提交 e553d572 编写于 作者: S sweetsky0901

format test code

上级 0112c5d6
......@@ -15,7 +15,8 @@ def unpool2dmax_forward_naive(input, indices, ksize, strides, paddings):
index = indices[nidx, cidx, h, w]
hidx = (index - index % out_W) / out_W
widx = index % out_W
out[nidx, cidx, int(hidx), int(widx)] = input[nidx, cidx, h, w]
out[nidx, cidx, int(hidx), int(widx)] = \
input[nidx, cidx, h, w]
return out
......@@ -26,23 +27,31 @@ class TestUnpoolOp(OpTest):
self.init_test_case()
pre_input = np.random.random(self.shape).astype("float32")
N, C, H, W = pre_input.shape
H_out = (H - self.ksize[0] + 2 * self.paddings[0]) / self.strides[0] + 1
W_out = (W - self.ksize[1] + 2 * self.paddings[1]) / self.strides[1] + 1
H_out = (H - self.ksize[0] + 2 * self.paddings[0]) / \
self.strides[0] + 1
W_out = (W - self.ksize[1] + 2 * self.paddings[1]) / \
self.strides[1] + 1
input = np.zeros((N, C, H_out, W_out))
indices = np.zeros((N, C, H_out, W_out))
for i in xrange(H_out):
for j in xrange(W_out):
r_start = np.max((i * self.strides[0] - self.paddings[0], 0))
r_end = np.min((i * self.strides[0] + self.ksize[0] - self.paddings[0], H))
r_end = np.min((i * self.strides[0] + self.ksize[0] - \
self.paddings[0], H))
c_start = np.max((j * self.strides[1] - self.paddings[1], 0))
c_end = np.min((j * self.strides[1] + self.ksize[1] - self.paddings[1], W))
c_end = np.min((j * self.strides[1] + self.ksize[1] - \
self.paddings[1], W))
for nidx in xrange(N):
for cidx in xrange(C):
x_masked = pre_input[nidx, cidx, r_start:r_end, c_start:c_end]
x_masked = pre_input[nidx, cidx, r_start:r_end, \
c_start:c_end]
input[nidx, cidx, i, j] = x_masked.max()
arg = x_masked.argmax()
indices[nidx, cidx, i, j] = (r_start + arg / self.ksize[1]) * W + c_start + arg % self.ksize[1]
output = self.Unpool2d_forward_naive(input, indices, self.ksize, self.strides, self.paddings).astype("float32")
indices[nidx, cidx, i, j] = \
(r_start + arg / self.ksize[1]) * W + \
c_start + arg % self.ksize[1]
output = self.Unpool2d_forward_naive(input, indices, self.ksize, \
self.strides, self.paddings).astype("float32")
self.inputs = {'X': input.astype('float32'),
'Y': indices.astype('int16')}
self.attrs = {
......@@ -57,7 +66,7 @@ class TestUnpoolOp(OpTest):
self.check_output()
def test_check_grad(self):
self.check_grad(['X'], 'Out', max_relative_error=0.5)
self.check_grad(['X'], 'Out')
def init_test_case(self):
self.Unpool2d_forward_naive = unpool2dmax_forward_naive
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册