Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e658762a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e658762a
编写于
7月 24, 2018
作者:
S
sneaxiy
提交者:
GitHub
7月 24, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #12313 from sneaxiy/py_reader_doc
Modify PyReader doc in python/paddle/fluid/layers/io.py
上级
a4c06083
380ab62e
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
104 addition
and
32 deletion
+104
-32
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+104
-32
未找到文件。
python/paddle/fluid/layers/io.py
浏览文件 @
e658762a
...
@@ -456,52 +456,124 @@ def py_reader(capacity,
...
@@ -456,52 +456,124 @@ def py_reader(capacity,
name
=
None
,
name
=
None
,
use_double_buffer
=
True
):
use_double_buffer
=
True
):
"""
"""
Create a
reader and blocking queue
for data feeding in Python
Create a
Python reader
for data feeding in Python
This layer returns a Reader Variable and a BlockingQueue.
This layer returns a Reader Variable.
The BlockingQueue provides `push()` method to push a `LoDTensorArray`
The Reader provides :code:`decorate_paddle_reader()` and
object into the queue in Python side. In C++ side, the Reader
:code:`decorate_tensor_provider()` to set a Python generator as the data
Variable would invoke `pop()` method of the queue to retrieve the
source in Python side. When :code:`Executor::Run()` is invoked in C++
feeding data. The process of feeding data in Python side and fetching
side, the data from the generator would be read automatically. Unlike
data in C++ side can run in parallel. The BlockingQueue should be closed
:code:`DataFeeder.feed()`, the data reading process and
using `close()` method when unused.
:code:`Executor::Run()` process can run in parallel using
:code:`py_reader`. The :code:`start()` method of the Reader should be
called when each pass begins, while the :code:`reset()` method should be
called when the pass ends and :code:`fluid.core.EOFException` raises.
Note that :code:`Program.clone()` method cannot clone :code:`py_reader`.
Args:
Args:
use_double_buffer(bool): Whether use double buffer or not.
capacity(int): The buffer capacity maintained by :code:`py_reader`.
capacity(int): The maximum capacity of the BlockingQueue.
shapes(list|tuple): List of tuples which declaring data shapes.
shapes(list|tuple): List of tuples which declaring data shapes.
dtypes(list|tuple): List of strs which declaring data type.
dtypes(list|tuple): List of strs which declaring data type.
lod_levels(list|tuple): List of ints which declaring data lod_level.
lod_levels(list|tuple): List of ints which declaring data lod_level.
name(basestring): The prefix Python queue name and Reader name. None will
name(basestring): The prefix Python queue name and Reader name. None will
be generated automatically.
be generated automatically.
use_double_buffer(bool): Whether use double buffer or not.
Returns:
Returns:
tuple(Variable, BlockingQueue):
Variable: A Reader from which we can get feeding data.
A Reader Variable from which we can get feeding data.
A BlockingQueue object for data feeding.
Examples:
Examples:
.. code-block:: python
1. The basic usage of :code:`py_reader` is as follows:
reader, queue = fluid.layers.py_reader(
>>> import paddle.v2
capacity=10,
>>> import paddle.fluid as fluid
shapes=[[-1,3,224,224], [-1,1]],
>>> import paddle.dataset.mnist as mnist
dtypes=['float32', 'int64'])
>>>
# Via the reader, we can use 'read_file' layer to get data:
>>> reader = fluid.layers.py_reader(capacity=64,
image, label = fluid.layers.read_file(reader)
>>> shapes=[(-1,3,224,224), (-1,1)],
>>> dtypes=['float32', 'int64'])
# Via the blocking queue, we can feed data using threads
>>> reader.decorate_paddle_reader(
def feed_data(queue, feed_images, feed_labels):
>>> paddle.v2.reader.shuffle(paddle.batch(mnist.train())
for feed_image, feed_label in zip(feed_images, feed_labels):
>>>
data = core.LoDTensorArray()
>>> img, label = fluid.layers.read_file(reader)
data.append(feed_image)
>>> loss = network(img, label) # some network definition
data.append(feed_label)
>>>
queue.push(data)
>>> fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
>>>
thread = threading.Thread(target=feed_data, args=(queue, feed_images, feed_labels))
>>> exe = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
thread.start()
>>> for epoch_id in range(10):
>>> reader.start()
>>> try:
>>> while True:
>>> exe.run(fetch_list=[loss.name])
>>> except fluid.core.EOFException:
>>> reader.reset()
2. When training and testing are both performed, two different
:code:`py_reader` should be created with different names, e.g.:
>>> import paddle.v2
>>> import paddle.fluid as fluid
>>> import paddle.dataset.mnist as mnist
>>>
>>> def network(reader):
>>> img, label = fluid.layers.read_file(reader)
>>> # Here, we omitted the network definition
>>> return loss
>>>
>>> train_reader = fluid.layers.py_reader(capacity=64,
>>> shapes=[(-1,3,224,224), (-1,1)],
>>> dtypes=['float32', 'int64'],
>>> name='train_reader')
>>> train_reader.decorate_paddle_reader(
>>> paddle.v2.reader.shuffle(paddle.batch(mnist.train())
>>>
>>> test_reader = fluid.layers.py_reader(capacity=32,
>>> shapes=[(-1,3,224,224), (-1,1)],
>>> dtypes=['float32', 'int64'],
>>> name='test_reader')
>>> test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
>>>
>>> # Create train_main_prog and train_startup_prog
>>> train_main_prog = fluid.Program()
>>> train_startup_prog = fluid.Program()
>>> with fluid.program_guard(train_main_prog, train_startup_prog):
>>> # Use fluid.unique_name.guard() to share parameters with test program
>>> with fluid.unique_name.guard():
>>> train_loss = network(train_reader) # some network definition
>>> adam = fluid.optimizer.Adam(learning_rate=0.01)
>>> adam.minimize(loss)
>>>
>>> # Create test_main_prog and test_startup_prog
>>> test_main_prog = fluid.Program()
>>> test_startup_prog = fluid.Program()
>>> with fluid.program_guard(test_main_prog, test_startup_prog):
>>> # Use fluid.unique_name.guard() to share parameters with train program
>>> with fluid.unique_name.guard():
>>> test_loss = network(test_reader)
>>>
>>> fluid.Executor(fluid.CUDAPlace(0)).run(train_startup_prog)
>>> fluid.Executor(fluid.CUDAPlace(0)).run(test_startup_prog)
>>>
>>> train_exe = fluid.ParallelExecutor(use_cuda=True,
>>> loss_name=train_loss.name, main_program=train_main_prog)
>>> test_exe = fluid.ParallelExecutor(use_cuda=True,
>>> loss_name=test_loss.name, main_program=test_main_prog)
>>> for epoch_id in range(10):
>>> train_reader.start()
>>> try:
>>> while True:
>>> train_exe.run(fetch_list=[train_loss.name])
>>> except fluid.core.EOFException:
>>> train_reader.reset()
>>>
>>> test_reader.start()
>>> try:
>>> while True:
>>> test_exe.run(fetch_list=[test_loss.name])
>>> except fluid.core.EOFException:
>>> test_reader.reset()
"""
"""
dtypes
=
[
convert_np_dtype_to_dtype_
(
dt
)
for
dt
in
dtypes
]
dtypes
=
[
convert_np_dtype_to_dtype_
(
dt
)
for
dt
in
dtypes
]
shape_concat
=
[]
shape_concat
=
[]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录