Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e6232d82
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
e6232d82
编写于
2月 19, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
testing in mnist
上级
733da9b9
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
26 addition
and
27 deletion
+26
-27
python/paddle/v2/__init__.py
python/paddle/v2/__init__.py
+2
-1
python/paddle/v2/data_converter.py
python/paddle/v2/data_converter.py
+24
-26
未找到文件。
python/paddle/v2/__init__.py
浏览文件 @
e6232d82
...
...
@@ -20,7 +20,8 @@ import event
import
py_paddle.swig_paddle
as
api
__all__
=
[
'optimizer'
,
'layer'
,
'activation'
,
'parameters'
,
'init'
,
'trainer'
,
'event'
'optimizer'
,
'layer'
,
'activation'
,
'parameters'
,
'init'
,
'trainer'
,
'event'
,
'data_converter'
]
...
...
python/paddle/v2/data_converter.py
浏览文件 @
e6232d82
...
...
@@ -13,8 +13,8 @@
# limitations under the License.
import
collections
import
py_paddle.swig_paddle
import
numpy
import
py_paddle.swig_paddle
as
api
import
numpy
as
np
import
paddle.trainer.PyDataProvider2
as
dp2
__all__
=
[
'DataConverter'
]
...
...
@@ -50,12 +50,12 @@ class DenseConvert(IDataConverter):
:param data: input data
:type data: list | numpy array
:param argument: the type which paddle is acceptable
:type argument:
swig_paddle.
Arguments
:type argument:
Paddle's
Arguments
"""
assert
isinstance
(
argument
,
swig_paddle
.
Arguments
)
if
data
.
dtype
!=
n
umpy
.
float32
:
data
=
data
.
astype
(
n
umpy
.
float32
)
m
=
swig_paddle
.
Matrix
.
createDenseFromNumpy
(
data
,
True
,
False
)
assert
isinstance
(
argument
,
api
.
Arguments
)
if
data
.
dtype
!=
n
p
.
float32
:
data
=
data
.
astype
(
n
p
.
float32
)
m
=
api
.
Matrix
.
createDenseFromNumpy
(
data
,
True
,
False
)
argument
.
setSlotValue
(
self
.
pos
,
m
)
...
...
@@ -72,17 +72,16 @@ class SparseBinaryConvert(IDataConverter):
self
.
__height__
=
len
(
data
)
for
x
in
data
:
self
.
__rows__
.
append
(
self
.
__rows__
[
-
1
]
+
len
(
x
))
self__cols__
=
data
.
flatten
()
self
.
__cols__
=
data
.
flatten
()
def
convert
(
self
,
data
,
argument
):
assert
isinstance
(
argument
,
swig_paddle
.
Arguments
)
assert
isinstance
(
argument
,
api
.
Arguments
)
fill_csr
(
data
)
m
=
swig_paddle
.
Matrix
.
createSparse
(
self
.
__height__
,
self
.
input_type
.
dim
,
len
(
self
.
__cols__
),
len
(
self
.
__value__
)
==
0
)
assert
isinstance
(
m
,
swig_paddle
.
Matrix
)
m
=
api
.
Matrix
.
createSparse
(
self
.
__height__
,
self
.
input_type
.
dim
,
len
(
self
.
__cols__
),
len
(
self
.
__value__
)
==
0
)
assert
isinstance
(
m
,
api
.
Matrix
)
m
.
sparseCopyFrom
(
self
.
__rows__
,
self
.
__cols__
,
self
.
__value__
)
argument
.
setSlotValue
(
self
.
pos
,
m
)
...
...
@@ -105,9 +104,9 @@ class IndexConvert(IDataConverter):
self
.
__ids__
=
[]
def
convert
(
self
,
data
,
argument
):
assert
isinstance
(
argument
,
swig_paddle
.
Arguments
)
assert
isinstance
(
argument
,
api
.
Arguments
)
self
.
__ids__
=
data
.
flatten
()
ids
=
swig_paddle
.
IVector
.
create
(
self
.
__ids__
)
ids
=
api
.
IVector
.
create
(
self
.
__ids__
)
argument
.
setSlotIds
(
self
.
pos
,
ids
)
...
...
@@ -135,7 +134,7 @@ class SequenceConvert(IDataConverter):
def
convert
(
self
,
data
,
argument
):
fill_seq
(
data
)
seq
=
swig_paddle
.
IVector
.
create
(
self
.
__seq__
,
False
)
seq
=
api
.
IVector
.
create
(
self
.
__seq__
,
False
)
self
.
__setter__
(
argument
,
self
.
pos
,
seq
)
dat
=
[]
...
...
@@ -151,22 +150,21 @@ class SequenceConvert(IDataConverter):
class
DataConverter
(
object
):
def
__init__
(
self
,
input
_mapper
):
def
__init__
(
self
,
input
):
"""
Usege:
.. code-block:: python
inputs = [('image', dense_vector), ('label', integer_value)]
cvt = DataConverter(inputs)
arg = cvt
.convert
(minibatch_data, {'image':0, 'label':1})
arg = cvt(minibatch_data, {'image':0, 'label':1})
:param input_mapper: list of (input_name, input_type)
:type input_mapper: list
"""
assert
isinstance
(
self
.
input_types
,
collections
.
Sequence
)
self
.
input_names
=
[]
self
.
input_types
=
[]
for
each
in
self
.
input_types
:
for
each
in
input
:
self
.
input_names
.
append
(
each
[
0
])
self
.
input_types
.
append
(
each
[
1
])
assert
isinstance
(
each
[
1
],
dp2
.
InputType
)
...
...
@@ -186,16 +184,16 @@ class DataConverter(object):
the feature order in argument and data is the same.
:type input_dict: dict, like {string:integer, string, integer, ...}|None
:param argument: converted data will be saved in this argument. If None,
it will create a
swig_paddle.
Arguments firstly.
it will create a
Paddle's
Arguments firstly.
:param type: swig_paddle.Arguments|None
"""
if
argument
is
None
:
argument
=
swig_paddle
.
Arguments
.
createArguments
(
0
)
assert
isinstance
(
argument
,
swig_paddle
.
Arguments
)
argument
=
api
.
Arguments
.
createArguments
(
0
)
assert
isinstance
(
argument
,
api
.
Arguments
)
argument
.
resize
(
len
(
self
.
input_types
))
converts
=
[
DataConverter
.
create_
scann
er
(
i
,
each_type
)
DataConverter
.
create_
convert
er
(
i
,
each_type
)
for
i
,
each_type
in
enumerate
(
self
.
input_types
)
]
...
...
@@ -212,7 +210,7 @@ class DataConverter(object):
return
self
.
convert
(
dat
,
argument
)
@
staticmethod
def
create_
scann
er
(
pos
,
each
):
def
create_
convert
er
(
pos
,
each
):
assert
isinstance
(
each
,
dp2
.
InputType
)
retv
=
None
if
each
.
type
==
dp2
.
DataType
.
Dense
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录