Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e6af53b1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e6af53b1
编写于
9月 02, 2020
作者:
G
Guo Sheng
提交者:
GitHub
9月 02, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update some used apis in Transformer apis to 2.0 apis. (#26831)
Fix some code samples in Tranoformer apis. test=develop
上级
bf6cbbc7
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
37 addition
and
42 deletion
+37
-42
python/paddle/nn/layer/transformer.py
python/paddle/nn/layer/transformer.py
+37
-42
未找到文件。
python/paddle/nn/layer/transformer.py
浏览文件 @
e6af53b1
...
@@ -25,12 +25,13 @@ __all__ = [
...
@@ -25,12 +25,13 @@ __all__ = [
import
copy
import
copy
import
collections
import
collections
from
.common
import
Linear
,
Dropout
from
.norm
import
LayerNorm
from
..
import
functional
as
F
from
...
import
tensor
from
...fluid
import
layers
from
...fluid
import
layers
from
...fluid.dygraph
import
Layer
,
LayerList
from
...fluid.param_attr
import
ParamAttr
from
...fluid.param_attr
import
ParamAttr
from
...fluid.dygraph
import
Layer
,
Linear
,
Dropout
,
LayerNorm
,
LayerList
from
..
import
functional
as
F
from
...fluid.layers
import
utils
from
...fluid.layers.utils
import
map_structure
def
_convert_param_attr_to_list
(
param_attr
,
n
):
def
_convert_param_attr_to_list
(
param_attr
,
n
):
...
@@ -103,7 +104,7 @@ class MultiHeadAttention(Layer):
...
@@ -103,7 +104,7 @@ class MultiHeadAttention(Layer):
# self attention mask: [batch_size, num_heads, query_len, query_len]
# self attention mask: [batch_size, num_heads, query_len, query_len]
attn_mask = paddle.rand((2, 2, 4, 4))
attn_mask = paddle.rand((2, 2, 4, 4))
multi_head_attn = paddle.MultiHeadAttention(128, 2)
multi_head_attn = paddle.MultiHeadAttention(128, 2)
output = multi_head_attn(query, attn_mask=attn_mask) # [2, 4, 128]
output = multi_head_attn(query,
None, None,
attn_mask=attn_mask) # [2, 4, 128]
"""
"""
Cache
=
collections
.
namedtuple
(
"Cache"
,
[
"k"
,
"v"
])
Cache
=
collections
.
namedtuple
(
"Cache"
,
[
"k"
,
"v"
])
...
@@ -176,8 +177,8 @@ class MultiHeadAttention(Layer):
...
@@ -176,8 +177,8 @@ class MultiHeadAttention(Layer):
and their data types are same as inputs.
and their data types are same as inputs.
"""
"""
q
=
self
.
q_proj
(
query
)
q
=
self
.
q_proj
(
query
)
q
=
layers
.
reshape
(
x
=
q
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
q
=
tensor
.
reshape
(
x
=
q
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
q
=
layers
.
transpose
(
x
=
q
,
perm
=
[
0
,
2
,
1
,
3
])
q
=
tensor
.
transpose
(
x
=
q
,
perm
=
[
0
,
2
,
1
,
3
])
if
isinstance
(
cache
,
self
.
StaticCache
):
if
isinstance
(
cache
,
self
.
StaticCache
):
# for encoder-decoder attention in inference and has cached
# for encoder-decoder attention in inference and has cached
...
@@ -187,8 +188,8 @@ class MultiHeadAttention(Layer):
...
@@ -187,8 +188,8 @@ class MultiHeadAttention(Layer):
if
isinstance
(
cache
,
self
.
Cache
):
if
isinstance
(
cache
,
self
.
Cache
):
# for decoder self-attention in inference
# for decoder self-attention in inference
k
=
layers
.
concat
([
cache
.
k
,
k
],
axis
=
2
)
k
=
tensor
.
concat
([
cache
.
k
,
k
],
axis
=
2
)
v
=
layers
.
concat
([
cache
.
v
,
v
],
axis
=
2
)
v
=
tensor
.
concat
([
cache
.
v
,
v
],
axis
=
2
)
cache
=
self
.
