Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e5414f76
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e5414f76
编写于
3月 25, 2023
作者:
J
jjyaoao
提交者:
GitHub
3月 25, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Test Mv] remove mlu (#52064)
上级
24740ccd
变更
39
隐藏空白更改
内联
并排
Showing
39 changed file
with
0 addition
and
3452 deletion
+0
-3452
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+0
-4
python/paddle/fluid/tests/unittests/mlu/CMakeLists.txt
python/paddle/fluid/tests/unittests/mlu/CMakeLists.txt
+0
-56
python/paddle/fluid/tests/unittests/mlu/c_comm_init_op_mlu.py
...on/paddle/fluid/tests/unittests/mlu/c_comm_init_op_mlu.py
+0
-74
python/paddle/fluid/tests/unittests/mlu/collective_allgather_api.py
...dle/fluid/tests/unittests/mlu/collective_allgather_api.py
+0
-56
python/paddle/fluid/tests/unittests/mlu/collective_allgather_op.py
...ddle/fluid/tests/unittests/mlu/collective_allgather_op.py
+0
-72
python/paddle/fluid/tests/unittests/mlu/collective_allreduce_api.py
...dle/fluid/tests/unittests/mlu/collective_allreduce_api.py
+0
-55
python/paddle/fluid/tests/unittests/mlu/collective_allreduce_op.py
...ddle/fluid/tests/unittests/mlu/collective_allreduce_op.py
+0
-73
python/paddle/fluid/tests/unittests/mlu/collective_broadcast_api.py
...dle/fluid/tests/unittests/mlu/collective_broadcast_api.py
+0
-57
python/paddle/fluid/tests/unittests/mlu/collective_broadcast_op.py
...ddle/fluid/tests/unittests/mlu/collective_broadcast_op.py
+0
-74
python/paddle/fluid/tests/unittests/mlu/collective_reduce_api.py
...paddle/fluid/tests/unittests/mlu/collective_reduce_api.py
+0
-57
python/paddle/fluid/tests/unittests/mlu/collective_reduce_op.py
.../paddle/fluid/tests/unittests/mlu/collective_reduce_op.py
+0
-74
python/paddle/fluid/tests/unittests/mlu/multi_process_mlu.py
python/paddle/fluid/tests/unittests/mlu/multi_process_mlu.py
+0
-94
python/paddle/fluid/tests/unittests/mlu/nproc_process_mlu.py
python/paddle/fluid/tests/unittests/mlu/nproc_process_mlu.py
+0
-43
python/paddle/fluid/tests/unittests/mlu/parallel_dygraph_sync_batch_norm.py
...d/tests/unittests/mlu/parallel_dygraph_sync_batch_norm.py
+0
-110
python/paddle/fluid/tests/unittests/mlu/test_c_comm_init_op_mlu.sh
...ddle/fluid/tests/unittests/mlu/test_c_comm_init_op_mlu.sh
+0
-20
python/paddle/fluid/tests/unittests/mlu/test_collective_allgather.py
...le/fluid/tests/unittests/mlu/test_collective_allgather.py
+0
-59
python/paddle/fluid/tests/unittests/mlu/test_collective_allgather_api_mlu.py
.../tests/unittests/mlu/test_collective_allgather_api_mlu.py
+0
-45
python/paddle/fluid/tests/unittests/mlu/test_collective_allreduce_api_mlu.py
.../tests/unittests/mlu/test_collective_allreduce_api_mlu.py
+0
-45
python/paddle/fluid/tests/unittests/mlu/test_collective_allreduce_max.py
...luid/tests/unittests/mlu/test_collective_allreduce_max.py
+0
-61
python/paddle/fluid/tests/unittests/mlu/test_collective_allreduce_min.py
...luid/tests/unittests/mlu/test_collective_allreduce_min.py
+0
-61
python/paddle/fluid/tests/unittests/mlu/test_collective_allreduce_prod.py
...uid/tests/unittests/mlu/test_collective_allreduce_prod.py
+0
-61
python/paddle/fluid/tests/unittests/mlu/test_collective_allreduce_sum.py
...luid/tests/unittests/mlu/test_collective_allreduce_sum.py
+0
-61
python/paddle/fluid/tests/unittests/mlu/test_collective_api_base_mlu.py
...fluid/tests/unittests/mlu/test_collective_api_base_mlu.py
+0
-243
python/paddle/fluid/tests/unittests/mlu/test_collective_base_mlu.py
...dle/fluid/tests/unittests/mlu/test_collective_base_mlu.py
+0
-333
python/paddle/fluid/tests/unittests/mlu/test_collective_broadcast.py
...le/fluid/tests/unittests/mlu/test_collective_broadcast.py
+0
-59
python/paddle/fluid/tests/unittests/mlu/test_collective_broadcast_api_mlu.py
.../tests/unittests/mlu/test_collective_broadcast_api_mlu.py
+0
-45
python/paddle/fluid/tests/unittests/mlu/test_collective_reduce_api_mlu.py
...uid/tests/unittests/mlu/test_collective_reduce_api_mlu.py
+0
-39
python/paddle/fluid/tests/unittests/mlu/test_collective_reduce_max.py
...e/fluid/tests/unittests/mlu/test_collective_reduce_max.py
+0
-53
python/paddle/fluid/tests/unittests/mlu/test_collective_reduce_min.py
...e/fluid/tests/unittests/mlu/test_collective_reduce_min.py
+0
-53
python/paddle/fluid/tests/unittests/mlu/test_collective_reduce_prod.py
.../fluid/tests/unittests/mlu/test_collective_reduce_prod.py
+0
-53
python/paddle/fluid/tests/unittests/mlu/test_collective_reduce_sum.py
...e/fluid/tests/unittests/mlu/test_collective_reduce_sum.py
+0
-53
python/paddle/fluid/tests/unittests/mlu/test_launch_async_mlu.sh
...paddle/fluid/tests/unittests/mlu/test_launch_async_mlu.sh
+0
-59
python/paddle/fluid/tests/unittests/mlu/test_launch_cloud_mlu.sh
...paddle/fluid/tests/unittests/mlu/test_launch_cloud_mlu.sh
+0
-58
python/paddle/fluid/tests/unittests/mlu/test_launch_nproc_mlu.sh
...paddle/fluid/tests/unittests/mlu/test_launch_nproc_mlu.sh
+0
-75
python/paddle/fluid/tests/unittests/mlu/test_merged_adam_op_mlu.py
...ddle/fluid/tests/unittests/mlu/test_merged_adam_op_mlu.py
+0
-228
python/paddle/fluid/tests/unittests/mlu/test_merged_momentum_op_mlu.py
.../fluid/tests/unittests/mlu/test_merged_momentum_op_mlu.py
+0
-441
python/paddle/fluid/tests/unittests/mlu/test_parallel_dygraph_sync_batch_norm_mlu.py
...nittests/mlu/test_parallel_dygraph_sync_batch_norm_mlu.py
+0
-211
python/paddle/fluid/tests/unittests/mlu/test_spawn_mlu.py
python/paddle/fluid/tests/unittests/mlu/test_spawn_mlu.py
+0
-116
python/paddle/fluid/tests/unittests/mlu/test_sync_batch_norm_op_mlu.sh
.../fluid/tests/unittests/mlu/test_sync_batch_norm_op_mlu.sh
+0
-21
未找到文件。
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
e5414f76
...
@@ -869,10 +869,6 @@ if(WITH_IPU)
...
@@ -869,10 +869,6 @@ if(WITH_IPU)
add_subdirectory
(
ipu
)
add_subdirectory
(
ipu
)
endif
()
endif
()
if
(
WITH_MLU
)
add_subdirectory
(
mlu
)
endif
()
add_subdirectory
(
asp
)
add_subdirectory
(
asp
)
add_subdirectory
(
ir
)
add_subdirectory
(
ir
)
...
...
python/paddle/fluid/tests/unittests/mlu/CMakeLists.txt
已删除
100644 → 0
浏览文件 @
24740ccd
file
(
GLOB TEST_OPS
RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"test_*.py"
)
string
(
REPLACE
".py"
""
TEST_OPS
"
${
TEST_OPS
}
"
)
file
(
GLOB TEST_DIST_OPS
RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"test_collective_*.py"
)
string
(
REPLACE
".py"
""
TEST_DIST_OPS
"
${
TEST_DIST_OPS
}
"
)
if
(
WITH_MLU
)
foreach
(
TEST_OP
${
TEST_DIST_OPS
}
)
list
(
REMOVE_ITEM TEST_OPS
${
TEST_OP
}
)
endforeach
()
list
(
REMOVE_ITEM TEST_OPS
"test_spawn_mlu"
)
foreach
(
TEST_OP
${
TEST_OPS
}
)
py_test_modules
(
${
TEST_OP
}
MODULES
${
TEST_OP
}
)
endforeach
()
if
(
WITH_CNCL
)
list
(
APPEND TEST_DIST_OPS
"test_spawn_mlu"
)
foreach
(
TEST_OP
${
TEST_DIST_OPS
}
)
py_test_modules
(
${
TEST_OP
}
MODULES
${
TEST_OP
}
)
endforeach
()
bash_test_modules
(
test_launch_async_mlu START_BASH test_launch_async_mlu.sh
ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_launch_cloud_mlu START_BASH test_launch_cloud_mlu.sh
ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_launch_nproc_mlu START_BASH test_launch_nproc_mlu.sh
ENVS PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
bash_test_modules
(
test_c_comm_init_op_mlu START_BASH test_c_comm_init_op_mlu.sh ENVS
PADDLE_BINARY_DIR=
${
PADDLE_BINARY_DIR
}
)
set_tests_properties
(
test_collective_broadcast PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_collective_allreduce_sum PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_collective_allreduce_max PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_collective_allreduce_min PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_collective_allreduce_prod PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_collective_allgather PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_collective_reduce_sum PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_collective_reduce_max PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_collective_reduce_min PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_collective_reduce_prod PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_collective_broadcast_api_mlu PROPERTIES TIMEOUT
120
)
set_tests_properties
(
test_collective_allreduce_api_mlu PROPERTIES TIMEOUT
120
)
set_tests_properties
(
test_collective_allgather_api_mlu PROPERTIES TIMEOUT
120
)
set_tests_properties
(
test_c_comm_init_op_mlu PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_sync_batch_norm_op_mlu_baseline PROPERTIES TIMEOUT
120
)
endif
()
endif
()
python/paddle/fluid/tests/unittests/mlu/c_comm_init_op_mlu.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
os
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.distributed.fleet.base.private_helper_function
import
(
wait_server_ready
,
)
import
paddle
paddle
.
enable_static
()
class
TestCCommInitOp
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
endpoints
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
).
split
(
','
)
self
.
current_endpoint
=
os
.
getenv
(
"PADDLE_CURRENT_ENDPOINT"
)
self
.
nranks
=
len
(
self
.
endpoints
)
self
.
rank
=
self
.
endpoints
.
index
(
self
.
current_endpoint
)
self
.
mlu_id
=
int
(
os
.
getenv
(
"FLAGS_selected_mlus"
))
self
.
place
=
fluid
.
MLUPlace
(
self
.
mlu_id
)
self
.
exe
=
fluid
.
Executor
(
self
.
place
)
self
.
endpoints
.
remove
(
self
.
current_endpoint
)
self
.
other_endpoints
=
self
.
endpoints
if
self
.
rank
==
0
:
wait_server_ready
(
self
.
other_endpoints
)
def
test_specifying_devices
(
self
):
program
=
fluid
.
Program
()
block
=
program
.
global_block
()
cncl_id_var
=
block
.
create_var
(
name
=
fluid
.
unique_name
.
generate
(
'cncl_id'
),
persistable
=
True
,
type
=
fluid
.
core
.
VarDesc
.
VarType
.
