Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e5bd7eb8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e5bd7eb8
编写于
6月 16, 2021
作者:
S
Shang Zhizhou
提交者:
GitHub
6月 16, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add trt layer norm dynamic (#33448)
* 1, remove layernorm dynamic fp16; 2, let reshape out in dynamic shape (#33535)
上级
c334d2bd
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
336 addition
and
23 deletion
+336
-23
paddle/fluid/inference/tensorrt/convert/layer_norm_op.cc
paddle/fluid/inference/tensorrt/convert/layer_norm_op.cc
+27
-11
paddle/fluid/inference/tensorrt/op_teller.cc
paddle/fluid/inference/tensorrt/op_teller.cc
+1
-1
paddle/fluid/inference/tensorrt/plugin/layer_norm_op_plugin.cu
...e/fluid/inference/tensorrt/plugin/layer_norm_op_plugin.cu
+108
-1
paddle/fluid/inference/tensorrt/plugin/layer_norm_op_plugin.h
...le/fluid/inference/tensorrt/plugin/layer_norm_op_plugin.h
+141
-8
paddle/fluid/pybind/inference_api.cc
paddle/fluid/pybind/inference_api.cc
+1
-0
python/paddle/fluid/tests/unittests/ir/inference/inference_pass_test.py
...fluid/tests/unittests/ir/inference/inference_pass_test.py
+3
-2
python/paddle/fluid/tests/unittests/ir/inference/test_trt_subgraph_pass.py
...id/tests/unittests/ir/inference/test_trt_subgraph_pass.py
+55
-0
未找到文件。
paddle/fluid/inference/tensorrt/convert/layer_norm_op.cc
浏览文件 @
e5bd7eb8
...
@@ -46,13 +46,6 @@ class LayerNormOpConverter : public OpConverter {
...
@@ -46,13 +46,6 @@ class LayerNormOpConverter : public OpConverter {
auto
*
Bias_t
=
Bias_v
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
Bias_t
=
Bias_v
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
Scale_t
=
Scale_v
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
Scale_t
=
Scale_v
->
GetMutable
<
framework
::
LoDTensor
>
();
int
input_num
=
1
;
for
(
int
i
=
0
;
i
<
X
->
getDimensions
().
nbDims
;
i
++
)
{
input_num
*=
X
->
getDimensions
().
d
[
i
];
}
std
::
vector
<
int64_t
>
mean_shape
{
input_num
};
std
::
vector
<
int64_t
>
variance_shape
{
input_num
};
std
::
unique_ptr
<
framework
::
LoDTensor
>
bias_tensor
(
std
::
unique_ptr
<
framework
::
LoDTensor
>
bias_tensor
(
new
framework
::
LoDTensor
());
new
framework
::
LoDTensor
());
std
::
unique_ptr
<
framework
::
LoDTensor
>
scale_tensor
(
std
::
unique_ptr
<
framework
::
LoDTensor
>
scale_tensor
(
...
@@ -68,10 +61,33 @@ class LayerNormOpConverter : public OpConverter {
...
@@ -68,10 +61,33 @@ class LayerNormOpConverter : public OpConverter {
auto
*
bias_data
=
bias_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
auto
*
bias_data
=
bias_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
auto
*
scale_data
=
scale_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
auto
*
scale_data
=
scale_tensor
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
plugin
::
LayerNormPlugin
*
plugin
=
new
plugin
::
LayerNormPlugin
(
nvinfer1
::
ILayer
*
layernorm_layer
=
nullptr
;
bias_data
,
bias_tensor
->
numel
(),
scale_data
,
scale_tensor
->
numel
(),
if
(
engine_
->
with_dynamic_shape
())
{
begin_norm_axis
,
eps
,
mean_shape
,
variance_shape
);
int
input_num
=
1
;
nvinfer1
::
IPluginLayer
*
layernorm_layer
=
engine_
->
AddPlugin
(
&
X
,
1
,
plugin
);
for
(
int
i
=
begin_norm_axis
;
i
<
X
->
getDimensions
().