Cache
(
k
,
v
)
cache
=
self
.
Cache
(
k
,
v
)
return
(
q
,
k
,
v
)
if
cache
is
None
else
(
q
,
k
,
v
,
cache
)
return
(
q
,
k
,
v
)
if
cache
is
None
else
(
q
,
k
,
v
,
cache
)
...
@@ -219,10 +220,10 @@ class MultiHeadAttention(Layer):
...
@@ -219,10 +220,10 @@ class MultiHeadAttention(Layer):
"""
"""
k
=
self
.
k_proj
(
key
)
k
=
self
.
k_proj
(
key
)
v
=
self
.
v_proj
(
value
)
v
=
self
.
v_proj
(
value
)
k
=
layers
.
reshape
(
x
=
k
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
k
=
tensor
.
reshape
(
x
=
k
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
k
=
layers
.
transpose
(
x
=
k
,
perm
=
[
0
,
2
,
1
,
3
])
k
=
tensor
.
transpose
(
x
=
k
,
perm
=
[
0
,
2
,
1
,
3
])
v
=
layers
.
reshape
(
x
=
v
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
v
=
tensor
.
reshape
(
x
=
v
,
shape
=
[
0
,
0
,
self
.
num_heads
,
self
.
head_dim
])
v
=
layers
.
transpose
(
x
=
v
,
perm
=
[
0
,
2
,
1
,
3
])
v
=
tensor
.
transpose
(
x
=
v
,
perm
=
[
0
,
2
,
1
,
3
])
return
k
,
v
return
k
,
v
def
gen_cache
(
self
,
key
,
value
=
None
,
type
=
Cache
):
def
gen_cache
(
self
,
key
,
value
=
None
,
type
=
Cache
):
...
@@ -352,24 +353,25 @@ class MultiHeadAttention(Layer):
...
@@ -352,24 +353,25 @@ class MultiHeadAttention(Layer):
q
,
k
,
v
,
cache
=
self
.
_prepare_qkv
(
query
,
key
,
value
,
cache
)
q
,
k
,
v
,
cache
=
self
.
_prepare_qkv
(
query
,
key
,
value
,
cache
)
# scale dot product attention
# scale dot product attention
# TODO(guosheng): use tensor.matmul, however it doesn't support `alpha`
product
=
layers
.
matmul
(
product
=
layers
.
matmul
(
x
=
q
,
y
=
k
,
transpose_y
=
True
,
alpha
=
self
.
head_dim
**-
0.5
)
x
=
q
,
y
=
k
,
transpose_y
=
True
,
alpha
=
self
.
head_dim
**-
0.5
)
if
attn_mask
is
not
None
:
if
attn_mask
is
not
None
:
# TODO(guosheng): support bool mask
# TODO(guosheng): support bool mask
product
=
product
+
attn_mask
product
=
product
+
attn_mask
weights
=
layers
.
softmax
(
product
)
weights
=
F
.
softmax
(
product
)
if
self
.
dropout
:
if
self
.
dropout
:
weights
=
layers
.
dropout
(
weights
=
F
.
dropout
(
weights
,
weights
,
dropout_prob
=
self
.
dropout
,
self
.
dropout
,
dropout_implementation
=
"upscale_in_train"
,
training
=
self
.
training
,
is_test
=
False
)
mode
=
"upscale_in_train"
)
out
=
layers
.
matmul
(
weights
,
v
)
out
=
tensor
.
matmul
(
weights
,
v
)
# combine heads
# combine heads
out
=
layers
.
transpose
(
out
,
perm
=
[
0
,
2
,
1
,
3
])
out
=
tensor
.
transpose
(
out
,
perm
=
[
0
,
2
,
1
,
3
])
out
=
layers
.
reshape
(
x
=
out
,
shape
=
[
0
,
0
,
out
.
shape
[
2
]
*
out
.
shape
[
3
]])
out
=
tensor
.
reshape
(
x
=
out
,
shape
=
[
0
,
0
,
out
.
shape
[
2
]
*
out
.
shape
[
3
]])
# project to output
# project to output
out
=
self
.
out_proj
(
out
)
out
=
self
.
out_proj
(
out
)
...