RAW
,
)
block
.
append_op
(
type
=
'c_gen_cncl_id'
,
inputs
=
{},
outputs
=
{
'Out'
:
cncl_id_var
},
attrs
=
{
'rank'
:
self
.
rank
,
'endpoint'
:
self
.
current_endpoint
,
'other_endpoints'
:
self
.
other_endpoints
,
},
)
block
.
append_op
(
type
=
'c_comm_init'
,
inputs
=
{
'X'
:
cncl_id_var
},
outputs
=
{},
attrs
=
{
'nranks'
:
self
.
nranks
,
'rank'
:
self
.
rank
,
'ring_id'
:
0
,
'device_id'
:
self
.
mlu_id
,
},
)
self
.
exe
.
run
(
program
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/collective_allgather_api.py
已删除
100755 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
argparse
import
os
import
sys
import
signal
import
time
import
socket
from
contextlib
import
closing
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
paddle.fluid.layers
as
layers
from
functools
import
reduce
from
test_collective_api_base_mlu
import
(
TestCollectiveAPIRunnerBase
,
runtime_main
,
)
paddle
.
enable_static
()
class
TestCollectiveAllgatherAPI
(
TestCollectiveAPIRunnerBase
):
def
__init__
(
self
):
self
.
global_ring_id
=
0
def
get_model
(
self
,
main_prog
,
startup_program
,
rank
):
with
fluid
.
program_guard
(
main_prog
,
startup_program
):
tensor_list
=
[]
tindata
=
paddle
.
static
.
data
(
name
=
"tindata"
,
shape
=
[
-
1
,
10
,
1000
],
dtype
=
'float32'
)
paddle
.
distributed
.
all_gather
(
tensor_list
,
tindata
)
return
tensor_list
if
__name__
==
"__main__"
:
runtime_main
(
TestCollectiveAllgatherAPI
,
"allgather"
)
python/paddle/fluid/tests/unittests/mlu/collective_allgather_op.py
已删除
100755 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
argparse
import
os
import
sys
import
signal
import
time
from
contextlib
import
closing
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
paddle.fluid.layers
as
layers
from
functools
import
reduce
from
test_collective_base_mlu
import
TestCollectiveRunnerBase
,
runtime_main
paddle
.
enable_static
()
class
TestCollectiveAllgather
(
TestCollectiveRunnerBase
):
def
__init__
(
self
):
self
.
global_ring_id
=
0
def
get_model
(
self
,
main_prog
,
startup_program
,
col_type
):
ring_id
=
0
nranks
=
2
with
fluid
.
program_guard
(
main_prog
,
startup_program
):
tindata
=
paddle
.
static
.
data
(
name
=
"tindata"
,
shape
=
[
-
1
,
10
,
1000
],
dtype
=
'float32'
)
tindata
.
desc
.
set_need_check_feed
(
False
)
toutdata
=
main_prog
.
current_block
().
create_var
(
name
=
"outofallgather"
,
dtype
=
'float32'
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
persistable
=
False
,
stop_gradient
=
False
,
)
main_prog
.
global_block
().
append_op
(
type
=
"c_allgather"
,
inputs
=
{
'X'
:
tindata
},
attrs
=
{
'ring_id'
:
ring_id
,
'nranks'
:
nranks
},
outputs
=
{
'Out'
:
toutdata
},
)
main_prog
.
global_block
().
append_op
(
type
=
"c_sync_comm_stream"
,
inputs
=
{
'X'
:
toutdata
},
outputs
=
{
'Out'
:
toutdata
},
attrs
=
{
'ring_id'
:
ring_id
},
)
return
toutdata
if
__name__
==
"__main__"
:
runtime_main
(
TestCollectiveAllgather
)
python/paddle/fluid/tests/unittests/mlu/collective_allreduce_api.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
argparse
import
os
import
sys
import
signal
import
time
import
socket
from
contextlib
import
closing
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
paddle.fluid.layers
as
layers
from
functools
import
reduce
from
test_collective_api_base_mlu
import
(
TestCollectiveAPIRunnerBase
,
runtime_main
,
)
paddle
.
enable_static
()
class
TestCollectiveAllreduceAPI
(
TestCollectiveAPIRunnerBase
):
def
__init__
(
self
):
self
.
global_ring_id
=
0
def
get_model
(
self
,
main_prog
,
startup_program
,
rank
):
with
fluid
.
program_guard
(
main_prog
,
startup_program
):
tindata
=
paddle
.
static
.
data
(
name
=
"tindata"
,
shape
=
[
-
1
,
10
,
1000
],
dtype
=
'float32'
)
paddle
.
distributed
.
all_reduce
(
tindata
)
return
[
tindata
]
if
__name__
==
"__main__"
:
runtime_main
(
TestCollectiveAllreduceAPI
,
"allreduce"
)
python/paddle/fluid/tests/unittests/mlu/collective_allreduce_op.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
argparse
import
os
import
sys
import
signal
import
time
import
socket
from
contextlib
import
closing
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
paddle.fluid.layers
as
layers
from
functools
import
reduce
from
test_collective_base_mlu
import
TestCollectiveRunnerBase
,
runtime_main
paddle
.
enable_static
()
class
TestCollectiveAllreduce
(
TestCollectiveRunnerBase
):
def
__init__
(
self
):
self
.
global_ring_id
=
0
def
get_model
(
self
,
main_prog
,
startup_program
,
col_type
):
ring_id
=
0
with
fluid
.
program_guard
(
main_prog
,
startup_program
):
tindata
=
paddle
.
static
.
data
(
name
=
"tindata"
,
shape
=
[
-
1
,
10
,
1000
],
dtype
=
'float32'
)
tindata
.
desc
.
set_need_check_feed
(
False
)
toutdata
=
main_prog
.
current_block
().
create_var
(
name
=
"outof"
+
col_type
,
dtype
=
'float32'
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
persistable
=
False
,
stop_gradient
=
False
,
)
main_prog
.
global_block
().
append_op
(
type
=
"c_"
+
col_type
,
inputs
=
{
'X'
:
tindata
},
attrs
=
{
'ring_id'
:
ring_id
},
outputs
=
{
'Out'
:
toutdata
},
)
main_prog
.
global_block
().
append_op
(
type
=
"c_sync_comm_stream"
,
inputs
=
{
'X'
:
toutdata
},
outputs
=
{
'Out'
:
toutdata
},
attrs
=
{
'ring_id'
:
ring_id
},
)
return
toutdata
if
__name__
==
"__main__"
:
runtime_main
(
TestCollectiveAllreduce
)
python/paddle/fluid/tests/unittests/mlu/collective_broadcast_api.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
argparse
import
os
import
sys
import
signal
import
time
import
socket
from
contextlib
import
closing
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
paddle.fluid.layers
as
layers
from
functools
import
reduce
from
test_collective_api_base_mlu
import
(
TestCollectiveAPIRunnerBase
,
runtime_main
,
)
paddle
.
enable_static
()
class
TestCollectiveBroadcastAPI
(
TestCollectiveAPIRunnerBase
):
def
__init__
(
self
):
self
.
global_ring_id
=
0
def
get_model
(
self
,
main_prog
,
startup_program
,
rank
):
with
fluid
.
program_guard
(
main_prog
,
startup_program
):
tindata
=
paddle
.
static
.
data
(
name
=
"tindata"
,
shape
=
[
-
1
,
10
,
1000
],
dtype
=
"float32"
)
tindata
.
desc
.
set_need_check_feed
(
False
)
paddle
.
distributed
.
broadcast
(
tindata
,
src
=
1
)
return
[
tindata
]
if
__name__
==
"__main__"
:
runtime_main
(
TestCollectiveBroadcastAPI
,
"broadcast"
)
python/paddle/fluid/tests/unittests/mlu/collective_broadcast_op.py
已删除
100755 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
argparse
import
os
import
sys
import
signal
import
time
import
socket
from
contextlib
import
closing
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
paddle.fluid.layers
as
layers
from
functools
import
reduce
from
test_collective_base_mlu
import
TestCollectiveRunnerBase
,
runtime_main
paddle
.
enable_static
()
class
TestCollectiveBroadcast
(
TestCollectiveRunnerBase
):
def
__init__
(
self
):
self
.
global_ring_id
=
0
def
get_model
(
self
,
main_prog
,
startup_program
,
col_type
):
ring_id
=
0
rootid
=
1
with
fluid
.
program_guard
(
main_prog
,
startup_program
):
tindata
=
paddle
.
static
.
data
(
name
=
"tindata"
,
shape
=
[
-
1
,
10
,
1000
],
dtype
=
'float32'
)
tindata
.
desc
.
set_need_check_feed
(
False
)
toutdata
=
main_prog
.
current_block
().
create_var
(
name
=
"outofbroadcast"
,
dtype
=
'float32'
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
persistable
=
False
,
stop_gradient
=
False
,
)
main_prog
.
global_block
().
append_op
(
type
=
"c_broadcast"
,
inputs
=
{
'X'
:
tindata
},
attrs
=
{
'ring_id'
:
ring_id
,
'root'
:
rootid
},
outputs
=
{
'Out'
:
toutdata
},
)
main_prog
.
global_block
().
append_op
(
type
=
"c_sync_comm_stream"
,
inputs
=
{
'X'
:
toutdata
},
outputs
=
{
'Out'
:
toutdata
},
attrs
=
{
'ring_id'
:
ring_id
},
)
return
toutdata
if
__name__
==
"__main__"
:
runtime_main
(
TestCollectiveBroadcast
)
python/paddle/fluid/tests/unittests/mlu/collective_reduce_api.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
argparse
import
os
import
sys
import
signal
import
time
import
socket
from
contextlib
import
closing
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
paddle.fluid.layers
as
layers
from
functools
import
reduce
from
test_collective_api_base_mlu
import
(
TestCollectiveAPIRunnerBase
,
runtime_main
,
)
paddle
.
enable_static
()
class
TestCollectiveReduceAPI
(
TestCollectiveAPIRunnerBase
):
def
__init__
(
self
):
self
.
global_ring_id
=
0
def
get_model
(
self
,
main_prog
,
startup_program
,
rank
):
with
fluid
.
program_guard
(
main_prog
,
startup_program
):
tindata
=
paddle
.
static
.
data
(
name
=
"tindata"
,
shape
=
[
-
1
,
10
,
1000
],
dtype
=
'float32'
)
tindata
.
desc
.
set_need_check_feed
(
False
)
paddle
.
distributed
.
reduce
(
tindata
,
dst
=
0
)
return
[
tindata
]
if
__name__
==
"__main__"
:
runtime_main
(
TestCollectiveReduceAPI
,
"reduce"
)
python/paddle/fluid/tests/unittests/mlu/collective_reduce_op.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
argparse
import
os
import
sys
import
signal
import
time
import
socket
from
contextlib
import
closing
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
paddle.fluid.layers
as
layers
from
functools
import
reduce
from
test_collective_base_mlu
import
TestCollectiveRunnerBase
,
runtime_main
paddle
.
enable_static
()
class
TestCollectiveReduce
(
TestCollectiveRunnerBase
):
def
__init__
(
self
):
self
.
global_ring_id
=
0
def
get_model
(
self
,
main_prog
,
startup_program
,
col_type
):
ring_id
=
0
rootid
=
1
with
fluid
.
program_guard
(
main_prog
,
startup_program
):
tindata
=
paddle
.
static
.
data
(
name
=
"tindata"
,
shape
=
[
-
1
,
10
,
1000
],
dtype
=
'float32'
)
tindata
.
desc
.
set_need_check_feed
(
False
)
toutdata
=
main_prog
.
current_block
().
create_var
(
name
=
"outof"
+
col_type
,
dtype
=
'float32'
,
type
=
core
.
VarDesc
.
VarType
.
LOD_TENSOR
,
persistable
=
False
,
stop_gradient
=
False
,
)
main_prog
.
global_block
().
append_op
(
type
=
"c_"
+
col_type
,
inputs
=
{
'X'
:
tindata
},
attrs
=
{
'ring_id'
:
ring_id
,
'root_id'
:
rootid
},
outputs
=
{
'Out'
:
toutdata
},
)
main_prog
.
global_block
().
append_op
(
type
=
"c_sync_comm_stream"
,
inputs
=
{
'X'
:
toutdata
},
outputs
=
{
'Out'
:
toutdata
},
attrs
=
{
'ring_id'
:
ring_id
},
)
return
toutdata
if
__name__
==
"__main__"
:
runtime_main
(
TestCollectiveReduce
)
python/paddle/fluid/tests/unittests/mlu/multi_process_mlu.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
import
time
import
paddle.fluid
as
fluid
def
train
(
prefix
):
selected_mlus
=
os
.
getenv
(
"FLAGS_selected_mlus"
)
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
))
worker_endpoints_env
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
)
current_endpoint
=
os
.
getenv
(
"PADDLE_CURRENT_ENDPOINT"
)
worker_endpoints
=
worker_endpoints_env
trainers_num
=
len
(
worker_endpoints
.
split
(
','
))
name
=
"selected_mlus:{} worker_endpoints:{} trainers_num:{} current_endpoint:{} trainer_id:{}"
.
format
(
selected_mlus
,
worker_endpoints
,
trainers_num
,
current_endpoint
,
trainer_id
,
)
print
(
name
)
with
open
(
"multi_process_{}.check_{}.log"
.
format
(
prefix
,
trainer_id
),
"w"
)
as
f
:
f
.
write
(
name
)
def
train_abort
(
prefix
):
selected_mlus
=
os
.
getenv
(
"FLAGS_selected_mlus"
)
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
))
worker_endpoints_env
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
)
current_endpoint
=
os
.
getenv
(
"PADDLE_CURRENT_ENDPOINT"
)
worker_endpoints
=
worker_endpoints_env
trainers_num
=
len
(
worker_endpoints
.
split
(
','
))
if
trainer_id
==
0
:
try
:
# train abort
exit
(
1
)
except
SystemExit
:
name
=
"abort>>> selected_mlus:{} worker_endpoints:{} trainers_num:{} current_endpoint:{} trainer_id:{}"
.
format
(
selected_mlus
,
worker_endpoints
,
trainers_num
,
current_endpoint
,
trainer_id
,
)
print
(
name
)
with
open
(
"multi_process_{}.check_{}.log"
.
format
(
prefix
,
trainer_id
),
"w"
)
as
f
:
f
.
write
(
name
)
raise
else
:
# sleep 30s to make sure paddle.distributed.launch will terminate this process
time
.