nbDims
;
i
++
)
{
input_num
*=
X
->
getDimensions
().
d
[
i
];
}
std
::
vector
<
int64_t
>
mean_shape
{
input_num
};
std
::
vector
<
int64_t
>
variance_shape
{
input_num
};
plugin
::
LayerNormPluginDynamic
*
plugin
=
new
plugin
::
LayerNormPluginDynamic
(
bias_data
,
bias_tensor
->
numel
(),
scale_data
,
scale_tensor
->
numel
(),
begin_norm_axis
,
eps
,
mean_shape
,
variance_shape
);
layernorm_layer
=
engine_
->
AddDynamicPlugin
(
&
X
,
1
,
plugin
);
}
else
{
int
input_num
=
1
;
for
(
int
i
=
begin_norm_axis
-
1
;
i
<
X
->
getDimensions
().
nbDims
;
i
++
)
{
input_num
*=
X
->
getDimensions
().
d
[
i
];
}
std
::
vector
<
int64_t
>
mean_shape
{
input_num
};
std
::
vector
<
int64_t
>
variance_shape
{
input_num
};
plugin
::
LayerNormPlugin
*
plugin
=
new
plugin
::
LayerNormPlugin
(
bias_data
,
bias_tensor
->
numel
(),
scale_data
,
scale_tensor
->
numel
(),
begin_norm_axis
,
eps
,
mean_shape
,
variance_shape
);
layernorm_layer
=
engine_
->
AddPlugin
(
&
X
,
1
,
reinterpret_cast
<
plugin
::
PluginTensorRT
*>
(
plugin
));
}
auto
output_name
=
op_desc
.
Output
(
"Y"
).
front
();
auto
output_name
=
op_desc
.
Output
(
"Y"
).
front
();
engine_
->
SetWeights
(
op_desc
.
Input
(
"Bias"
).
front
(),
std
::
move
(
bias_tensor
));
engine_
->
SetWeights
(
op_desc
.
Input
(
"Bias"
).
front
(),
std
::
move
(
bias_tensor
));
...
...
paddle/fluid/inference/tensorrt/op_teller.cc
浏览文件 @
e5bd7eb8
...
@@ -700,7 +700,7 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
...
@@ -700,7 +700,7 @@ bool OpTeller::Tell(const framework::ir::Node* node, bool use_no_calib_int8,
}
}
if
(
op_type
==
"reshape"
||
op_type
==
"reshape2"
)
{
if
(
op_type
==
"reshape"
||
op_type
==
"reshape2"
)
{
if
(
!
desc
.
HasAttr
(
"shape"
)
||
with_dynamic_shape
)
{
if
(
!
desc
.
HasAttr
(
"shape"
))
{
return
false
;
return
false
;
// Paddle-TRT does not support the input tensors: Shape and ShapeTensor
// Paddle-TRT does not support the input tensors: Shape and ShapeTensor
}
else
if
(
desc
.
Input
(
"Shape"
).
size
()
>=
1
||
}
else
if
(
desc
.
Input
(
"Shape"
).
size
()
>=
1
||
...
...
paddle/fluid/inference/tensorrt/plugin/layer_norm_op_plugin.cu
浏览文件 @
e5bd7eb8
...
@@ -57,8 +57,18 @@ int LayerNormPlugin::enqueue(int batch_size, const void *const *inputs,
...
