int
src_rank
)
{
return
platform
::
dynload
::
ncclRecv
(
output
.
data
(),
output
.
numel
(),
platform
::
ToNCCLDataType
(
output
.
dtype
()),
src_rank
,
comm
,
stream
);
return
phi
::
dynload
::
ncclRecv
(
output
.
data
(),
output
.
numel
(),
platform
::
ToNCCLDataType
(
output
.
dtype
()),
src_rank
,
comm
,
stream
);
},
src_rank
,
CommType
::
RECV
);
...
...
@@ -925,7 +977,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllGather(
phi
::
DenseTensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
return
p
latform
::
dynload
::
ncclAllGather
(
return
p
hi
::
dynload
::
ncclAllGather
(
input
.
data
(),
output
.
data
(),
input
.
numel
(),
...
...
@@ -994,14 +1046,14 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::AllToAll(
size_t
offset
=
0
;
GroupStart
();
for
(
auto
i
=
0
;
i
<
size_
;
i
++
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
p
latform
::
dynload
::
ncclSend
(
PADDLE_ENFORCE_GPU_SUCCESS
(
p
hi
::
dynload
::
ncclSend
(
GetPointerByOffset
(
input
.
data
(),
offset
,
input
.
dtype
()),
input
.
numel
()
/
size_
,
platform
::
ToNCCLDataType
(
input
.
dtype
()),
i
,
comm
,
stream
));
PADDLE_ENFORCE_GPU_SUCCESS
(
p
latform
::
dynload
::
ncclRecv
(
PADDLE_ENFORCE_GPU_SUCCESS
(
p
hi
::
dynload
::
ncclRecv
(
GetPointerByOffset
(
output
.
data
(),
offset
,
input
.
dtype
()),
input
.
numel
()
/
size_
,
platform
::
ToNCCLDataType
(
input
.
dtype
()),
...
...
@@ -1030,15 +1082,15 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Reduce(
phi
::
DenseTensor
&
output
,
ncclComm_t
comm
,
const
gpuStream_t
&
stream
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclReduce
(
input
.
data
(),
output
.
data
(),
input
.
numel
(),
platform
::
ToNCCLDataType
(
input
.
dtype
()),
ToNCCLRedType
(
opts
.
reduce_op
),
opts
.
root_rank
,
comm
,
stream
));
PADDLE_ENFORCE_GPU_SUCCESS
(
phi
::
dynload
::
ncclReduce
(
input
.
data
(),
output
.
data
(),
input
.
numel
(),
platform
::
ToNCCLDataType
(
input
.
dtype
()),
ToNCCLRedType
(
opts
.
reduce_op
),
opts
.
root_rank
,
comm
,
stream
));
},
CommType
::
REDUCE
);
}
...
...
@@ -1066,7 +1118,7 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
if
(
rank_
==
opts
.
root_rank
)
{
GroupStart
();
for
(
auto
i
=
0
;
i
<
size_
;
i
++
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
p
latform
::
dynload
::
ncclSend
(
PADDLE_ENFORCE_GPU_SUCCESS
(
p
hi
::
dynload
::
ncclSend
(
GetPointerByOffset
(
input
.
data
(),
offset
,
input
.
dtype
()),
input
.
numel
()
/
size_
,
platform
::
ToNCCLDataType
(
input
.
dtype
()),
...
...
@@ -1075,22 +1127,22 @@ std::shared_ptr<ProcessGroup::Task> ProcessGroupNCCL::Scatter(
stream
));
offset
+=
input
.
numel
()
/
size_
;
}
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclRecv
(
output
.
data
(),
input
.
numel
()
/
size_
,
platform
::
ToNCCLDataType
(
input
.
dtype
()),
opts
.
root_rank
,
comm
,
stream
));
PADDLE_ENFORCE_GPU_SUCCESS
(
phi
::
dynload
::
ncclRecv
(
output
.
data
(),
input
.