sleep
(
30
)
name
=
"selected_mlus:{} worker_endpoints:{} trainers_num:{} current_endpoint:{} trainer_id:{}"
.
format
(
selected_mlus
,
worker_endpoints
,
trainers_num
,
current_endpoint
,
trainer_id
,
)
print
(
name
)
with
open
(
"multi_process_{}.check_{}.log"
.
format
(
prefix
,
trainer_id
),
"w"
)
as
f
:
f
.
write
(
name
)
if
__name__
==
'__main__'
:
if
len
(
sys
.
argv
)
==
3
and
sys
.
argv
[
2
]
==
"abort"
:
prefix
=
sys
.
argv
[
1
]
train_abort
(
prefix
)
else
:
prefix
=
sys
.
argv
[
1
]
train
(
prefix
)
python/paddle/fluid/tests/unittests/mlu/nproc_process_mlu.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
import
time
def
train
(
prefix
):
selected_mlus
=
os
.
getenv
(
"FLAGS_selected_mlus"
)
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
))
worker_endpoints_env
=
os
.
getenv
(
"PADDLE_TRAINER_ENDPOINTS"
)
current_endpoint
=
os
.
getenv
(
"PADDLE_CURRENT_ENDPOINT"
)
worker_endpoints
=
worker_endpoints_env
trainers_num
=
len
(
worker_endpoints
.
split
(
','
))
name
=
"selected_mlus:{} worker_endpoints:{} trainers_num:{} current_endpoint:{} trainer_id:{}"
.
format
(
selected_mlus
,
worker_endpoints
,
trainers_num
,
current_endpoint
,
trainer_id
,
)
print
(
name
)
with
open
(
"{}.check_{}.log"
.
format
(
prefix
,
trainer_id
),
"w"
)
as
f
:
f
.
write
(
name
)
if
__name__
==
'__main__'
:
prefix
=
sys
.
argv
[
1
]
train
(
prefix
)
python/paddle/fluid/tests/unittests/mlu/parallel_dygraph_sync_batch_norm.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
contextlib
import
unittest
import
numpy
as
np
import
pickle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.dygraph
as
dygraph
from
paddle.fluid
import
core
from
paddle.fluid.optimizer
import
SGDOptimizer
from
paddle.nn
import
Conv2D
,
Linear
,
SyncBatchNorm
from
paddle.fluid.dygraph.base
import
to_variable
import
sys
sys
.
path
.
append
(
".."
)
from
test_dist_base
import
runtime_main
,
TestParallelDyGraphRunnerBase
class
TestLayer
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
,
):
super
().
__init__
()
self
.
_conv
=
Conv2D
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
bias_attr
=
False
,
)
self
.
_sync_batch_norm
=
SyncBatchNorm
(
num_filters
)
self
.
_conv2
=
Conv2D
(
in_channels
=
num_filters
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
bias_attr
=
False
,
)
self
.
_sync_batch_norm2
=
SyncBatchNorm
(
num_filters
,
weight_attr
=
False
,
bias_attr
=
False
)
def
forward
(
self
,
inputs
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_sync_batch_norm
(
y
)
y
=
self
.
_conv2
(
y
)
y
=
self
.
_sync_batch_norm2
(
y
)
return
y
class
TestSyncBatchNorm
(
TestParallelDyGraphRunnerBase
):
def
get_model
(
self
):
model
=
TestLayer
(
3
,
64
,
7
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
flowers
.
test
(
use_xmap
=
False
),
batch_size
=
32
,
drop_last
=
True
,
)
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
1e-3
,
parameter_list
=
model
.
parameters
()
)
return
model
,
train_reader
,
opt
def
run_one_loop
(
self
,
model
,
opt
,
data
):
batch_size
=
len
(
data
)
dy_x_data
=
np
.
array
([
x
[
0
].
reshape
(
3
,
224
,
224
)
for
x
in
data
]).
astype
(
'float32'
)
img
=
to_variable
(
dy_x_data
)
img
.
stop_gradient
=
False
out
=
model
(
img
)
out
=
paddle
.
mean
(
out
)
return
out
if
__name__
==
"__main__"
:
runtime_main
(
TestSyncBatchNorm
)
python/paddle/fluid/tests/unittests/mlu/test_c_comm_init_op_mlu.sh
已删除
100644 → 0
浏览文件 @
24740ccd
#!/bin/bash
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
# use default values
# FIXME: random fails on Unknown command lines -c (or -m).
MLU_VISIBLE_DEVICES
=
0,1 python
-m
paddle.distributed.launch c_comm_init_op_mlu.py
python/paddle/fluid/tests/unittests/mlu/test_collective_allgather.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_base_mlu
import
TestDistBase
paddle
.
enable_static
()
class
TestCAllgatherOp
(
TestDistBase
):
def
_setup_config
(
self
):
pass
def
test_allgather_fp32
(
self
):
self
.
check_with_place
(
"collective_allgather_op.py"
,
"allgather"
,
"float32"
)
def
test_allgather_fp16
(
self
):
self
.
check_with_place
(
"collective_allgather_op.py"
,
"allgather"
,
"float16"
)
def
test_allgather_int32
(
self
):
self
.
check_with_place
(
"collective_allgather_op.py"
,
"allgather"
,
"int32"
)
def
test_allgather_int16
(
self
):
self
.
check_with_place
(
"collective_allgather_op.py"
,
"allgather"
,
"int16"
)
def
test_allgather_int8
(
self
):
self
.
check_with_place
(
"collective_allgather_op.py"
,
"allgather"
,
"int8"
)
def
test_allgather_uint8
(
self
):
self
.
check_with_place
(
"collective_allgather_op.py"
,
"allgather"
,
"uint8"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_collective_allgather_api_mlu.py
已删除
100755 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_api_base_mlu
import
TestDistBase
paddle
.
enable_static
()
class
TestCollectiveAllgatherAPI
(
TestDistBase
):
def
_setup_config
(
self
):
pass
def
test_allgather_cncl_fp16
(
self
):
self
.
check_with_place
(
"collective_allgather_api.py"
,
"allgather"
,
"float16"
)
def
test_allgather_cncl_fp32
(
self
):
self
.
check_with_place
(
"collective_allgather_api.py"
,
"allgather"
,
"float32"
)
def
test_allgather_cncl_int32
(
self
):
self
.
check_with_place
(
"collective_allgather_api.py"
,
"allgather"
,
"int32"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_collective_allreduce_api_mlu.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_api_base_mlu
import
TestDistBase
paddle
.
enable_static
()
class
TestCollectiveAllreduceAPI
(
TestDistBase
):
def
_setup_config
(
self
):
pass
def
test_allreduce_cncl_fp16
(
self
):
self
.
check_with_place
(
"collective_allreduce_api.py"
,
"allreduce"
,
"float16"
)
def
test_allreduce_cncl_fp32
(
self
):
self
.
check_with_place
(
"collective_allreduce_api.py"
,
"allreduce"
,
"float32"
)
def
test_allreduce_cncl_int32
(
self
):
self
.
check_with_place
(
"collective_allreduce_api.py"
,
"allreduce"
,
"int32"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_collective_allreduce_max.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_base_mlu
import
TestDistBase
paddle
.
enable_static
()
class
TestCAllreduceOp
(
TestDistBase
):
def
_setup_config
(
self
):
pass
def
test_allreduce_max_fp32
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_max"
,
"float32"
)
def
test_allreduce_max_fp16
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_max"
,
"float16"
)
def
test_allreduce_max_int32
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_max"
,
"int32"
)
def
test_allreduce_max_int16
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_max"
,
"int16"
)
def
test_allreduce_max_int8
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_max"
,
"int8"
)
def
test_allreduce_max_uint8
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_max"
,
"uint8"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_collective_allreduce_min.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_base_mlu
import
TestDistBase
paddle
.
enable_static
()
class
TestCAllreduceOp
(
TestDistBase
):
def
_setup_config
(
self
):
pass
def
test_allreduce_min_fp32
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_min"
,
"float32"
)
def
test_allreduce_min_fp16
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_min"
,
"float16"
)
def
test_allreduce_min_int32
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_min"
,
"int32"
)
def
test_allreduce_min_int16
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_min"
,
"int16"
)
def
test_allreduce_min_int8
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_min"
,
"int8"
)
def
test_allreduce_min_uint8
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_min"
,
"uint8"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_collective_allreduce_prod.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_base_mlu
import
TestDistBase
paddle
.
enable_static
()
class
TestCAllreduceOp
(
TestDistBase
):
def
_setup_config
(
self
):
pass
def
test_allreduce_prod_fp32
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_prod"
,
"float32"
)
def
test_allreduce_prod_fp16
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_prod"
,
"float16"
)
def
test_allreduce_prod_int32
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_prod"
,
"int32"
)
def
test_allreduce_prod_int16
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_prod"
,
"int16"
)
def
test_allreduce_prod_int8
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_prod"
,
"int8"
)
def
test_allreduce_prod_uint8
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_prod"
,
"uint8"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_collective_allreduce_sum.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_base_mlu
import
TestDistBase
paddle
.
enable_static
()
class
TestCAllreduceOp
(
TestDistBase
):
def
_setup_config
(
self
):
pass
def
test_allreduce_sum_fp32
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_sum"
,
"float32"
)
def
test_allreduce_sum_fp16
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_sum"
,
"float16"
)
def
test_allreduce_sum_int32
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_sum"
,
"int32"
)
def
test_allreduce_sum_int16
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_sum"
,
"int16"
)
def
test_allreduce_sum_int8
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_sum"
,
"int8"
)
def
test_allreduce_sum_uint8
(
self
):
self
.
check_with_place
(
"collective_allreduce_op.py"
,
"allreduce_sum"
,
"uint8"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_collective_api_base_mlu.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
unittest
import
os
import
sys
import
subprocess
import
pickle
from
contextlib
import
closing
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid
import
core
def
DataTypeCast
(
date_type
):
np_data_type
=
None
if
date_type
==
"float16"
:
np_data_type
=
np
.
float16
elif
date_type
==
"float32"
:
np_data_type
=
np
.
float32
elif
date_type
==
"int32"
:
np_data_type
=
np
.
int32
else
:
raise
ValueError
(
"This data type is not support!"
)
return
np_data_type
class
TestCollectiveAPIRunnerBase
:
def
get_model
(
self
,
train_prog
,
startup_prog
,
rank
,
indata
=
None
):
raise
NotImplementedError
(
"get model should be implemented by child class."
)
def
run_trainer
(
self
,
args
):
train_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
endpoints
=
args
[
"endpoints"
].
split
(
","
)
rank
=
args
[
"trainerid"
]
current_endpoint
=
args
[
"currentendpoint"
]
nranks
=
2
paddle
.
distributed
.
init_parallel_env
()
device_id
=
int
(
os
.
getenv
(
"FLAGS_selected_mlus"
,
"0"
))
place
=
fluid
.
MLUPlace
(
device_id
)
np
.
random
.
seed
(
os
.
getpid
())
np_data_type
=
DataTypeCast
(
args
[
"data_type"
])
indata
=
np
.
random
.
random
((
10
,
1000
)).
astype
(
np_data_type
)
if
args
[
'static_mode'
]:
result
=
self
.
get_model
(
train_prog
,
startup_prog
,
rank
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
fetch_list
=
[]
for
elem
in
result
:
fetch_list
.
append
(
elem
.
name
)
out
=
exe
.
run
(
train_prog
,
feed
=
{
'tindata'
:
indata
},
fetch_list
=
fetch_list
)
else
:
out
=
self
.
get_model
(
train_prog
,
startup_prog
,
rank
,
indata
)
# print(out, sys.stderr)
sys
.
stdout
.
buffer
.
write
(
pickle
.
dumps
(
out
))
def
runtime_main
(
test_class
,
col_type
):
args
=
{}
model
=
test_class
()
args
[
"trainerid"
]
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
))
args
[
"trainernum"
]
=
int
(
os
.
getenv
(
"PADDLE_TRAINERS_NUM"
))
args
[
"endpoints"
]
=
os
.
getenv
(
'PADDLE_TRAINER_ENDPOINTS'
)
args
[
"currentendpoint"
]
=
os
.
getenv
(
"PADDLE_CURRENT_ENDPOINT"
)
args
[
"col_type"
]
=
col_type
args
[
"backend"
]
=
os
.
getenv
(
"BACKEND"
)
args
[
"path_id"
]
=
int
(
os
.
getenv
(
"PATH_ID"
))
args
[
"static_mode"
]
=
int
(
os
.
getenv
(
"STATIC_MODE"
))
args
[
"data_type"
]
=
os
.
getenv
(
"DATA_TYPE"
)
model
.
run_trainer
(
args
)
import
socket
from
contextlib
import
closing
class
TestDistBase
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
_port_set
=
set
()
self
.
_trainers
=
2
self
.
_ps_endpoints
=
"127.0.0.1:%s,127.0.0.1:%s"
%
(
self
.
_find_free_port
(),
self
.
_find_free_port
(),
)
self
.
_python_interp
=
sys
.
executable
def
_find_free_port
(
self
):
def
__free_port
():
with
closing
(
socket
.
socket
(
socket
.