@@ -57,8 +57,18 @@ int LayerNormPlugin::enqueue(int batch_size, const void *const *inputs,
input_shape
.
push_back
(
input_dims
.
d
[
i
]);
input_shape
.
push_back
(
input_dims
.
d
[
i
]);
}
}
const
auto
input_ddim
=
framework
::
make_ddim
(
input_shape
);
const
auto
input_ddim
=
framework
::
make_ddim
(
input_shape
);
auto
matrix_dim
=
framework
::
flatten_to_2d
(
input_ddim
,
begin_norm_axis
-
1
);
auto
matrix_dim
=
framework
::
flatten_to_2d
(
input_ddim
,
begin_norm_axis
);
int
feature_size
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
int
feature_size
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
PADDLE_ENFORCE_EQ
(
feature_size
,
scale_
.
size
(),
platform
::
errors
::
InvalidArgument
(
"scale's size should be equal to the feature_size,"
"but got feature_size:%d, scale's size:%d."
,
feature_size
,
scale_
.
size
()));
PADDLE_ENFORCE_EQ
(
feature_size
,
bias_
.
size
(),
platform
::
errors
::
InvalidArgument
(
"bias's size should be equal to the feature_size,"
"but got feature_size:%d, bias's size:%d."
,
feature_size
,
bias_
.
size
()));
scale_t
.
Resize
(
framework
::
make_ddim
({
feature_size
}));
scale_t
.
Resize
(
framework
::
make_ddim
({
feature_size
}));
bias_t
.
Resize
(
framework
::
make_ddim
({
feature_size
}));
bias_t
.
Resize
(
framework
::
make_ddim
({
feature_size
}));
...
@@ -82,6 +92,103 @@ int LayerNormPlugin::enqueue(int batch_size, const void *const *inputs,
...
@@ -82,6 +92,103 @@ int LayerNormPlugin::enqueue(int batch_size, const void *const *inputs,
return
cudaGetLastError
()
!=
cudaSuccess
;
return
cudaGetLastError
()
!=
cudaSuccess
;
}
}
nvinfer1
::
DimsExprs
LayerNormPluginDynamic
::
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputDims
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
{
return
inputDims
[
0
];
}
bool
LayerNormPluginDynamic
::
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
in_out
,
int
nb_inputs
,
int
nb_outputs
)
{
PADDLE_ENFORCE_NOT_NULL
(
in_out
,
platform
::
errors
::
InvalidArgument
(
"The input of layernorm plugin shoule not be nullptr."
));
PADDLE_ENFORCE_LT
(
pos
,
nb_inputs
+
nb_outputs
,
platform
::
errors
::
InvalidArgument
(
"The pos(%d) should be less than the "
"num(%d) of the input and the output."
,
pos
,
nb_inputs
+
nb_outputs
));
const
nvinfer1
::
PluginTensorDesc
&
in
=
in_out
[
pos
];
if
(
pos
==
0
)
{
// TODO(Shangzhizhou) FP16 support
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
}
const
nvinfer1
::
PluginTensorDesc
&
prev
=
in_out
[
pos
-
1
];
// output
return
in
.
type
==
prev
.
type
&&
in
.
format
==
prev
.
format
;
}
nvinfer1
::
DataType
LayerNormPluginDynamic
::
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
input_types
,
int
nb_inputs
)
const
{
PADDLE_ENFORCE_EQ
(
index
,
0
,
platform
::
errors
::
InvalidArgument
(
"The LayerNormPlugin only has one input, so the "
"index value should be 0, but get %d."
,
index
));
return
input_types
[
0
];
}
int
LayerNormPluginDynamic
::
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
{
const
auto
&
input_dims
=
input_desc
[
0
].
dims
;
int
begin_norm_axis
=
begin_norm_axis_
;
float
eps
=
eps_
;
std
::
vector
<
int
>
input_shape
;
for
(
int
i
=
0
;
i
<
input_dims
.
nbDims
;
i
++
)
{
input_shape
.
push_back
(
input_dims
.
d
[
i
]);
}
const
auto
input_ddim
=
framework
::
make_ddim
(
input_shape
);
auto
matrix_dim
=
framework
::
flatten_to_2d
(
input_ddim
,
begin_norm_axis
);
int
feature_size
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
PADDLE_ENFORCE_EQ
(
feature_size
,
scale_
.
size
(),
platform
::
errors
::
InvalidArgument
(
"scale's size should be equal to the feature_size,"
"but got feature_size:%d, scale's size:%d."