@@ -429,7 +431,7 @@ class TransformerEncoderLayer(Layer):
...
@@ -429,7 +431,7 @@ class TransformerEncoderLayer(Layer):
.. code-block:: python
.. code-block:: python
import paddle
import paddle
from paddle import TransformerEncoderLayer
from paddle
.nn
import TransformerEncoderLayer
# encoder input: [batch_size, src_len, d_model]
# encoder input: [batch_size, src_len, d_model]
enc_input = paddle.rand((2, 4, 128))
enc_input = paddle.rand((2, 4, 128))
...
@@ -470,17 +472,14 @@ class TransformerEncoderLayer(Layer):
...
@@ -470,17 +472,14 @@ class TransformerEncoderLayer(Layer):
bias_attr
=
bias_attrs
[
0
])
bias_attr
=
bias_attrs
[
0
])
self
.
linear1
=
Linear
(
self
.
linear1
=
Linear
(
d_model
,
dim_feedforward
,
weight_attrs
[
1
],
bias_attr
=
bias_attrs
[
1
])
d_model
,
dim_feedforward
,
weight_attrs
[
1
],
bias_attr
=
bias_attrs
[
1
])
self
.
dropout
=
Dropout
(
self
.
dropout
=
Dropout
(
act_dropout
,
mode
=
"upscale_in_train"
)
act_dropout
,
dropout_implementation
=
"upscale_in_train"
)
self
.
linear2
=
Linear
(
self
.
linear2
=
Linear
(
dim_feedforward
,
d_model
,
weight_attrs
[
1
],
bias_attr
=
bias_attrs
[
1
])
dim_feedforward
,
d_model
,
weight_attrs
[
1
],
bias_attr
=
bias_attrs
[
1
])
self
.
norm1
=
LayerNorm
(
d_model
)
self
.
norm1
=
LayerNorm
(
d_model
)
self
.
norm2
=
LayerNorm
(
d_model
)
self
.
norm2
=
LayerNorm
(
d_model
)
self
.
dropout1
=
Dropout
(
self
.
dropout1
=
Dropout
(
dropout
,
mode
=
"upscale_in_train"
)
dropout
,
dropout_implementation
=
"upscale_in_train"
)
self
.
dropout2
=
Dropout
(
dropout
,
mode
=
"upscale_in_train"
)
self
.
dropout2
=
Dropout
(
self
.
activation
=
getattr
(
F
,
activation
)
dropout
,
dropout_implementation
=
"upscale_in_train"
)
self
.
activation
=
getattr
(
layers
,
activation
)
def
forward
(
self
,
src
,
src_mask
=
None
):
def
forward
(
self
,
src
,
src_mask
=
None
):
"""
"""
...
@@ -539,7 +538,7 @@ class TransformerEncoder(Layer):
...
@@ -539,7 +538,7 @@ class TransformerEncoder(Layer):
.. code-block:: python
.. code-block:: python
import paddle
import paddle
from paddle import TransformerEncoderLayer, TransformerEncoder
from paddle
.nn
import TransformerEncoderLayer, TransformerEncoder
# encoder input: [batch_size, src_len, d_model]
# encoder input: [batch_size, src_len, d_model]
enc_input = paddle.rand((2, 4, 128))
enc_input = paddle.rand((2, 4, 128))
...
@@ -643,7 +642,7 @@ class TransformerDecoderLayer(Layer):
...