AF_INET
,
socket
.
SOCK_STREAM
)
)
as
s
:
s
.
bind
((
''
,
0
))
return
s
.
getsockname
()[
1
]
while
True
:
port
=
__free_port
()
if
port
not
in
self
.
_port_set
:
self
.
_port_set
.
add
(
port
)
return
port
def
_run_cluster
(
self
,
model_file
,
envs
):
worker_endpoints
=
self
.
_ps_endpoints
.
split
(
","
)
w0_ep
,
w1_ep
=
worker_endpoints
# print("w0_ep:",w0_ep," w1_ep:",w1_ep)
env0
=
{
"FLAGS_selected_mlus"
:
"0"
,
"PADDLE_TRAINER_ID"
:
"0"
,
"PADDLE_TRAINERS_NUM"
:
"2"
,
"PADDLE_TRAINER_ENDPOINTS"
:
self
.
_ps_endpoints
,
"PADDLE_CURRENT_ENDPOINT"
:
w0_ep
,
}
env1
=
{
"FLAGS_selected_mlus"
:
"1"
,
"PADDLE_TRAINER_ID"
:
"1"
,
"PADDLE_TRAINERS_NUM"
:
"2"
,
"PADDLE_TRAINER_ENDPOINTS"
:
self
.
_ps_endpoints
,
"PADDLE_CURRENT_ENDPOINT"
:
w1_ep
,
}
# update environment
env0
.
update
(
envs
)
env1
.
update
(
envs
)
if
os
.
getenv
(
'WITH_COVERAGE'
,
'OFF'
)
==
'ON'
:
tr_cmd
=
"%s -m coverage run --branch -p %s"
else
:
tr_cmd
=
"%s %s"
tr0_cmd
=
tr_cmd
%
(
self
.
_python_interp
,
model_file
)
tr1_cmd
=
tr_cmd
%
(
self
.
_python_interp
,
model_file
)
tr0_pipe
=
open
(
"/tmp/tr0_err_%d.log"
%
os
.
getpid
(),
"w"
)
tr1_pipe
=
open
(
"/tmp/tr1_err_%d.log"
%
os
.
getpid
(),
"w"
)
# print(tr0_cmd)
tr0_proc
=
subprocess
.
Popen
(
tr0_cmd
.
strip
().
split
(),
stdout
=
subprocess
.
PIPE
,
stderr
=
tr0_pipe
,
env
=
env0
,
)
tr1_proc
=
subprocess
.
Popen
(
tr0_cmd
.
strip
().
split
(),
stdout
=
subprocess
.
PIPE
,
stderr
=
tr1_pipe
,
env
=
env1
,
)
tr0_out
,
tr0_err
=
tr0_proc
.
communicate
()
tr1_out
,
tr1_err
=
tr1_proc
.
communicate
()
sys
.
stderr
.
write
(
'trainer 0 stderr: %s
\n
'
%
tr0_err
)
sys
.
stderr
.
write
(
'trainer 1 stderr: %s
\n
'
%
tr1_err
)
# close trainer file
tr0_pipe
.
close
()
tr1_pipe
.
close
()
with
open
(
"/tmp/tr0_err_%d.log"
%
os
.
getpid
(),
"r"
)
as
f
:
sys
.
stderr
.
write
(
'trainer 0 stderr file: %s
\n
'
%
f
.
read
())
with
open
(
"/tmp/tr1_err_%d.log"
%
os
.
getpid
(),
"r"
)
as
f
:
sys
.
stderr
.
write
(
'trainer 1 stderr file: %s
\n
'
%
f
.
read
())
return
(
pickle
.
loads
(
tr0_out
),
pickle
.
loads
(
tr1_out
),
tr0_proc
.
pid
,
tr1_proc
.
pid
,
)
def
check_with_place
(
self
,
model_file
,
col_type
,
data_type
,
path_id
=
"0"
,
static_mode
=
"1"
,
check_error_log
=
False
,
need_envs
=
{},
):
required_envs
=
{
"FLAGS_fraction_of_gpu_memory_to_use"
:
"0.15"
,
"FLAGS_eager_delete_tensor_gb"
:
"0.0"
,
"PATH"
:
os
.
getenv
(
"PATH"
),
"PYTHONPATH"
:
os
.
getenv
(
"PYTHONPATH"
,
""
),
"LD_LIBRARY_PATH"
:
os
.
getenv
(
"LD_LIBRARY_PATH"
,
""
),
"LD_PRELOAD"
:
os
.
getenv
(
"LD_PRELOAD"
,
""
),
"FLAGS_call_stack_level"
:
"2"
,
"GLOG_v"
:
"3"
,
"STATIC_MODE"
:
static_mode
,
"PADDLE_WITH_GLOO"
:
'0'
,
"BACKEND"
:
"cncl"
,
"PATH_ID"
:
path_id
,
"DATA_TYPE"
:
data_type
,
}
required_envs
.
update
(
need_envs
)
if
check_error_log
:
required_envs
[
"GLOG_v"
]
=
"3"
required_envs
[
"GLOG_logtostderr"
]
=
"1"
required_envs
[
"GLOO_LOG_LEVEL"
]
=
"TRACE"
tr0_out
,
tr1_out
,
pid0
,
pid1
=
self
.
_run_cluster
(
model_file
,
required_envs
)
np_data_type
=
DataTypeCast
(
data_type
)
np
.
random
.
seed
(
pid0
)
input1
=
np
.
random
.
random
((
10
,
1000
)).
astype
(
np_data_type
)
np
.
random
.
seed
(
pid1
)
input2
=
np
.
random
.
random
((
10
,
1000
)).
astype
(
np_data_type
)
if
col_type
==
"broadcast"
:
need_result
=
input2
np
.
testing
.
assert_allclose
(
tr0_out
[
0
],
need_result
)
np
.
testing
.
assert_allclose
(
tr1_out
[
0
],
need_result
)
elif
col_type
==
"allreduce"
:
need_result
=
input1
+
input2
np
.
testing
.
assert_allclose
(
tr0_out
[
0
],
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
)
np
.
testing
.
assert_allclose
(
tr1_out
[
0
],
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
)
elif
col_type
==
"reduce"
:
need_result
=
input1
+
input2
np
.
testing
.
assert_allclose
(
tr0_out
[
0
],
need_result
)
elif
col_type
==
"allgather"
:
need_result
=
np
.
vstack
((
input1
,
input2
))
tr_out0
=
np
.
vstack
((
tr0_out
[
0
],
tr0_out
[
1
]))
tr_out1
=
np
.
vstack
((
tr1_out
[
0
],
tr1_out
[
1
]))
np
.
testing
.
assert_allclose
(
tr_out0
,
need_result
)
np
.
testing
.
assert_allclose
(
tr_out1
,
need_result
)
else
:
pass
python/paddle/fluid/tests/unittests/mlu/test_collective_base_mlu.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
unittest
import
time
import
argparse
import
os
import
sys
import
subprocess
import
traceback
import
functools
import
pickle
from
contextlib
import
closing
import
paddle.fluid
as
fluid
import
paddle.fluid.unique_name
as
nameGen
from
paddle.fluid
import
core
def
DataTypeCast
(
date_type
):
np_data_type
=
None
if
date_type
==
"float16"
:
np_data_type
=
np
.
float16
elif
date_type
==
"float32"
:
np_data_type
=
np
.
float32
elif
date_type
==
"float64"
:
np_data_type
=
np
.
float64
elif
date_type
==
"int8"
:
np_data_type
=
np
.
int8
elif
date_type
==
"int16"
:
np_data_type
=
np
.
int16
elif
date_type
==
"int32"
:
np_data_type
=
np
.
int32
elif
date_type
==
"uint8"
:
np_data_type
=
np
.
uint8
else
:
raise
ValueError
(
"This data type is not support!"
)
return
np_data_type
class
TestCollectiveRunnerBase
:
def
get_model
(
self
,
train_prog
,
startup_prog
,
col_type
):
raise
NotImplementedError
(
"get model should be implemented by child class."
)
def
wait_server_ready
(
self
,
endpoints
):
while
True
:
all_ok
=
True
not_ready_endpoints
=
[]
for
ep
in
endpoints
:
ip_port
=
ep
.
split
(
":"
)
with
closing
(
socket
.
socket
(
socket
.
AF_INET
,
socket
.
SOCK_STREAM
)
)
as
sock
:
sock
.
settimeout
(
2
)
sock
.
setsockopt
(
socket
.
SOL_SOCKET
,
socket
.
SO_REUSEADDR
,
1
)
if
hasattr
(
socket
,
'SO_REUSEPORT'
):
sock
.
setsockopt
(
socket
.
SOL_SOCKET
,
socket
.
SO_REUSEPORT
,
1
)
result
=
sock
.
connect_ex
((
ip_port
[
0
],
int
(
ip_port
[
1
])))
if
result
!=
0
:
all_ok
=
False
not_ready_endpoints
.
append
(
ep
)
if
not
all_ok
:
sys
.
stderr
.
write
(
"server not ready, wait 3 sec to retry...
\n
"
)
sys
.
stderr
.
write
(
"not ready endpoints:"
+
str
(
not_ready_endpoints
)
+
"
\n
"
)
sys
.
stderr
.
flush
()
time
.
sleep
(
3
)
else
:
break
# endpoints should be ["ip1:port1","ip2:port2"]
def
initCommunicator
(
self
,
program
,
rank
,
nranks
,
wait_port
,
current_endpoint
,
endpoints
):
other_endpoints
=
endpoints
[:]
other_endpoints
.
remove
(
current_endpoint
)
if
rank
==
0
and
wait_port
:
self
.
wait_server_ready
(
other_endpoints
)
block
=
program
.
global_block
()
cncl_id_var
=
block
.
create_var
(
name
=
nameGen
.
generate
(
'cncl_id'
),
persistable
=
True
,
type
=
core
.
VarDesc
.
VarType
.
RAW
,
)
block
.
append_op
(
type
=
'c_gen_cncl_id'
,
inputs
=
{},
outputs
=
{
'Out'
:
cncl_id_var
},
attrs
=
{
'rank'
:
rank
,
'endpoint'
:
current_endpoint
,
'other_endpoints'
:
other_endpoints
,
},
)
block
.
append_op
(
type
=
'c_comm_init'
,
inputs
=
{
'X'
:
cncl_id_var
},
outputs
=
{},
attrs
=
{
'nranks'
:
nranks
,
'rank'
:
rank
,
'ring_id'
:
self
.
global_ring_id
,
},
)
def
run_trainer
(
self
,
args
):
train_prog
=
fluid
.
Program
()
startup_prog
=
fluid
.
Program
()
endpoints
=
args
[
"endpoints"
].
split
(
","
)
rank
=
args
[
"trainerid"
]
current_endpoint
=
args
[
"currentendpoint"
]
nranks
=
2
self
.
initCommunicator
(
startup_prog
,
rank
,
nranks
,
True
,
current_endpoint
,
endpoints
)
self
.
rank
=
rank
result
=
self
.
get_model
(
train_prog
,
startup_prog
,
args
[
"col_type"
])
device_id
=
int
(
os
.
getenv
(
"FLAGS_selected_mlus"
,
"0"
))
place
=
fluid
.
MLUPlace
(
device_id
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
np
.
random
.
seed
(
os
.
getpid
())
np_data_type
=
DataTypeCast
(
args
[
"data_type"
])
indata
=
np
.
random
.
random
((
10
,
1000
)).
astype
(
np_data_type
)
out
=
exe
.
run
(
train_prog
,
feed
=
{
'tindata'
:
indata
},
fetch_list
=
[
result
.
name
]
)
sys
.
stdout
.
buffer
.
write
(
pickle
.
dumps
(
out
))
def
runtime_main
(
test_class
):
args
=
{}
model
=
test_class
()
args
[
"deviceid"
]
=
os
.
getenv
(
"FLAGS_selected_mlus"
)
args
[
"trainerid"
]
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
))
args
[
"trainernum"
]
=
int
(
os
.
getenv
(
"PADDLE_TRAINERS_NUM"
))
args
[
"endpoints"
]
=
os
.
getenv
(
'PADDLE_TRAINER_ENDPOINTS'
)
args
[
"currentendpoint"
]
=
os
.
getenv
(
"PADDLE_CURRENT_ENDPOINT"
)
args
[
"col_type"
]
=
os
.
getenv
(
"COL_TYPE"
)
args
[
"data_type"
]
=
os
.
getenv
(
"DATA_TYPE"
)
model
.
run_trainer
(
args
)
import
socket
from
contextlib
import
closing
class
TestDistBase
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
_port_set
=
set
()
self
.
_trainers
=
2
self
.
_ps_endpoints
=
"127.0.0.1:%s,127.0.0.1:%s"
%
(
self
.
_find_free_port
(),
self
.
_find_free_port
(),
)
self
.
_python_interp
=
sys
.
executable
def
_find_free_port
(
self
):
def
__free_port
():
with
closing
(
socket
.
socket
(
socket
.
AF_INET
,
socket
.