,
feature_size
,
scale_
.
size
()));
PADDLE_ENFORCE_EQ
(
feature_size
,
bias_
.
size
(),
platform
::
errors
::
InvalidArgument
(
"bias's size should be equal to the feature_size,"
"but got feature_size:%d, bias's size:%d."
,
feature_size
,
bias_
.
size
()));
int
device_id
;
cudaGetDevice
(
&
device_id
);
auto
input_type
=
input_desc
[
0
].
type
;
if
(
input_type
==
nvinfer1
::
DataType
::
kFLOAT
)
{
VLOG
(
1
)
<<
"TRT Plugin DataType selected. LayerNorm-->fp32"
;
const
float
*
input
=
reinterpret_cast
<
const
float
*>
(
inputs
[
0
]);
float
*
output
=
static_cast
<
float
*>
(
outputs
[
0
]);
scale_t
.
Resize
(
framework
::
make_ddim
({
feature_size
}));
bias_t
.
Resize
(
framework
::
make_ddim
({
feature_size
}));
mean_t
.
Resize
(
framework
::
make_ddim
(
mean_shape_
));
variance_t
.
Resize
(
framework
::
make_ddim
(
variance_shape_
));
float
*
scale_d
=
scale_t
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
device_id
));
float
*
bias_d
=
bias_t
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
device_id
));
float
*
mean_d
=
mean_t
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
device_id
));
float
*
variance_d
=
variance_t
.
mutable_data
<
float
>
(
platform
::
CUDAPlace
(
device_id
));
cudaMemcpyAsync
(
scale_d
,
scale_
.
data
(),
sizeof
(
float
)
*
feature_size
,
cudaMemcpyHostToDevice
,
stream
);
cudaMemcpyAsync
(
bias_d
,
bias_
.
data
(),
sizeof
(
float
)
*
feature_size
,
cudaMemcpyHostToDevice
,
stream
);
paddle
::
operators
::
LayerNormDirectCUDAFunctor
<
float
>
layer_norm
;
layer_norm
(
stream
,
input
,
input_shape
,
bias_d
,
scale_d
,
output
,
mean_d
,
variance_d
,
begin_norm_axis
,
eps
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The LayerNorm TRT Plugin's input type should be float."
));
}
return
cudaGetLastError
()
!=
cudaSuccess
;
}
}
// namespace plugin
}
// namespace plugin
}
// namespace tensorrt
}
// namespace tensorrt
}
// namespace inference
}
// namespace inference
...
...
paddle/fluid/inference/tensorrt/plugin/layer_norm_op_plugin.h
浏览文件 @
e5bd7eb8
...
@@ -50,7 +50,7 @@ class LayerNormPlugin : public PluginTensorRT {
...
@@ -50,7 +50,7 @@ class LayerNormPlugin : public PluginTensorRT {
// TRT will call this func when we need to serialize the configuration of
// TRT will call this func when we need to serialize the configuration of
// tensorrt.
// tensorrt.
// It should not be called by users.
// It should not be called by users.
void
serialize
(
void
*
buffer
)
override
{
void
serialize
(
void
*
buffer
)
override
{
SerializeValue
(
&
buffer
,
getPluginType
());
SerializeValue
(
&
buffer
,
getPluginType
());
serializeBase
(
buffer
);
serializeBase
(
buffer
);
SerializeValue
(
&
buffer
,
bias_
);
SerializeValue
(
&
buffer
,
bias_
);
...
@@ -62,7 +62,7 @@ class LayerNormPlugin : public PluginTensorRT {
...