numel
()
/
size_
,
platform
::
ToNCCLDataType
(
input
.
dtype
()),
opts
.
root_rank
,
comm
,
stream
));
GroupEnd
();
}
else
{
PADDLE_ENFORCE_GPU_SUCCESS
(
platform
::
dynload
::
ncclRecv
(
output
.
data
(),
input
.
numel
()
/
size_
,
platform
::
ToNCCLDataType
(
input
.
dtype
()),
opts
.
root_rank
,
comm
,
stream
));
PADDLE_ENFORCE_GPU_SUCCESS
(
phi
::
dynload
::
ncclRecv
(
output
.
data
(),
input
.
numel
()
/
size_
,
platform
::
ToNCCLDataType
(
input
.
dtype
()),
opts
.
root_rank
,
comm
,
stream
));
}
},
CommType
::
SCATTER
);
...
...
paddle/fluid/distributed/collective/ProcessGroupNCCL.h
浏览文件 @
e7711592
...
...
@@ -33,9 +33,9 @@
#endif
#ifdef PADDLE_WITH_RCCL
#include "paddle/
fluid/platform
/dynload/rccl.h"
#include "paddle/
phi/backends
/dynload/rccl.h"
#elif PADDLE_WITH_NCCL
#include "paddle/
fluid/platform
/dynload/nccl.h"
#include "paddle/
phi/backends
/dynload/nccl.h"
#endif
namespace
paddle
{
...
...
paddle/fluid/distributed/collective/
static_
check.cc
→
paddle/fluid/distributed/collective/check.cc
浏览文件 @
e7711592
...
...
@@ -12,16 +12,32 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/distributed/collective/
static_
check.h"
#include "paddle/fluid/distributed/collective/check.h"
#include "paddle/fluid/distributed/collective/NCCLTools.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/errors.h"
#ifdef PADDLE_WITH_HIP
#define gpuMalloc hipMalloc
#define gpuMemcpy hipMemcpy
#define gpuMemcpyDeviceToHost hipMemcpyDeviceToHost
#define gpuMemcpyHostToDevice hipMemcpyHostToDevice
#define gpuFree hipFree
#else
#define gpuMalloc cudaMalloc
#define gpuMemcpy cudaMemcpy
#define gpuMemcpyDeviceToHost cudaMemcpyDeviceToHost
#define gpuMemcpyHostToDevice cudaMemcpyHostToDevice
#define gpuFree cudaFree
#endif
namespace
paddle
{
namespace
distributed
{
// static checks
void
CommStaticCheck
::
CheckRank
(
int
rank
,
int
world_size
)
{
PADDLE_ENFORCE_GE
(
rank
,
0
,
...
...
@@ -102,9 +118,9 @@ void CommStaticCheck::CheckShape(const phi::DenseTensor& out_tensor,
}
}
void
CommStaticCheck
::
SingleTensor
(
const
phi
::
DenseTensor
&
tensor
,
int
rank
,
int
world_size
)
{
void
CommStaticCheck
::
CheckShape
(
const
phi
::
DenseTensor
&
tensor
,
int
rank
,
int
world_size
)
{
CheckPlace
(
tensor
);
CheckRank
(
rank
,
world_size
);
}
...
...
@@ -151,5 +167,124 @@ void CommStaticCheck::GatherLikeShape(const phi::DenseTensor& out_tensor,
/*in_size_factor*/
world_size
);
}
// dynamic checks
void
CommDynamicCheck
::
CheckDataType
(
const
phi
::
DenseTensor
&
tensor
,
int64_t
dtype
)
{
PADDLE_ENFORCE_EQ
(
static_cast
<
int64_t
>
(
tensor
.
dtype
()),
dtype
,
phi
::
errors
::
InvalidArgument
(
"Tensors in communication are expected to have the same data type."