SOCK_STREAM
)
)
as
s
:
s
.
bind
((
''
,
0
))
return
s
.
getsockname
()[
1
]
while
True
:
port
=
__free_port
()
if
port
not
in
self
.
_port_set
:
self
.
_port_set
.
add
(
port
)
return
port
def
_run_cluster
(
self
,
model_file
,
envs
):
worker_endpoints
=
self
.
_ps_endpoints
.
split
(
","
)
w0_ep
,
w1_ep
=
worker_endpoints
env0
=
{
"FLAGS_selected_mlus"
:
"0"
,
"PADDLE_TRAINER_ID"
:
"0"
,
"PADDLE_TRAINERS_NUM"
:
"2"
,
"PADDLE_TRAINER_ENDPOINTS"
:
self
.
_ps_endpoints
,
"PADDLE_CURRENT_ENDPOINT"
:
w0_ep
,
}
env1
=
{
"FLAGS_selected_mlus"
:
"1"
,
"PADDLE_TRAINER_ID"
:
"1"
,
"PADDLE_TRAINERS_NUM"
:
"2"
,
"PADDLE_TRAINER_ENDPOINTS"
:
self
.
_ps_endpoints
,
"PADDLE_CURRENT_ENDPOINT"
:
w1_ep
,
}
# update environment
env0
.
update
(
envs
)
env1
.
update
(
envs
)
tr_cmd
=
"%s %s"
tr0_cmd
=
tr_cmd
%
(
self
.
_python_interp
,
model_file
)
tr1_cmd
=
tr_cmd
%
(
self
.
_python_interp
,
model_file
)
tr0_pipe
=
open
(
"/tmp/tr0_err.log"
,
"wb"
)
tr1_pipe
=
open
(
"/tmp/tr1_err.log"
,
"wb"
)
tr0_proc
=
subprocess
.
Popen
(
tr0_cmd
.
strip
().
split
(),
stdout
=
subprocess
.
PIPE
,
stderr
=
tr0_pipe
,
env
=
env0
,
)
tr1_proc
=
subprocess
.
Popen
(
tr0_cmd
.
strip
().
split
(),
stdout
=
subprocess
.
PIPE
,
stderr
=
tr1_pipe
,
env
=
env1
,
)
tr0_out
,
tr0_err
=
tr0_proc
.
communicate
()
tr1_out
,
tr1_err
=
tr1_proc
.
communicate
()
sys
.
stderr
.
write
(
'trainer 0 stderr: %s
\n
'
%
tr0_err
)
sys
.
stderr
.
write
(
'trainer 1 stderr: %s
\n
'
%
tr1_err
)
# close trainer file
tr0_pipe
.
close
()
tr1_pipe
.
close
()
return
(
pickle
.
loads
(
tr0_out
),
pickle
.
loads
(
tr1_out
),
tr0_proc
.
pid
,
tr1_proc
.
pid
,
)
def
check_with_place
(
self
,
model_file
,
col_type
,
data_type
,
check_error_log
=
False
,
need_envs
=
{},
):
required_envs
=
{
"FLAGS_eager_delete_tensor_gb"
:
"0.0"
,
"PATH"
:
os
.
getenv
(
"PATH"
),
"PYTHONPATH"
:
os
.
getenv
(
"PYTHONPATH"
,
""
),
"LD_LIBRARY_PATH"
:
os
.
getenv
(
"LD_LIBRARY_PATH"
,
""
),
"LD_PRELOAD"
:
os
.
getenv
(
"LD_PRELOAD"
,
""
),
"GLOG_v"
:
"3"
,
"DATA_TYPE"
:
data_type
,
"COL_TYPE"
:
col_type
,
}
required_envs
.
update
(
need_envs
)
if
check_error_log
:
required_envs
[
"GLOG_v"
]
=
"3"
required_envs
[
"GLOG_logtostderr"
]
=
"1"
tr0_out
,
tr1_out
,
pid0
,
pid1
=
self
.
_run_cluster
(
model_file
,
required_envs
)
np_data_type
=
DataTypeCast
(
data_type
)
np
.
random
.
seed
(
pid0
)
input1
=
np
.
random
.
random
((
10
,
1000
)).
astype
(
np_data_type
)
np
.
random
.
seed
(
pid1
)
input2
=
np
.
random
.
random
((
10
,
1000
)).
astype
(
np_data_type
)
if
col_type
==
"broadcast"
:
need_result
=
input2
np
.
testing
.
assert_allclose
(
tr0_out
[
0
],
need_result
)
np
.
testing
.
assert_allclose
(
tr1_out
[
0
],
need_result
)
elif
col_type
==
"allreduce_sum"
:
need_result
=
input1
+
input2
np
.
testing
.
assert_allclose
(
tr0_out
[
0
],
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
)
np
.
testing
.
assert_allclose
(
tr1_out
[
0
],
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
)
elif
col_type
==
"allreduce_prod"
:
need_result
=
input1
*
input2
np
.
testing
.
assert_allclose
(
tr0_out
[
0
],
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
)
np
.
testing
.
assert_allclose
(
tr1_out
[
0
],
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
)
elif
col_type
==
"allreduce_max"
:
need_result
=
np
.
maximum
(
input1
,
input2
)
np
.
testing
.
assert_allclose
(
tr0_out
[
0
],
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
)
np
.
testing
.
assert_allclose
(
tr1_out
[
0
],
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
)
elif
col_type
==
"allreduce_min"
:
need_result
=
np
.
minimum
(
input1
,
input2
)
np
.
testing
.
assert_allclose
(
tr0_out
[
0
],
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
)
np
.
testing
.
assert_allclose
(
tr1_out
[
0
],
need_result
,
rtol
=
1e-05
,
atol
=
1e-05
)
elif
col_type
==
"reduce_sum"
:
need_result
=
input1
+
input2
np
.
testing
.
assert_allclose
(
tr1_out
[
0
],
need_result
)
elif
col_type
==
"reduce_prod"
:
need_result
=
input1
*
input2
np
.
testing
.
assert_allclose
(
tr1_out
[
0
],
need_result
)
elif
col_type
==
"reduce_max"
:
need_result
=
np
.
maximum
(
input1
,
input2
)
np
.
testing
.
assert_allclose
(
tr1_out
[
0
],
need_result
)
elif
col_type
==
"reduce_min"
:
need_result
=
np
.
minimum
(
input1
,
input2
)
np
.
testing
.
assert_allclose
(
tr1_out
[
0
],
need_result
)
elif
col_type
==
"allgather"
:
need_result
=
np
.
vstack
((
input1
,
input2
))
np
.
testing
.
assert_allclose
(
tr0_out
[
0
],
need_result
)
np
.
testing
.
assert_allclose
(
tr1_out
[
0
],
need_result
)
else
:
pass
python/paddle/fluid/tests/unittests/mlu/test_collective_broadcast.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_base_mlu
import
TestDistBase
paddle
.
enable_static
()
class
TestCBroadcastOp
(
TestDistBase
):
def
_setup_config
(
self
):
pass
def
test_broadcast_fp32
(
self
):
self
.
check_with_place
(
"collective_broadcast_op.py"
,
"broadcast"
,
"float32"
)
def
test_broadcast_fp16
(
self
):
self
.
check_with_place
(
"collective_broadcast_op.py"
,
"broadcast"
,
"float16"
)
def
test_broadcast_int32
(
self
):
self
.
check_with_place
(
"collective_broadcast_op.py"
,
"broadcast"
,
"int32"
)
def
test_broadcast_int16
(
self
):
self
.
check_with_place
(
"collective_broadcast_op.py"
,
"broadcast"
,
"int16"
)
def
test_broadcast_int8
(
self
):
self
.
check_with_place
(
"collective_broadcast_op.py"
,
"broadcast"
,
"int8"
)
def
test_broadcast_uint8
(
self
):
self
.
check_with_place
(
"collective_broadcast_op.py"
,
"broadcast"
,
"uint8"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_collective_broadcast_api_mlu.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_api_base_mlu
import
TestDistBase
paddle
.
enable_static
()
class
TestCollectiveBroadcastAPI
(
TestDistBase
):
def
_setup_config
(
self
):
pass
def
test_broadcast_cncl_fp16
(
self
):
self
.
check_with_place
(
"collective_broadcast_api.py"
,
"broadcast"
,
"float16"
)
def
test_broadcast_cncl_fp32
(
self
):
self
.
check_with_place
(
"collective_broadcast_api.py"
,
"broadcast"
,
"float32"
)
def
test_broadcast_cncl_int32
(
self
):
self
.
check_with_place
(
"collective_broadcast_api.py"
,
"broadcast"
,
"int32"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_collective_reduce_api_mlu.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_api_base_mlu
import
TestDistBase
paddle
.
enable_static
()
class
TestCollectiveReduceAPI
(
TestDistBase
):
def
_setup_config
(
self
):
pass
def
test_reduce_cncl_fp16
(
self
):
self
.
check_with_place
(
"collective_reduce_api.py"
,
"reduce"
,
"float16"
)
def
test_reduce_cncl_fp32
(
self
):
self
.
check_with_place
(
"collective_reduce_api.py"
,
"reduce"
,
"float32"
)
def
test_reduce_cncl_int32
(
self
):
self
.
check_with_place
(
"collective_reduce_api.py"
,
"reduce"
,
"int32"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_collective_reduce_max.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_base_mlu
import
TestDistBase
paddle
.
enable_static
()
class
TestCReduceOp
(
TestDistBase
):
def
_setup_config
(
self
):
pass
def
test_reduce_max_fp32
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_max"
,
"float32"
)
def
test_reduce_max_fp16
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_max"
,
"float16"
)
def
test_reduce_max_int32
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_max"
,
"int32"
)
def
test_reduce_max_int16
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_max"
,
"int16"
)
def
test_reduce_max_int8
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_max"
,
"int8"
)
def
test_reduce_max_uint8
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_max"
,
"uint8"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_collective_reduce_min.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_base_mlu
import
TestDistBase
paddle
.
enable_static
()
class
TestCReduceOp
(
TestDistBase
):
def
_setup_config
(
self
):
pass
def
test_reduce_min_fp32
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_min"
,
"float32"
)
def
test_reduce_min_fp16
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_min"
,
"float16"
)
def
test_reduce_min_int32
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_min"
,
"int32"
)
def
test_reduce_min_int16
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_min"
,
"int16"
)
def
test_reduce_min_int8
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_min"
,
"int8"
)
def
test_reduce_min_uint8
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_min"
,
"uint8"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_collective_reduce_prod.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_base_mlu
import
TestDistBase
paddle
.
enable_static
()
class
TestCReduceOp
(
TestDistBase
):
def
_setup_config
(
self
):
pass
def
test_reduce_prod_fp32
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_prod"
,
"float32"
)
def
test_reduce_prod_fp16
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_prod"
,
"float16"
)
def
test_reduce_prod_int32
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_prod"
,
"int32"
)
def
test_reduce_prod_int16
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_prod"
,
"int16"
)
def
test_reduce_prod_int8
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_prod"
,
"int8"
)
def
test_reduce_prod_uint8
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_prod"
,
"uint8"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_collective_reduce_sum.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
import
unittest
import
numpy
as
np
import
paddle
from
test_collective_base_mlu
import
TestDistBase
paddle
.
enable_static
()
class
TestCReduceOp
(
TestDistBase
):
def
_setup_config
(
self
):
pass
def
test_reduce_sum_fp32
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_sum"
,
"float32"
)
def
test_reduce_sum_fp16
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_sum"
,
"float16"
)
def
test_reduce_sum_int32
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_sum"
,
"int32"
)
def
test_reduce_sum_int16
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_sum"
,
"int16"
)
def
test_reduce_sum_int8
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_sum"
,
"int8"
)
def
test_reduce_sum_uint8
(
self
):
self
.
check_with_place
(
"collective_reduce_op.py"
,
"reduce_sum"
,
"uint8"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_launch_async_mlu.sh
已删除
100644 → 0
浏览文件 @
24740ccd
#!/bin/bash
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
# test use DISTRIBUTED_TRAINER_ENDPOINTS env in paddlecloud
unset
PADDLE_PORT
export
DISTRIBUTED_TRAINER_ENDPOINTS
=
127.0.0.1:6170,127.0.0.1:6171,127.0.0.2:6170,127.0.0.2:6171
export
cluster_node_ips
=
"127.0.0.1,127.0.0.2"
export
PADDLE_TRAINERS_NUM
=
2
export
POD_IP
=
127.0.0.1
export
PADDLE_TRAINERS
=
127.0.0.1,127.0.0.2
export
PADDLE_TRAINER_ID
=
0
export
TRAINER_PORTS_NUM
=
2
file_0
=
"multi_process_fullpath_launch.check_0.log"
file_1
=
"multi_process_fullpath_launch.check_1.log"
distributed_args
=
"--ips=
${
cluster_node_ips
}
--mlus=0,1 --log_dir=testlog"
echo
"paddle.distributed.fleet.launch async poll process test"
if
!