@@ -62,7 +62,7 @@ class LayerNormPlugin : public PluginTensorRT {
}
}
public:
public:
LayerNormPlugin
(
const
float
*
bias
,
const
int
bias_num
,
const
float
*
scale
,
LayerNormPlugin
(
const
float
*
bias
,
const
int
bias_num
,
const
float
*
scale
,
const
int
scale_num
,
int
begin_norm_axis
,
float
eps
,
const
int
scale_num
,
int
begin_norm_axis
,
float
eps
,
std
::
vector
<
int64_t
>
mean_shape
,
std
::
vector
<
int64_t
>
mean_shape
,
std
::
vector
<
int64_t
>
variance_shape
)
std
::
vector
<
int64_t
>
variance_shape
)
...
@@ -78,7 +78,7 @@ class LayerNormPlugin : public PluginTensorRT {
...
@@ -78,7 +78,7 @@ class LayerNormPlugin : public PluginTensorRT {
// It was used for tensorrt deserialization.
// It was used for tensorrt deserialization.
// It should not be called by users.
// It should not be called by users.
LayerNormPlugin
(
void
const
*
serialData
,
size_t
serialLength
)
{
LayerNormPlugin
(
void
const
*
serialData
,
size_t
serialLength
)
{
deserializeBase
(
serialData
,
serialLength
);
deserializeBase
(
serialData
,
serialLength
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
bias_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
bias_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
scale_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
scale_
);
...
@@ -90,20 +90,153 @@ class LayerNormPlugin : public PluginTensorRT {
...
@@ -90,20 +90,153 @@ class LayerNormPlugin : public PluginTensorRT {
~
LayerNormPlugin
()
{}
~
LayerNormPlugin
()
{}
int
initialize
()
override
;
int
initialize
()
override
;
LayerNormPlugin
*
clone
()
const
override
{
LayerNormPlugin
*
clone
()
const
override
{
return
new
LayerNormPlugin
(
bias_
.
data
(),
bias_
.
size
(),
scale_
.
data
(),
return
new
LayerNormPlugin
(
bias_
.
data
(),
bias_
.
size
(),
scale_
.
data
(),
scale_
.
size
(),
begin_norm_axis_
,
eps_
,
scale_
.
size
(),
begin_norm_axis_
,
eps_
,
mean_shape_
,
variance_shape_
);
mean_shape_
,
variance_shape_
);
}
}
const
char
*
getPluginType
()
const
override
{
return
"layer_norm_plugin"
;
}
const
char
*
getPluginType
()
const
override
{
return
"layer_norm_plugin"
;
}
int
getNbOutputs
()
const
override
{
return
1
;
}
int
getNbOutputs
()
const
override
{
return
1
;
}
nvinfer1
::
Dims
getOutputDimensions
(
int
index
,
const
nvinfer1
::
Dims
*
inputs
,
nvinfer1
::
Dims
getOutputDimensions
(
int
index
,
const
nvinfer1
::
Dims
*
inputs
,
int
nbInputDims
)
override
;
int
nbInputDims
)
override
;
int
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
void
**
outputs
,
int
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
void
**
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
void
*
workspace
,
cudaStream_t
stream
)
override
;
};
};
class
LayerNormPluginDynamic
:
public
DynamicPluginTensorRT
{
public:
LayerNormPluginDynamic
(
const
float
*
bias
,
const
int
bias_num
,
const
float
*
scale
,
const
int
scale_num
,
int
begin_norm_axis
,
float
eps
,
std
::
vector
<
int64_t
>
mean_shape
,
std
::
vector
<
int64_t
>
variance_shape
)
:
begin_norm_axis_
(
begin_norm_axis
),
eps_
(
eps
),
mean_shape_
(
mean_shape
),
variance_shape_
(
variance_shape
)
{
bias_
.
resize
(
bias_num
);
scale_
.
resize
(
scale_num
);
std
::
copy
(
bias
,
bias
+
bias_num
,
bias_
.
data
());
std
::
copy
(
scale
,
scale
+
scale_num
,
scale_
.