));
}
void
CommDynamicCheck
::
CheckDataType
(
const
phi
::
DenseTensor
&
tensor
,
int
root_rank
,
int
cur_rank
,
ncclComm_t
comm
)
{
constexpr
int
kSize
=
sizeof
(
int64_t
);
int64_t
dtype_host
=
static_cast
<
int64_t
>
(
tensor
.
dtype
());
int64_t
*
dtype_device
;
PADDLE_ENFORCE_GPU_SUCCESS
(
gpuMalloc
(
&
dtype_device
,
kSize
));
PADDLE_ENFORCE_GPU_SUCCESS
(
gpuMemcpy
(
dtype_device
,
&
dtype_host
,
kSize
,
gpuMemcpyHostToDevice
));
NCCL_CHECK
(
phi
::
dynload
::
ncclBroadcast
(
dtype_device
,
dtype_device
,
kSize
,
ncclInt64
,
root_rank
,
comm
,
kDefaultStream
));
if
(
root_rank
==
cur_rank
)
{
VLOG
(
3
)
<<
"Dynamic check broadcast metadata, dtype: "
<<
dtype_host
;
}
else
{
PADDLE_ENFORCE_GPU_SUCCESS
(
gpuMemcpy
(
&
dtype_host
,
dtype_device
,
kSize
,
gpuMemcpyDeviceToHost
));
VLOG
(
3
)
<<
"Dynamic check recv metadata, dtype: "
<<
dtype_host
;
CheckDataType
(
tensor
,
dtype_host
);
}
PADDLE_ENFORCE_GPU_SUCCESS
(
gpuFree
(
dtype_device
));
}
void
CommDynamicCheck
::
CheckShape
(
const
phi
::
DenseTensor
&
tensor
,
int64_t
shape
)
{
PADDLE_ENFORCE_EQ
(
tensor
.
numel
(),
shape
,
phi
::
errors
::
InvalidArgument
(
"Tensors in communication are expected to have matching sizes."
));
}
void
CommDynamicCheck
::
CheckShape
(
const
phi
::
DenseTensor
&
tensor
,
int
root_rank
,
int
cur_rank
,
ncclComm_t
comm
)
{
CheckDataType
(
tensor
,
root_rank
,
cur_rank
,
comm
);
constexpr
int
kSize
=
sizeof
(
int64_t
);
int64_t
shape_host
=
tensor
.
numel
();
int64_t
*
shape_device
;
PADDLE_ENFORCE_GPU_SUCCESS
(
gpuMalloc
(
&
shape_device
,
kSize
));
PADDLE_ENFORCE_GPU_SUCCESS
(
gpuMemcpy
(
shape_device
,
&
shape_host
,
kSize
,
gpuMemcpyHostToDevice
));
NCCL_CHECK
(
phi
::
dynload
::
ncclBroadcast
(
shape_device
,
shape_device
,
kSize
,
ncclInt64
,
root_rank
,
comm
,
kDefaultStream
));
if
(
root_rank
==
cur_rank
)
{
VLOG
(
3
)
<<
"Dynamic check broadcast metadata, shape: "
<<
shape_host
;
}
else
{
PADDLE_ENFORCE_GPU_SUCCESS
(
gpuMemcpy
(
&
shape_host
,
shape_device
,
kSize
,
gpuMemcpyDeviceToHost
));
VLOG
(
3
)
<<
"Dynamic check recv metadata, shape: "
<<
shape_host
;
CheckShape
(
tensor
,
shape_host
);
}
PADDLE_ENFORCE_GPU_SUCCESS
(
gpuFree
(
shape_device
));
}
void
CommDynamicCheck
::
CheckShape
(
const
phi
::
DenseTensor
&
out_tensor
,
const
phi
::
DenseTensor
&
in_tensor
,
const
std
::
vector
<
int64_t
>&
in_size_each_rank
,
int
cur_rank
,
int
world_size
,
ncclComm_t
comm
)
{
CheckDataType
(
out_tensor
,
/*root_rank*/
0
,
cur_rank
,
comm
);
CheckDataType
(
in_tensor
,
/*root_rank*/
0
,
cur_rank
,
comm
);
constexpr
int
kSize
=
sizeof
(
int64_t
);
int64_t
in_row_size
=
in_tensor
.