MLU_VISIBLE_DEVICES
=
0,1 python
-m
paddle.distributed.fleet.launch
${
distributed_args
}
multi_process_mlu.py fullpath_launch abort
;
then
echo
"train abort as planned"
fi
abort_str1
=
"abort>>> selected_mlus:0 worker_endpoints:127.0.0.1:6170,127.0.0.1:6171,127.0.0.2:6170,127.0.0.2:6171 trainers_num:4 current_endpoint:127.0.0.1:6170 trainer_id:0"
if
grep
-q
"
$abort_str1
"
"
$file_0
"
;
then
echo
"trainer 0 abort as planned"
else
echo
"trainer 0 not abort as planned"
exit
-1
fi
if
[
!
-f
$file_1
]
;
then
echo
"trainer 1 terminate as planned"
else
echo
"trainer 1 not terminate as planned"
rm
$file_1
exit
-1
fi
if
[
-f
$file_0
]
;
then
rm
$file_0
fi
python/paddle/fluid/tests/unittests/mlu/test_launch_cloud_mlu.sh
已删除
100644 → 0
浏览文件 @
24740ccd
#!/bin/bash
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
# use paddlecloud
echo
"begin test use paddlecloud"
cluster_node_ips
=
"127.0.0.1,127.0.0.2"
export
PADDLE_TRAINERS_NUM
=
2
export
POD_IP
=
127.0.0.1
export
PADDLE_TRAINERS
=
127.0.0.1,127.0.0.2
export
PADDLE_TRAINER_ID
=
0
export
PADDLE_PORT
=
35789
export
TRAINER_PORTS_NUM
=
2
distributed_args
=
"--ips=
${
cluster_node_ips
}
--mlus=0,1 --log_dir=testlog"
MLU_VISIBLE_DEVICES
=
0,1 python
-m
paddle.distributed.fleet.launch
${
distributed_args
}
multi_process_mlu.py fleetlaunchcloud
str1
=
"selected_mlus:0 worker_endpoints:127.0.0.1:35789,127.0.0.1:35790,127.0.0.2:35789,127.0.0.2:35790 trainers_num:4 current_endpoint:127.0.0.1:35789 trainer_id:0"
str2
=
"selected_mlus:1 worker_endpoints:127.0.0.1:35789,127.0.0.1:35790,127.0.0.2:35789,127.0.0.2:35790 trainers_num:4 current_endpoint:127.0.0.1:35790 trainer_id:1"
file_0
=
"multi_process_fleetlaunchcloud.check_0.log"
file_1
=
"multi_process_fleetlaunchcloud.check_1.log"
echo
"paddlecloud params test"
if
grep
-q
"
$str1
"
"
$file_0
"
;
then
echo
"find trainer 0"
else
echo
"not find trainer 0"
exit
-1
fi
if
grep
-q
"
$str2
"
"
$file_1
"
;
then
echo
"find trainer 1"
else
echo
"not find trainer 1"
exit
-1
fi
# test async poll process
if
[
-f
$file_0
]
;
then
rm
$file_0
fi
if
[
-f
$file_1
]
;
then
rm
$file_1
fi
python/paddle/fluid/tests/unittests/mlu/test_launch_nproc_mlu.sh
已删除
100644 → 0
浏览文件 @
24740ccd
#!/bin/bash
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
export
PADDLE_START_PORT
=
35789
export
MLU_VISIBLE_DEVICES
=
0,1
function
test_nproc_0
(){
mlus
=
$1
file_0
=
"fleet_nproc_0.check_0.log"
rm
-f
${
file_0
}
distributed_args
=
"--log_dir=testlog --nproc_per_node=1 --ips=127.0.0.1"
python
-m
paddle.distributed.launch
${
distributed_args
}
nproc_process_mlu.py fleet_nproc_0
str0
=
"selected_mlus:
${
mlus
}
worker_endpoints:127.0.0.1:35789 trainers_num:1 current_endpoint:127.0.0.1:35789 trainer_id:0"
if
grep
-q
"
$str0
"
"
$file_0
"
;
then
echo
"find trainer 0"
else
echo
"not find trainer 0"
exit
-1
fi
if
[
-f
$file_0
]
;
then
rm
$file_0
fi
}
function
test_nproc_1
(){
file_0
=
"fleet_nproc_1.check_0.log"
file_1
=
"fleet_nproc_1.check_1.log"
rm
-f
${
file_0
}
${
file_1
}
distributed_args
=
"--log_dir=testlog --nproc_per_node=2 --ips=127.0.0.1"
python
-m
paddle.distributed.launch
${
distributed_args
}
nproc_process_mlu.py fleet_nproc_1
str0
=
"selected_mlus:0 worker_endpoints:127.0.0.1:35789,127.0.0.1:35790 trainers_num:2 current_endpoint:127.0.0.1:35789 trainer_id:0"
if
grep
-q
"
$str0
"
"
$file_0
"
;
then
echo
"find trainer 0"
else
echo
"not find trainer 0"
exit
-1
fi
str1
=
"selected_mlus:1 worker_endpoints:127.0.0.1:35789,127.0.0.1:35790 trainers_num:2 current_endpoint:127.0.0.1:35790 trainer_id:1"
if
grep
-q
"
$str1
"
"
$file_1
"
;
then
echo
"find trainer 1"
else
echo
"not find trainer 1"
exit
-1
fi
if
[
-f
$file_0
]
;
then
rm
$file_0
fi
if
[
-f
$file_1
]
;
then
rm
$file_1
fi
}
test_nproc_0
"0,1"
test_nproc_1
python/paddle/fluid/tests/unittests/mlu/test_merged_adam_op_mlu.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
sys
.
path
.
append
(
'..'
)
import
unittest
import
paddle
import
numpy
as
np
from
paddle
import
_C_ops
,
_legacy_C_ops
from
paddle.fluid.framework
import
in_dygraph_mode
def
run_adam_op
(
params
,
grads
,
lrs
,
moment1s
,
moment2s
,
beta1_pows
,
beta2_pows
,
master_params
,
epsilon
,
beta1
,
beta2
,
place
,
multi_precision
=
False
,
use_merged
=
False
,
):
assert
len
(
params
)
==
len
(
grads
)
assert
len
(
params
)
==
len
(
lrs
)
assert
len
(
params
)
==
len
(
moment1s
)
assert
len
(
params
)
==
len
(
moment2s
)
assert
len
(
params
)
==
len
(
beta1_pows
)
assert
len
(
params
)
==
len
(
beta1_pows
)
assert
len
(
params
)
==
len
(
master_params
)
paddle
.
disable_static
()
# paddle.set_device(place)
param_vars
=
[
paddle
.
fluid
.
dygraph
.
to_variable
(
p
)
for
p
in
params
]
grad_vars
=
[
paddle
.
fluid
.
dygraph
.
to_variable
(
g
)
for
g
in
grads
]
lr_vars
=
[
paddle
.
fluid
.
dygraph
.
to_variable
(
l
)
for
l
in
lrs
]
moment1_vars
=
[
paddle
.
fluid
.
dygraph
.
to_variable
(
m
)
for
m
in
moment1s
]
moment2_vars
=
[
paddle
.
fluid
.
dygraph
.
to_variable
(
m
)
for
m
in
moment2s
]
beta1_pow_vars
=
[
paddle
.
fluid
.
dygraph
.
to_variable
(
b
)
for
b
in
beta1_pows
]
beta2_pow_vars
=
[
paddle
.
fluid
.
dygraph
.
to_variable
(
b
)
for
b
in
beta2_pows
]
master_param_vars
=
[
paddle
.
fluid
.
dygraph
.
to_variable
(
m_p
)
for
m_p
in
master_params
]
if
not
use_merged
:
for
i
in
range
(
len
(
param_vars
)):
_
,
_
,
_
,
_
,
_
,
_
=
_legacy_C_ops
.
adam
(
param_vars
[
i
],
grad_vars
[
i
],
lr_vars
[
i
],
moment1_vars
[
i
],
moment2_vars
[
i
],
beta1_pow_vars
[
i
],
beta2_pow_vars
[
i
],
master_param_vars
[
i
],
param_vars
[
i
],
moment1_vars
[
i
],
moment2_vars
[
i
],
beta1_pow_vars
[
i
],
beta2_pow_vars
[
i
],
master_param_vars
[
i
],
'epsilon'
,
epsilon
,
'beta1'
,
beta1
,
'beta2'
,
beta2
,
'multi_precision'
,
multi_precision
,
)
else
:
if
in_dygraph_mode
():
_
,
_
,
_
,
_
,
_
,
_
=
_C_ops
.
merged_adam_
(
param_vars
,
grad_vars
,
lr_vars
,
moment1_vars
,
moment2_vars
,
beta1_pow_vars
,
beta2_pow_vars
,
master_param_vars
,
beta1
,
beta2
,
epsilon
,
multi_precision
,
False
,
)
else
:
_
,
_
,
_
,
_
,
_
,
_
=
_legacy_C_ops
.
merged_adam
(
param_vars
,
grad_vars
,
lr_vars
,
moment1_vars
,
moment2_vars
,
beta1_pow_vars
,
beta2_pow_vars
,
master_param_vars
,
param_vars
,
moment1_vars
,
moment2_vars
,
beta1_pow_vars
,
beta2_pow_vars
,
master_param_vars
,
'epsilon'
,
epsilon
,
'beta1'
,
beta1
,
'beta2'
,
beta2
,
'multi_precision'
,
multi_precision
,
)
outputs
=
{
'ParamOut'
:
param_vars
,
'Moment1Out'
:
moment1_vars
,
'Moment2Out'
:
moment2_vars
,
'Beta1PowOut'
:
beta1_pow_vars
,
'Beta2PowOut'
:
beta2_pow_vars
,
'MasterParamOut'
:
master_param_vars
,
}
return
outputs
class
TestMergedAdam
(
unittest
.
TestCase
):
def
setUp
(
self
):
paddle
.
disable_static
()
self
.
shapes
=
[[
3
,
4
],
[
2
,
7
],
[
5
,
6
],
[
7
,
8
]]
self
.
seed
=
10
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
def
gen_rand_data
(
self
,
shapes
,
dtype
):
return
[
np
.
random
.
random
(
s
).
astype
(
dtype
)
for
s
in
shapes
]
def
prepare_data
(
self
,
shapes
,
multi_precision
,
seed
,
place
):
np
.
random
.
seed
(
seed
)
mp_dtype
=
np
.
float32
# dtype = np.float16 if multi_precision and place == 'mlu' else np.float32
dtype
=
np
.
float32
params
=
self
.
gen_rand_data
(
shapes
,
dtype
)
grads
=
self
.
gen_rand_data
(
shapes
,
dtype
)
lrs
=
self
.
gen_rand_data
([[
1
],
[
1
],
[
1
],
[
1
]],
mp_dtype
)
moment1s
=
self
.
gen_rand_data
(
shapes
,
mp_dtype
)
moment2s
=
self
.
gen_rand_data
(
shapes
,
mp_dtype
)
beta1_pows
=
self
.
gen_rand_data
([[
1
],
[
1
],
[
1
],
[
1
]],
mp_dtype
)
beta2_pows
=
self
.
gen_rand_data
([[
1
],
[
1
],
[
1
],
[
1
]],
mp_dtype
)
master_params
=
[
p
.
astype
(
mp_dtype
)
for
p
in
params
]
return
(
params
,
grads
,
lrs
,
moment1s
,
moment2s
,
beta1_pows
,
beta2_pows
,
master_params
,
)
def
check_with_place
(
self
,
place
,
multi_precision
):
(
params
,
grads
,
lrs
,
moment1s
,
moment2s
,
beta1_pows
,
beta2_pows
,
master_params
,
)
=
self
.
prepare_data
(
self
.
shapes
,
multi_precision
,
self
.
seed
,
place
)
def
run_op
(
use_merged
):
return
run_adam_op
(
params
=
params
,
grads
=
grads
,
lrs
=
lrs
,
moment1s
=
moment1s
,
moment2s
=
moment2s
,
beta1_pows
=
beta1_pows
,
beta2_pows
=
beta2_pows
,
master_params
=
master_params
,
epsilon
=
0.9
,
beta1
=
0.9
,
beta2
=
0.99
,
place
=
place
,
multi_precision
=
multi_precision
,
use_merged
=
use_merged
,
)
outs1
=
run_op
(
True
)
outs2
=
run_op
(
False
)
self
.
assertEqual
(
len
(
outs1
),
len
(
outs2
))
for
key
in
outs1
.
keys
():
value1
=
outs1
[
key
]
value2
=
outs2
[
key
]
for
i
in
range
(
len
(
value1
)):
if
place
==
'mlu'
:
np
.
testing
.
assert_array_equal
(
value1
[
i
],
value2
[
i
])
else
:
np
.
testing
.
assert_allclose
(
value1
[
i
],
value2
[
i
],
rtol
=
1e-05
,
atol
=
1e-07
)
def
test_main
(
self
):
for
multi_precision
in
[
False
,
True
]:
self
.
check_with_place
(
self
.
place
,
multi_precision
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_merged_momentum_op_mlu.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
sys
.
path
.
append
(
'..'