@@ -643,7 +642,7 @@ class TransformerDecoderLayer(Layer):
.. code-block:: python
.. code-block:: python
import paddle
import paddle
from paddle import TransformerDecoderLayer
from paddle
.nn
import TransformerDecoderLayer
# decoder input: [batch_size, tgt_len, d_model]
# decoder input: [batch_size, tgt_len, d_model]
dec_input = paddle.rand((2, 4, 128))
dec_input = paddle.rand((2, 4, 128))
...
@@ -697,20 +696,16 @@ class TransformerDecoderLayer(Layer):
...
@@ -697,20 +696,16 @@ class TransformerDecoderLayer(Layer):
bias_attr
=
bias_attrs
[
1
])
bias_attr
=
bias_attrs
[
1
])
self
.
linear1
=
Linear
(
self
.
linear1
=
Linear
(
d_model
,
dim_feedforward
,
weight_attrs
[
2
],
bias_attr
=
bias_attrs
[
2
])
d_model
,
dim_feedforward
,
weight_attrs
[
2
],
bias_attr
=
bias_attrs
[
2
])
self
.
dropout
=
Dropout
(
self
.
dropout
=
Dropout
(
act_dropout
,
mode
=
"upscale_in_train"
)
act_dropout
,
dropout_implementation
=
"upscale_in_train"
)
self
.
linear2
=
Linear
(
self
.
linear2
=
Linear
(
dim_feedforward
,
d_model
,
weight_attrs
[
2
],
bias_attr
=
bias_attrs
[
2
])
dim_feedforward
,
d_model
,
weight_attrs
[
2
],
bias_attr
=
bias_attrs
[
2
])
self
.
norm1
=
LayerNorm
(
d_model
)
self
.
norm1
=
LayerNorm
(
d_model
)
self
.
norm2
=
LayerNorm
(
d_model
)
self
.
norm2
=
LayerNorm
(
d_model
)
self
.
norm3
=
LayerNorm
(
d_model
)
self
.
norm3
=
LayerNorm
(
d_model
)
self
.
dropout1
=
Dropout
(
self
.
dropout1
=
Dropout
(
dropout
,
mode
=
"upscale_in_train"
)
dropout
,
dropout_implementation
=
"upscale_in_train"
)
self
.
dropout2
=
Dropout
(
dropout
,
mode
=
"upscale_in_train"
)
self
.
dropout2
=
Dropout
(
self
.
dropout3
=
Dropout
(
dropout
,
mode
=
"upscale_in_train"
)
dropout
,
dropout_implementation
=
"upscale_in_train"
)
self
.
activation
=
getattr
(
F
,
activation
)
self
.
dropout3
=
Dropout
(
dropout
,
dropout_implementation
=
"upscale_in_train"
)
self
.
activation
=
getattr
(
layers
,
activation
)
def
forward
(
self
,
tgt
,
memory
,
tgt_mask
=
None
,
memory_mask
=
None
,
cache
=
None
):
def
forward
(
self
,
tgt
,
memory
,
tgt_mask
=
None
,
memory_mask
=
None
,
cache
=
None
):
"""
"""
...
@@ -834,7 +829,7 @@ class TransformerDecoder(Layer):
...
@@ -834,7 +829,7 @@ class TransformerDecoder(Layer):
.. code-block:: python
.. code-block:: python
import paddle
import paddle
from paddle import TransformerDecoderLayer, TransformerDecoder
from paddle
.nn
import TransformerDecoderLayer, TransformerDecoder
# decoder input: [batch_size, tgt_len, d_model]
# decoder input: [batch_size, tgt_len, d_model]
dec_input = paddle.rand((2, 4, 128))
dec_input = paddle.rand((2, 4, 128))
...
@@ -1017,7 +1012,7 @@ class Transformer(Layer):
...
@@ -1017,7 +1012,7 @@ class Transformer(Layer):
.. code-block:: python
.. code-block:: python
import paddle
import paddle
from paddle import Transformer
from paddle
.nn
import Transformer
# src: [batch_size, tgt_len, d_model]
# src: [batch_size, tgt_len, d_model]
enc_input = paddle.rand((2, 4, 128))
enc_input = paddle.rand((2, 4, 128))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录