data
());
}
LayerNormPluginDynamic
(
void
const
*
serialData
,
size_t
serialLength
)
{
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
bias_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
scale_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
begin_norm_axis_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
eps_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
mean_shape_
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
variance_shape_
);
}
nvinfer1
::
IPluginV2DynamicExt
*
clone
()
const
override
{
return
new
LayerNormPluginDynamic
(
bias_
.
data
(),
bias_
.
size
(),
scale_
.
data
(),
scale_
.
size
(),
begin_norm_axis_
,
eps_
,
mean_shape_
,
variance_shape_
);
}
const
char
*
getPluginType
()
const
override
{
return
"layernorm_plugin"
;
}
int
getNbOutputs
()
const
override
{
return
1
;
}
int
initialize
()
override
{
return
0
;
}
size_t
getSerializationSize
()
const
override
{
return
SerializedSize
(
bias_
)
+
SerializedSize
(
scale_
)
+
SerializedSize
(
begin_norm_axis_
)
+
SerializedSize
(
eps_
)
+
SerializedSize
(
mean_shape_
)
+
SerializedSize
(
variance_shape_
);
}
void
serialize
(
void
*
buffer
)
const
override
{
SerializeValue
(
&
buffer
,
bias_
);
SerializeValue
(
&
buffer
,
scale_
);
SerializeValue
(
&
buffer
,
begin_norm_axis_
);
SerializeValue
(
&
buffer
,
eps_
);
SerializeValue
(
&
buffer
,
mean_shape_
);
SerializeValue
(
&
buffer
,
variance_shape_
);
}
nvinfer1
::
DimsExprs
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
override
;
bool
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
inOut
,
int
nbInputs
,
int
nbOutputs
)
override
;
void
configurePlugin
(
const
nvinfer1
::
DynamicPluginTensorDesc
*
in
,
int
nbInputs
,
const
nvinfer1
::
DynamicPluginTensorDesc
*
out
,
int
nbOutputs
)
override
{}
size_t
getWorkspaceSize
(
const
nvinfer1
::
PluginTensorDesc
*
inputs
,
int
nbInputs
,
const
nvinfer1
::
PluginTensorDesc
*
outputs
,
int
nbOutputs
)
const
override
{
return
0
;
}
int
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
inputDesc
,
const
nvinfer1
::
PluginTensorDesc
*
outputDesc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
nvinfer1
::
DataType
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
inputTypes
,
int
nbInputs
)
const
override
;
void
destroy
()
override
{
delete
this
;
}
private:
std
::
vector
<
float
>
bias_
;
std
::
vector
<
float
>
scale_
;
framework
::
Tensor
scale_t
;
framework
::
Tensor
bias_t
;
framework
::
Tensor
mean_t
;
framework
::
Tensor
variance_t
;
int
begin_norm_axis_
;
float
eps_
;
std
::
vector
<
int64_t
>
mean_shape_
;
std
::
vector
<
int64_t
>
variance_shape_
;
};
class
LayerNormPluginDynamicCreator
:
public
nvinfer1
::
IPluginCreator
{
public:
LayerNormPluginDynamicCreator
()
{}
const
char
*
getPluginName
()
const
override
{
return
"layernorm_plugin"
;
}
const
char
*
getPluginVersion
()
const
override
{
return
"1"
;
}
const
nvinfer1
::
PluginFieldCollection
*
getFieldNames
()
override
{
return
&
field_collection_
;
}
nvinfer1
::
IPluginV2
*
createPlugin
(
const
char
*
name
,
const
nvinfer1
::
PluginFieldCollection
*
fc
)
override
{
return
nullptr
;
}
nvinfer1
::
IPluginV2
*
deserializePlugin
(
const
char
*
name
,
const
void
*
serial_data
,
size_t
serial_length
)
override
{
auto
plugin
=
new
LayerNormPluginDynamic
(
serial_data
,
serial_length
);
return
plugin
;
}
void
setPluginNamespace
(
const
char
*
lib_namespace
)
override
{
plugin_namespace_
=
lib_namespace
;
}
const
char
*
getPluginNamespace
()
const
override
{
return
plugin_namespace_
.