)
import
unittest
import
paddle
import
numpy
as
np
from
paddle.fluid.layer_helper
import
LayerHelper
from
collections
import
OrderedDict
def
run_momentum_op
(
params
,
grads
,
velocitys
,
master_params
,
learning_rate
,
place
,
multi_precision
,
mu
=
0.9
,
rescale_grad
=
0.01
,
use_merged
=
False
,
):
assert
len
(
params
)
==
len
(
grads
)
assert
len
(
params
)
==
len
(
velocitys
)
if
multi_precision
:
assert
len
(
params
)
==
len
(
master_params
)
op_type
=
'merged_momentum'
if
use_merged
else
'momentum'
main
=
paddle
.
static
.
Program
()
startup
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
main
,
startup
):
helper
=
LayerHelper
(
op_type
,
**
locals
())
attrs
=
{
'mu'
:
mu
,
'multi_precision'
:
multi_precision
,
'rescale_grad'
:
rescale_grad
,
}
param_vars
=
[
helper
.
create_variable
(
persistable
=
True
,
shape
=
p
.
shape
,
dtype
=
p
.
dtype
)
for
p
in
params
]
grad_vars
=
[
helper
.
create_variable
(
shape
=
g
.
shape
,
dtype
=
g
.
dtype
)
for
g
in
grads
]
velocity_vars
=
[
helper
.
create_variable
(
persistable
=
True
,
shape
=
v
.
shape
,
dtype
=
v
.
dtype
)
for
v
in
velocitys
]
lr_var
=
helper
.
create_variable
(
persistable
=
True
,
shape
=
learning_rate
.
shape
,
dtype
=
learning_rate
.
dtype
,
)
feed_dict
=
OrderedDict
()
feed_dict
.
update
(
OrderedDict
(
[
(
p_var
.
name
,
p_val
)
for
p_var
,
p_val
in
zip
(
param_vars
,
params
)
]
)
)
feed_dict
.
update
(
OrderedDict
(
[
(
v_var
.
name
,
v_val
)
for
v_var
,
v_val
in
zip
(
velocity_vars
,
velocitys
)
]
)
)
fetch_list
=
list
(
feed_dict
.
keys
())
feed_dict
.
update
(
OrderedDict
(
[(
g_var
.
name
,
g_val
)
for
g_var
,
g_val
in
zip
(
grad_vars
,
grads
)]
)
)
feed_dict
.
update
({
lr_var
.
name
:
learning_rate
})
if
multi_precision
:
master_param_vars
=
[
helper
.
create_variable
(
persistable
=
True
,
shape
=
p
.
shape
,
dtype
=
p
.
dtype
)
for
p
in
master_params
]
feed_dict
.
update
(
OrderedDict
(
[
(
mp_var
.
name
,
mp_val
)
for
mp_var
,
mp_val
in
zip
(
master_param_vars
,
master_params
)
]
)
)
# CPUPlace does not use MasterParam
if
isinstance
(
place
,
paddle
.
CUDAPlace
):
fetch_list
=
fetch_list
+
[
mp_var
.
name
for
mp_var
in
master_param_vars
]
else
:
master_param_vars
=
None
if
not
use_merged
:
for
i
,
(
p
,
g
,
v
)
in
enumerate
(
zip
(
param_vars
,
grad_vars
,
velocity_vars
)
):
inputs
=
{
'Param'
:
p
,
'Grad'
:
g
,
'Velocity'
:
v
,
'LearningRate'
:
lr_var
,
}
outputs
=
{
'ParamOut'
:
p
,
'VelocityOut'
:
v
}
if
multi_precision
:
inputs
[
'MasterParam'
]
=
master_param_vars
[
i
]
outputs
[
'MasterParamOut'
]
=
master_param_vars
[
i
]
helper
.
append_op
(
type
=
op_type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
)
else
:
inputs
=
{
'Param'
:
param_vars
,
'Grad'
:
grad_vars
,
'Velocity'
:
velocity_vars
,
'LearningRate'
:
lr_var
,
}
outputs
=
{
'ParamOut'
:
param_vars
,
'VelocityOut'
:
velocity_vars
}
if
multi_precision
:
inputs
[
'MasterParam'
]
=
master_param_vars
outputs
[
'MasterParamOut'
]
=
master_param_vars
helper
.
append_op
(
type
=
op_type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
)
exe
=
paddle
.
static
.
Executor
(
place
)
with
paddle
.
static
.
scope_guard
(
paddle
.
static
.
Scope
()):
exe
.
run
(
startup
)
return
exe
.
run
(
main
,
feed
=
feed_dict
,
fetch_list
=
fetch_list
)
def
run_momentum_op2
(
params
,
grads
,
velocitys
,
master_params
,
learning_rate
,
place
,
multi_precision
,
mu
=
0.9
,
rescale_grad
=
0.01
,
use_merged
=
False
,
use_nesterov
=
True
,
):
assert
len
(
params
)
==
len
(
grads
)
assert
len
(
params
)
==
len
(
velocitys
)
if
multi_precision
:
assert
len
(
params
)
==
len
(
master_params
)
op_type
=
'merged_momentum'
if
use_merged
else
'momentum'
main
=
paddle
.
static
.
Program
()
startup
=
paddle
.
static
.
Program
()
with
paddle
.
static
.
program_guard
(
main
,
startup
):
helper
=
LayerHelper
(
op_type
,
**
locals
())
param_vars
=
[
helper
.
create_variable
(
persistable
=
True
,
shape
=
p
.
shape
,
dtype
=
p
.
dtype
)
for
p
in
params
]
grad_vars
=
[
helper
.
create_variable
(
shape
=
g
.
shape
,
dtype
=
g
.
dtype
)
for
g
in
grads
]
velocity_vars
=
[
helper
.
create_variable
(
persistable
=
True
,
shape
=
v
.
shape
,
dtype
=
v
.
dtype
)
for
v
in
velocitys
]
lr_var
=
helper
.
create_variable
(
persistable
=
True
,
shape
=
learning_rate
.
shape
,
dtype
=
learning_rate
.
dtype
,
)
feed_dict
=
OrderedDict
()
feed_dict
.
update
(
OrderedDict
(
[
(
p_var
.
name
,
p_val
)
for
p_var
,
p_val
in
zip
(
param_vars
,
params
)
]
)
)
feed_dict
.
update
(
OrderedDict
(
[
(
v_var
.
name
,
v_val
)
for
v_var
,
v_val
in
zip
(
velocity_vars
,
velocitys
)
]
)
)
fetch_list
=
list
(
feed_dict
.
keys
())
feed_dict
.
update
(
OrderedDict
(
[(
g_var
.
name
,
g_val
)
for
g_var
,
g_val
in
zip
(
grad_vars
,
grads
)]
)
)
feed_dict
.
update
({
lr_var
.
name
:
learning_rate
})
if
multi_precision
:
master_param_vars
=
[
helper
.
create_variable
(
persistable
=
True
,
shape
=
p
.
shape
,
dtype
=
p
.
dtype
)
for
p
in
master_params
]
feed_dict
.
update
(
OrderedDict
(
[
(
mp_var
.
name
,
mp_val
)
for
mp_var
,
mp_val
in
zip
(
master_param_vars
,
master_params
)
]
)
)
# CPUPlace does not use MasterParam
if
isinstance
(
place
,
paddle
.
CUDAPlace
):
fetch_list
=
fetch_list
+
[
mp_var
.
name
for
mp_var
in
master_param_vars
]
else
:
master_param_vars
=
None
if
not
use_merged
:
for
i
,
(
p
,
g
,
v
)
in
enumerate
(
zip
(
param_vars
,
grad_vars
,
velocity_vars
)
):
inputs
=
{
'Param'
:
p
,
'Grad'
:
g
,
'Velocity'
:
v
,
'LearningRate'
:
lr_var
,
}
outputs
=
{
'ParamOut'
:
p
,
'VelocityOut'
:
v
}
if
multi_precision
:
inputs
[
'MasterParam'
]
=
master_param_vars
[
i
]
outputs
[
'MasterParamOut'
]
=
master_param_vars
[
i
]
attrs
=
{
'mu'
:
mu
,
'multi_precision'
:
multi_precision
,
'rescale_grad'
:
rescale_grad
,
'use_nesterov'
:
use_nesterov
,
'regularization_method'
:
'l2_decay'
,
'regularization_coeff'
:
2.0
,
}
helper
.
append_op
(
type
=
op_type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
)
else
:
inputs
=
{
'Param'
:
param_vars
,
'Grad'
:
grad_vars
,
'Velocity'
:
velocity_vars
,
'LearningRate'
:
lr_var
,
}
outputs
=
{
'ParamOut'
:
param_vars
,
'VelocityOut'
:
velocity_vars
}
if
multi_precision
:
inputs
[
'MasterParam'
]
=
master_param_vars
outputs
[
'MasterParamOut'
]
=
master_param_vars
attrs
=
{
'mu'
:
mu
,
'multi_precision'
:
multi_precision
,
'rescale_grad'
:
rescale_grad
,
'use_nesterov'
:
use_nesterov
,
'regularization_method'
:
[
'l2_decay'
for
i
in
range
(
len
(
param_vars
))
],
'regularization_coeff'
:
[
2.0
for
i
in
range
(
len
(
param_vars
))],
}
helper
.
append_op
(
type
=
op_type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
)
exe
=
paddle
.
static
.
Executor
(
place
)
with
paddle
.
static
.
scope_guard
(
paddle
.
static
.
Scope
()):
exe
.
run
(
startup
)
return
exe
.
run
(
main
,
feed
=
feed_dict
,
fetch_list
=
fetch_list
)
class
TestMergedMomentum
(
unittest
.
TestCase
):
def
setUp
(
self
):
paddle
.
enable_static
()
self
.
shapes
=
[[
3
,
4
],
[
2
,
7
],
[
5
,
6
],
[
7
,
8
]]
self
.
seed
=
10
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
def
gen_rand_data
(
self
,
shapes
,
dtype
):
return
[
np
.
random
.
random
(
s
).
astype
(
dtype
)
for
s
in
shapes
]
def
prepare_data
(
self
,
shapes
,
multi_precision
,
seed
,
place
):
np
.
random
.
seed
(
seed
)
mp_dtype
=
np
.
float32
dtype
=
np
.
float32
params
=
self
.
gen_rand_data
(
shapes
,
dtype
)
grads
=
self
.
gen_rand_data
(
shapes
,
dtype
)
velocitys
=
self
.
gen_rand_data
(
shapes
,
mp_dtype
)
learning_rate
=
self
.
gen_rand_data
([[
1
]],
mp_dtype
)[
0
]
if
multi_precision
:
master_params
=
[
p
.
astype
(
mp_dtype
)
for
p
in
params
]
else
:
master_params
=
None
return
params
,
grads
,
velocitys
,
master_params
,
learning_rate
def
check_with_place
(
self
,
place
,
multi_precision
):
(
params
,
grads
,
velocitys
,
master_params
,
learning_rate
,
)
=
self
.
prepare_data
(
self
.
shapes
,
multi_precision
,
self
.
seed
,
place
)
def
run_op
(
use_merged
):
# MLU Momentum Op does not support rescale_grad
rescale_grad
=
1.0
return
run_momentum_op
(
params
,
grads
,
velocitys
,
master_params
,
learning_rate
,
place
,
multi_precision
,
rescale_grad
=
rescale_grad
,
use_merged
=
use_merged
,
)
outs1
=
run_op
(
True
)
outs2
=
run_op
(
False
)
self
.
assertEqual
(
len
(
outs1
),
len
(
outs2
))
for
i
,
(
out1
,
out2
)
in
enumerate
(
zip
(
outs1
,
outs2
)):
np
.
testing
.
assert_allclose
(
out1
,
out2
,
atol
=
1e-7
)
def
test_main
(
self
):
self
.
check_with_place
(
self
.
place
,
multi_precision
=
False
)
class
TestMergedMomentum2
(
unittest
.