numel
()
/
in_tensor
.
dims
()[
0
];
for
(
int
rank
=
0
;
rank
<
world_size
;
++
rank
)
{
int64_t
in_shape_host
=
in_size_each_rank
[
rank
]
*
in_row_size
;
int64_t
*
in_shape_device
;
PADDLE_ENFORCE_GPU_SUCCESS
(
gpuMalloc
(
&
in_shape_device
,
kSize
));
PADDLE_ENFORCE_GPU_SUCCESS
(
gpuMemcpy
(
in_shape_device
,
&
in_shape_host
,
kSize
,
gpuMemcpyHostToDevice
));
NCCL_CHECK
(
phi
::
dynload
::
ncclReduce
(
in_shape_device
,
in_shape_device
,
kSize
,
ncclInt64
,
ncclSum
,
rank
,
comm
,
kDefaultStream
));
if
(
rank
==
cur_rank
)
{
PADDLE_ENFORCE_GPU_SUCCESS
(
gpuMemcpy
(
&
in_shape_host
,
in_shape_device
,
kSize
,
gpuMemcpyDeviceToHost
));
VLOG
(
3
)
<<
"Dynamic check recv metadata, shape: "
<<
in_shape_host
;
CheckShape
(
out_tensor
,
in_shape_host
);
}
PADDLE_ENFORCE_GPU_SUCCESS
(
gpuFree
(
in_shape_device
));
}
}
}
// namespace distributed
}
// namespace paddle
paddle/fluid/distributed/collective/
static_
check.h
→
paddle/fluid/distributed/collective/check.h
浏览文件 @
e7711592
...
...
@@ -14,7 +14,18 @@
#pragma once
// forward declaration to reduce deps
#include <cstdint>
#include <vector>
#include "paddle/phi/backends/gpu/forwards.h"
#ifdef PADDLE_WITH_HIP
using
gpuStream_t
=
hipStream_t
;
#else
using
gpuStream_t
=
cudaStream_t
;
#endif
// forward declarations
namespace
phi
{
class
DenseTensor
;
}
...
...
@@ -49,9 +60,9 @@ struct CommStaticCheck {
int
in_size_factor
);
// for p2p
static
void
SingleTensor
(
const
phi
::
DenseTensor
&
tensor
,
int
rank
,
int
world_size
);
static
void
CheckShape
(
const
phi
::
DenseTensor
&
tensor
,
int
rank
,
int
world_size
);
// for collective
static
void
SameShape
(
const
phi
::
DenseTensor
&
out_tensor
,
...
...
@@ -73,5 +84,32 @@ struct CommStaticCheck {
int
world_size
);
};
struct
CommDynamicCheck
{
static
void
CheckDataType
(
const
phi
::
DenseTensor
&
tensor
,
int64_t
dtype
);
static
void
CheckDataType
(
const
phi
::
DenseTensor
&
tensor
,
int
root_rank
,
int
cur_rank
,
ncclComm_t
comm
);
static
void
CheckShape
(
const
phi
::
DenseTensor
&
tensor
,
int64_t
shape
);
static
void
CheckShape
(
const
phi
::
DenseTensor
&
tensor
,
int
root_rank
,
int
cur_rank
,
ncclComm_t
comm
);
static
void
CheckShape
(
const
phi
::
DenseTensor
&
out_tensor
,
const
phi
::
DenseTensor
&
in_tensor
,
const
std
::
vector
<
int64_t
>&
in_size_each_rank
,
int
cur_rank
,
int
world_size
,
ncclComm_t
comm
);
private:
// `0` represents default stream for both cuda & hip
static
constexpr
gpuStream_t
kDefaultStream
=
0
;
};
}
// namespace distributed
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录