c_str
();
}
private:
std
::
string
plugin_namespace_
;
std
::
string
plugin_name_
;
nvinfer1
::
PluginFieldCollection
field_collection_
{
0
,
nullptr
};
std
::
vector
<
nvinfer1
::
PluginField
>
plugin_attributes_
;
};
REGISTER_TRT_PLUGIN_V2
(
LayerNormPluginDynamicCreator
);
}
// namespace plugin
}
// namespace plugin
}
// namespace tensorrt
}
// namespace tensorrt
}
// namespace inference
}
// namespace inference
...
...
paddle/fluid/pybind/inference_api.cc
浏览文件 @
e5bd7eb8
...
@@ -511,6 +511,7 @@ void BindAnalysisConfig(py::module *m) {
...
@@ -511,6 +511,7 @@ void BindAnalysisConfig(py::module *m) {
py
::
arg
(
"disable_trt_plugin_fp16"
)
=
false
)
py
::
arg
(
"disable_trt_plugin_fp16"
)
=
false
)
.
def
(
"enable_tensorrt_oss"
,
&
AnalysisConfig
::
EnableTensorRtOSS
)
.
def
(
"enable_tensorrt_oss"
,
&
AnalysisConfig
::
EnableTensorRtOSS
)
.
def
(
"tensorrt_oss_enabled"
,
&
AnalysisConfig
::
tensorrt_oss_enabled
)
.
def
(
"tensorrt_oss_enabled"
,
&
AnalysisConfig
::
tensorrt_oss_enabled
)
.
def
(
"exp_disable_tensorrt_ops"
,
&
AnalysisConfig
::
Exp_DisableTensorRtOPs
)
.
def
(
"enable_tensorrt_dla"
,
&
AnalysisConfig
::
EnableTensorRtDLA
,
.
def
(
"enable_tensorrt_dla"
,
&
AnalysisConfig
::
EnableTensorRtDLA
,
py
::
arg
(
"dla_core"
)
=
0
)
py
::
arg
(
"dla_core"
)
=
0
)
.
def
(
"tensorrt_dla_enabled"
,
&
AnalysisConfig
::
tensorrt_dla_enabled
)
.
def
(
"tensorrt_dla_enabled"
,
&
AnalysisConfig
::
tensorrt_dla_enabled
)
...
...
python/paddle/fluid/tests/unittests/ir/inference/inference_pass_test.py
浏览文件 @
e5bd7eb8
...
@@ -160,7 +160,8 @@ class InferencePassTest(unittest.TestCase):
...
@@ -160,7 +160,8 @@ class InferencePassTest(unittest.TestCase):
use_gpu
,
use_gpu
,
atol
=
1e-5
,
atol
=
1e-5
,
flatten
=
False
,
flatten
=
False
,
quant
=
False
):
quant
=
False
,
rtol
=
1e-5
):
'''
'''
Check whether calculating on CPU and GPU, enable TensorRT
Check whether calculating on CPU and GPU, enable TensorRT
or disable TensorRT, enable MKLDNN or disable MKLDNN
or disable TensorRT, enable MKLDNN or disable MKLDNN
...
@@ -260,7 +261,7 @@ class InferencePassTest(unittest.TestCase):
...
@@ -260,7 +261,7 @@ class InferencePassTest(unittest.TestCase):
self
.
assertTrue
(
self
.
assertTrue
(
np
.
allclose
(
np
.
allclose
(
out
,
tensorrt_output
,
atol
=
atol
),
out
,
tensorrt_output
,
rtol
=
rtol
,
atol
=
atol
),
"Output has diff between GPU and TensorRT. "
)
"Output has diff between GPU and TensorRT. "
)
# Check whether the mkldnn results and the CPU results are the same.
# Check whether the mkldnn results and the CPU results are the same.
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_subgraph_pass.py
浏览文件 @
e5bd7eb8
...