TestCase
):
def
setUp
(
self
):
paddle
.
enable_static
()
self
.
shapes
=
[[
3
,
4
],
[
2
,
7
],
[
5
,
6
],
[
7
,
8
]]
self
.
seed
=
10
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
def
gen_rand_data
(
self
,
shapes
,
dtype
):
return
[
np
.
random
.
random
(
s
).
astype
(
dtype
)
for
s
in
shapes
]
def
prepare_data
(
self
,
shapes
,
multi_precision
,
seed
,
place
):
np
.
random
.
seed
(
seed
)
mp_dtype
=
np
.
float32
dtype
=
np
.
float32
# np.float16
params
=
self
.
gen_rand_data
(
shapes
,
dtype
)
grads
=
self
.
gen_rand_data
(
shapes
,
dtype
)
velocitys
=
self
.
gen_rand_data
(
shapes
,
mp_dtype
)
learning_rate
=
self
.
gen_rand_data
([[
1
]],
mp_dtype
)[
0
]
if
multi_precision
:
master_params
=
[
p
.
astype
(
mp_dtype
)
for
p
in
params
]
else
:
master_params
=
None
return
params
,
grads
,
velocitys
,
master_params
,
learning_rate
def
check_with_place
(
self
,
place
,
multi_precision
):
(
params
,
grads
,
velocitys
,
master_params
,
learning_rate
,
)
=
self
.
prepare_data
(
self
.
shapes
,
multi_precision
,
self
.
seed
,
place
)
def
run_op
(
use_nesterov
,
use_merged
):
# MLU Momentum Op does not support rescale_grad
rescale_grad
=
1.0
return
run_momentum_op2
(
params
,
grads
,
velocitys
,
master_params
,
learning_rate
,
place
,
multi_precision
,
rescale_grad
=
rescale_grad
,
use_merged
=
use_merged
,
use_nesterov
=
use_nesterov
,
)
outs1
=
run_op
(
use_nesterov
=
True
,
use_merged
=
True
)
outs2
=
run_op
(
use_nesterov
=
True
,
use_merged
=
False
)
self
.
assertEqual
(
len
(
outs1
),
len
(
outs2
))
for
i
,
(
out1
,
out2
)
in
enumerate
(
zip
(
outs1
,
outs2
)):
np
.
testing
.
assert_allclose
(
out1
,
out2
,
atol
=
1e-7
)
outs3
=
run_op
(
use_nesterov
=
False
,
use_merged
=
True
)
outs4
=
run_op
(
use_nesterov
=
False
,
use_merged
=
False
)
self
.
assertEqual
(
len
(
outs3
),
len
(
outs4
))
for
j
,
(
out3
,
out4
)
in
enumerate
(
zip
(
outs3
,
outs4
)):
np
.
testing
.
assert_allclose
(
out3
,
out4
,
atol
=
1e-7
)
def
test_main
(
self
):
self
.
check_with_place
(
self
.
place
,
multi_precision
=
False
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_parallel_dygraph_sync_batch_norm_mlu.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
sys
sys
.
path
.
append
(
".."
)
import
unittest
from
test_dist_base
import
TestDistBase
import
paddle.fluid
as
fluid
import
os
import
subprocess
import
pickle
DEFAULT_BATCH_SIZE
=
2
flag_name
=
os
.
path
.
splitext
(
__file__
)[
0
]
print
(
"file: {}"
.
format
(
flag_name
))
class
TestParallelDygraphMnistMLU
(
TestDistBase
):
def
_setup_config
(
self
):
self
.
_sync_mode
=
False
self
.
_cncl_mode
=
True
self
.
_dygraph
=
True
self
.
_enforce_place
=
"MLU"
def
_get_required_envs
(
self
,
check_error_log
=
False
,
need_envs
=
{}):
required_envs
=
{
"PATH"
:
os
.
getenv
(
"PATH"
,
""
),
"PYTHONPATH"
:
os
.
getenv
(
"PYTHONPATH"
,
""
),
"LD_LIBRARY_PATH"
:
os
.
getenv
(
"LD_LIBRARY_PATH"
,
""
),
"LD_PRELOAD"
:
os
.
getenv
(
"LD_PRELOAD"
,
""
),
"FLAGS_fraction_of_gpu_memory_to_use"
:
"0.15"
,
"FLAGS_eager_delete_tensor_gb"
:
"0.0"
,
"FLAGS_call_stack_level"
:
"2"
,
"GLOG_v"
:
"2"
,
"PADDLE_WITH_GLOO"
:
'0'
,
"BACKEND"
:
"cncl"
,
}
if
check_error_log
:
required_envs
[
"GLOG_v"
]
=
"5"
required_envs
[
"GLOG_logtostderr"
]
=
"1"
required_envs
[
"GLOO_LOG_LEVEL"
]
=
"TRACE"
required_envs
.
update
(
need_envs
)
return
required_envs
def
_run_local
(
self
,
model
,
envs
,
check_error_log
=
False
,
batch_size
=
DEFAULT_BATCH_SIZE
,
batch_merge_repeat
=
1
,
log_name
=
""
,
devices
=
"1"
,
):
cmd
=
self
.
_python_interp
if
os
.
getenv
(
'WITH_COVERAGE'
,
'OFF'
)
==
'ON'
:
envs
[
'COVERAGE_FILE'
]
=
os
.
getenv
(
'COVERAGE_FILE'
,
''
)
cmd
+=
" -m coverage run --branch -p"
cmd
+=
" %s --role trainer --update_method local --lr %f"
%
(
model
,
self
.
_lr
,
)
if
batch_size
!=
DEFAULT_BATCH_SIZE
:
cmd
+=
" --batch_size %d"
%
batch_size
if
batch_merge_repeat
>
1
:
cmd
+=
" --batch_merge_repeat %d"
%
batch_merge_repeat
if
self
.
_nccl2_reduce_layer
:
cmd
+=
" --nccl2_reduce_layer_local_run 1"
if
self
.
_use_mlu
:
cmd
+=
" --use_mlu"
env_local
=
{
"FLAGS_selected_mlus"
:
devices
,
"PADDLE_TRAINERS_NUM"
:
"1"
,
"PADDLE_TRAINER_ID"
:
"0"
,
}
else
:
env_local
=
{
'CPU_NUM'
:
'1'
}
# not use dgc in single card
if
len
(
devices
)
>
1
and
self
.
_use_dgc
:
cmd
+=
" --use_dgc"
if
self
.
_accumulate_gradient
:
cmd
+=
" --accumulate_gradient"
if
self
.
_find_unused_parameters
:
cmd
+=
" --find_unused_parameters"
env_local
.
update
(
envs
)
print
(
"local_cmd: {}, env: {}"
.
format
(
cmd
,
env_local
))
if
check_error_log
:
path
=
"/tmp/local_err_%d.log"
%
os
.
getpid
()
err_log
=
open
(
path
,
"w"
)
local_proc
=
subprocess
.
Popen
(
cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
err_log
,
env
=
env_local
,
)
else
:
local_proc
=
subprocess
.
Popen
(
cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
,
env
=
env_local
,
)
local_out
,
local_err
=
local_proc
.
communicate
()
if
check_error_log
:
err_log
.
close
()
sys
.
stderr
.
write
(
'
\n
--run_local-- trainer 0 stderr file saved in: %s
\n
'
%
(
path
)
)
sys
.
stderr
.
write
(
'local_stderr: %s
\n
'
%
local_err
)
sys
.
stderr
.
write
(
'local_stdout: %s
\n
'
%
pickle
.
loads
(
local_out
))
return
pickle
.
loads
(
local_out
)
def
_run_cluster_nccl2
(
self
,
model
,
envs
,
update_method
,
check_error_log
,
log_name
):
# NOTE: we reuse ps_endpoints as nccl2 worker endpoints
worker_endpoints
=
self
.
_ps_endpoints
.
split
(
","
)
trainer_num
=
len
(
worker_endpoints
)
procs
=
[]
pipes
=
[]
for
i
in
range
(
0
,
trainer_num
):
tr_cmd
,
tr_env
=
self
.
_get_nccl2_trainer_cmd
(
model
,
worker_endpoints
[
i
],
update_method
,
i
,
trainer_num
)
tr_env
.
update
(
envs
)
print
(
"use_hallreduce:{}
\n
tr{}_cmd:{}, env: {}"
.
format
(
self
.
_use_hallreduce
,
i
,
tr_cmd
,
tr_env
)
)
tr_pipe
=
open
(
"/tmp/tr%d_err_%d.log"
%
(
i
,
os
.
getpid
()),
"w"
)
sys
.
stderr
.
write
(
"
\n
{} going to start process {} with nccl2
\n
"
.
format
(
type
(
self
).
__name__
,
i
)
)
tr_proc
=
subprocess
.
Popen
(
tr_cmd
.
strip
().
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
tr_pipe
,
env
=
tr_env
,
)
procs
.
append
(
tr_proc
)
pipes
.
append
(
tr_pipe
)
outs
=
[]
for
i
in
range
(
0
,
trainer_num
):
tr_out
,
tr_err
=
procs
[
i
].
communicate
()
outs
.
append
(
tr_out
)
pipes
[
i
].
close
()
sys
.
stderr
.
write
(
'trainer {} stderr: {}
\n
'
.
format
(
i
,
tr_err
))
sys
.
stderr
.
write
(
'trainer {} glog file saved in: /tmp/tr{}_err_{}.log
\n
'
.
format
(
i
,
i
,
os
.
getpid
()
)
)
if
check_error_log
:
print
(
"outs[0]:"
,
pickle
.
loads
(
outs
[
0
]))
print
(
"outs[1]:"
,
pickle
.
loads
(
outs
[
1
]))
return
pickle
.
loads
(
outs
[
0
]),
pickle
.
loads
(
outs
[
1
])
def
test_mnist
(
self
):
if
fluid
.
core
.
is_compiled_with_mlu
():
self
.
check_with_place
(
os
.
path
.
abspath
(
"parallel_dygraph_sync_batch_norm.py"
),
delta
=
1e-5
,
check_error_log
=
True
,
log_name
=
flag_name
,
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_spawn_mlu.py
已删除
100644 → 0
浏览文件 @
24740ccd
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
os
import
paddle
import
paddle.nn
as
nn
import
paddle.optimizer
as
opt
import
paddle.distributed
as
dist
from
paddle.distributed.spawn
import
(
_get_subprocess_env_list
,
_options_valid_check
,
_get_default_nprocs
,
)
from
paddle.fluid
import
core
class
LinearNet
(
nn
.
Layer
):
def
__init__
(
self
):
super
().
__init__
()
self
.
_linear1
=
nn
.
Linear
(
10
,
10
)
self
.
_linear2
=
nn
.
Linear
(
10
,
1
)
def
forward
(
self
,
x
):
return
self
.
_linear2
(
self
.
_linear1
(
x
))
def
train
(
print_result
=
False
):
# 1. initialize parallel environment
dist
.
init_parallel_env
()
# 2. create data parallel layer & optimizer
layer
=
LinearNet
()
dp_layer
=
paddle
.
DataParallel
(
layer
)
loss_fn
=
nn
.
MSELoss
()
adam
=
opt
.
Adam
(
learning_rate
=
0.001
,
parameters
=
dp_layer
.
parameters
())
# 3. run layer
inputs
=
paddle
.
randn
([
10
,
10
],
'float32'
)
outputs
=
dp_layer
(
inputs
)
labels
=
paddle
.
randn
([
10
,
1
],
'float32'
)
loss
=
loss_fn
(
outputs
,
labels
)
if
print_result
is
True
:
print
(
"Rank:"
,
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
)))
loss
.
backward
()
adam
.
step
()
adam
.
clear_grad
()
return
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
))
class
TestSpawn
(
unittest
.
TestCase
):
def
test_nprocs_greater_than_device_num_error
(
self
):
with
self
.
assertRaises
(
RuntimeError
):
_get_subprocess_env_list
(
nprocs
=
100
,
options
=
dict
())
def
test_selected_devices_error
(
self
):
with
self
.
assertRaises
(
ValueError
):
options
=
dict
()
options
[
'selected_devices'
]
=
"100,101"
_get_subprocess_env_list
(
nprocs
=
2
,
options
=
options
)
def
test_get_correct_env
(
self
):
options
=
dict
()
options
[
'print_config'
]
=
True
env_dict
=
_get_subprocess_env_list
(
nprocs
=
1
,
options
=
options
)[
0
]
self
.
assertEqual
(
env_dict
[
'PADDLE_TRAINER_ID'
],
'0'
)
self
.
assertEqual
(
env_dict
[
'PADDLE_TRAINERS_NUM'
],
'1'
)
def
test_nprocs_not_equal_to_selected_devices
(
self
):
with
self
.
assertRaises
(
ValueError
):
options
=
dict
()
options
[
'selected_devices'
]
=
"100,101,102"
_get_subprocess_env_list
(
nprocs
=
2
,
options
=
options
)
def
test_options_valid_check
(
self
):
options
=
dict
()
options
[
'selected_devices'
]
=
"100,101,102"
_options_valid_check
(
options
)
with
self
.
assertRaises
(
ValueError
):
options
[
'error'
]
=
"error"
_options_valid_check
(
options
)
def
test_get_default_nprocs
(
self
):
paddle
.
set_device
(
'mlu'
)
nprocs
=
_get_default_nprocs
()
self
.
assertEqual
(
nprocs
,
core
.
get_mlu_device_count
())
def
test_spawn
(
self
):
num_devs
=
core
.
get_mlu_device_count
()
context
=
dist
.
spawn
(
train
,
backend
=
'cncl'
,
nprocs
=
num_devs
)
rank_list
=
[]
for
i
in
range
(
num_devs
):
rank_list
.
append
(
context
.
return_queues
[
i
].
get
())
rank_list
.
sort
()
self
.
assertEqual
(
rank_list
,
list
(
range
(
num_devs
)))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/mlu/test_sync_batch_norm_op_mlu.sh
已删除
100644 → 0
浏览文件 @
24740ccd
#!/bin/bash
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
MLU_VISIBLE_DEVICES
=
0,1 python
-m
paddle.distributed.launch test_sync_batch_norm_op_mlu_baseline.py
MLU_VISIBLE_DEVICES
=
0,1 python
-m
paddle.distributed.launch test_parallel_dygraph_sync_batch_norm_mlu.py
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录