@@ -367,6 +367,61 @@ class TensorRTSubgraphPassLayerNormTest(InferencePassTest):
...
@@ -367,6 +367,61 @@ class TensorRTSubgraphPassLayerNormTest(InferencePassTest):
PassVersionChecker
.
IsCompatible
(
'tensorrt_subgraph_pass'
))
PassVersionChecker
.
IsCompatible
(
'tensorrt_subgraph_pass'
))
class
TensorRTSubgraphPassLayerNormDynamicTest
(
InferencePassTest
):
def
setUp
(
self
):
self
.
set_params
()
with
fluid
.
program_guard
(
self
.
main_program
,
self
.
startup_program
):
data
=
fluid
.
data
(
name
=
"data"
,
shape
=
[
-
1
,
3
,
64
,
64
],
dtype
=
"float32"
)
out
=
fluid
.
layers
.
layer_norm
(
data
,
begin_norm_axis
=
self
.
begin_norm_axis
)
self
.
feeds
=
{
"data"
:
np
.
random
.
random
([
1
,
3
,
64
,
64
]).
astype
(
"float32"
),
}
self
.
set_trt_params
()
self
.
fetch_list
=
[
out
]
def
set_trt_params
(
self
):
self
.
enable_trt
=
True
self
.
trt_parameters
=
TensorRTSubgraphPassLayerNormDynamicTest
.
TensorRTParam
(
1
<<
30
,
32
,
0
,
self
.
precision
,
self
.
serialize
,
False
)
self
.
dynamic_shape_params
=
TensorRTSubgraphPassLayerNormDynamicTest
.
DynamicShapeParam
(
{
'data'
:
[
1
,
3
,
64
,
64
],
},
{
'data'
:
[
8
,
8
,
64
,
64
],
},
{
'data'
:
[
4
,
4
,
64
,
64
],
},
False
)
def
set_params
(
self
):
self
.
begin_norm_axis
=
2
self
.
precision
=
AnalysisConfig
.
Precision
.
Float32
self
.
serialize
=
True
def
test_check_output
(
self
):
if
os
.
path
.
exists
(
self
.
path
+
"_opt_cache"
):
shutil
.
rmtree
(
self
.
path
+
"_opt_cache"
)
if
core
.
is_compiled_with_cuda
():
use_gpu
=
True
self
.
check_output_with_option
(
use_gpu
)
self
.
assertTrue
(
PassVersionChecker
.
IsCompatible
(
'tensorrt_subgraph_pass'
))
class
TensorRTSubgraphPassLayerNormDynamicFP16Test
(
TensorRTSubgraphPassLayerNormDynamicTest
):
def
set_params
(
self
):
self
.
begin_norm_axis
=
2
self
.
precision
=
AnalysisConfig
.
Precision
.
Half
self
.
serialize
=
True
def
test_check_output
(
self
):
if
os
.
path
.
exists
(
self
.
path
+
"_opt_cache"
):
shutil
.
rmtree
(
self
.
path
+
"_opt_cache"
)
if
core
.
is_compiled_with_cuda
():
use_gpu
=
True
self
.
check_output_with_option
(
use_gpu
,
atol
=
0.01
,
rtol
=
0.01
)
self
.
assertTrue
(
PassVersionChecker
.
IsCompatible
(
'tensorrt_subgraph_pass'
))
class
TensorRTSubgraphPassLayerNormBeginNormAxis2Test
(
class
TensorRTSubgraphPassLayerNormBeginNormAxis2Test
(
TensorRTSubgraphPassLayerNormTest
):
TensorRTSubgraphPassLayerNormTest
):
def
set_params
(
self
):
def
set_params
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录