Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e4ee872c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e4ee872c
编写于
12月 06, 2022
作者:
W
wuhuachaocoding
提交者:
GitHub
12月 06, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update for untrainable params for stage3. (#48577)
上级
06b32b38
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
196 addition
and
3 deletion
+196
-3
python/paddle/distributed/fleet/meta_parallel/sharding/group_sharded_stage3.py
...uted/fleet/meta_parallel/sharding/group_sharded_stage3.py
+11
-2
python/paddle/distributed/sharding/group_sharded.py
python/paddle/distributed/sharding/group_sharded.py
+3
-1
python/paddle/fluid/tests/unittests/collective/fleet/dygraph_group_sharded_stage3_eager.py
...ts/collective/fleet/dygraph_group_sharded_stage3_eager.py
+178
-0
python/paddle/fluid/tests/unittests/collective/fleet/test_dygraph_group_sharded_api_for_eager.py
...lective/fleet/test_dygraph_group_sharded_api_for_eager.py
+4
-0
未找到文件。
python/paddle/distributed/fleet/meta_parallel/sharding/group_sharded_stage3.py
浏览文件 @
e4ee872c
...
...
@@ -346,7 +346,7 @@ class GroupShardedStage3(nn.Layer):
current_params
=
list
()
for
p
in
current_layer_params
:
if
p
.
trainable
and
p
.
_numel
()
>
self
.
_segment_size
:
if
p
.
_numel
()
>
self
.
_segment_size
:
current_params
.
append
(
_add_manage_info
(
p
))
elif
p
.
trainable
:
self
.
_unslice_params
.
add
(
_UnsliceParam
(
p
))
...
...
@@ -430,7 +430,11 @@ class GroupShardedStage3(nn.Layer):
param
.
status
=
"part"
# Updata optimizer master weights
if
param
.
dtype
==
Type
.
fp16
.
value
and
not
self
.
_offload
:
if
(
param
.
trainable
and
param
.
dtype
==
Type
.
fp16
.
value
and
not
self
.
_offload
):
master_tensor
=
paddle
.
cast
(
param
.
fw_storage
,
Type
.
fp32
.
value
)
master_tensor
.
name
=
param
.
name
self
.
_optim
.
_master_weights
[
param
.
fw_storage
.
name
]
=
master_tensor
...
...
@@ -599,6 +603,9 @@ class GroupShardedStage3(nn.Layer):
def
_get_allreduce_fn
(
self
,
param
):
@
paddle
.
autograd
.
no_grad
()
def
allreduce_
(
*
_
):
assert
(
param
.
trainable
),
"the param must be trainable for grad allreduced"
if
param
.
name
in
self
.
_task_flow
.
full_grad
.
keys
():
full_grad
=
self
.
_task_flow
.
full_grad
[
param
.
name
]
# Only support sync allreduce current rank's layer now
...
...
@@ -962,6 +969,8 @@ def _allgather_buffer(
@
paddle
.
autograd
.
no_grad
()
def
_create_params_grad
(
trainable_params
,
param2buffer_size
,
task_flow
):
for
param
in
trainable_params
:
if
not
param
.
trainable
:
continue
if
param
.
name
in
task_flow
.
full_grad
.
keys
():
continue
assert
isinstance
(
param2buffer_size
[
param
.
name
],
int
)
...
...
python/paddle/distributed/sharding/group_sharded.py
浏览文件 @
e4ee872c
...
...
@@ -140,7 +140,9 @@ def group_sharded_parallel(
params_fp16
=
list
(
filter
(
check_dtype
,
model
.
parameters
()))
if
scaler
is
None
and
len
(
params_fp16
)
>
0
:
raise
ValueError
(
"Please enter the correct scaler."
)
logger_
.
warning
(
"the input of scaler is None, please ensure the logic of your scaler outside is same as GroupShardedScaler."
)
# convert model/optimizer/scaler
if
level
in
[
'os'
,
'os_g'
]:
logger_
.
info
(
"*"
*
30
)
...
...
python/paddle/fluid/tests/unittests/collective/fleet/dygraph_group_sharded_stage3_eager.py
0 → 100644
浏览文件 @
e4ee872c
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
paddle
from
paddle
import
nn
from
paddle.distributed.sharding
import
group_sharded_parallel
from
paddle.fluid.framework
import
_test_eager_guard
paddle
.
seed
(
2022
)
np
.
random
.
seed
(
2022
)
class
Model
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
Model
,
self
).
__init__
()
self
.
first_stage
=
nn
.
Linear
(
4096
,
4096
,
bias_attr
=
False
)
self
.
center_stage
=
nn
.
Linear
(
4096
,
4096
)
self
.
center_stage
.
weight
.
stop_gradient
=
True
self
.
center_stage
.
bias
.
stop_gradient
=
True
self
.
final_stage
=
nn
.
Linear
(
4096
,
2
,
bias_attr
=
False
)
def
forward
(
self
,
x
):
x
=
self
.
first_stage
(
x
)
x
=
self
.
center_stage
(
x
)
x
=
self
.
final_stage
(
x
)
return
x
def
optimizer_setting
(
model
,
use_multi_precision
):
optimizer
=
paddle
.
optimizer
.
AdamW
(
learning_rate
=
0.001
,
parameters
=
model
.
parameters
(),
multi_precision
=
use_multi_precision
,
)
return
optimizer
def
train_mlp
(
model
,
shard_level
=
"p_g_os"
,
use_multi_precision
=
False
,
output_dir
=
""
,
amp_level
=
'O1'
,
sync_buffers
=
False
,
use_sharding
=
True
,
data
=
None
,
):
optimizer
=
optimizer_setting
(
model
=
model
,
use_multi_precision
=
use_multi_precision
)
if
use_multi_precision
:
model
=
paddle
.
amp
.
decorate
(
models
=
model
,
level
=
amp_level
)
scaler
=
paddle
.
amp
.
GradScaler
(
init_loss_scaling
=
32768
)
if
use_sharding
:
model
,
optimizer
,
scaler
=
group_sharded_parallel
(
model
=
model
,
optimizer
=
optimizer
,
level
=
shard_level
,
scaler
=
scaler
,
sync_buffers
=
sync_buffers
,
)
res_loss
=
[]
for
i
in
range
(
20
):
model
.
train
()
img
=
data
[
i
]
with
paddle
.
amp
.
auto_cast
(
use_multi_precision
,
level
=
amp_level
):
out
=
model
(
img
)
avg_loss
=
out
.
mean
()
res_loss
.
append
(
avg_loss
.
item
())
if
not
use_multi_precision
:
avg_loss
.
backward
()
optimizer
.
step
()
else
:
scaler
.
scale
(
avg_loss
).
backward
()
scaler
.
step
(
optimizer
)
scaler
.
update
()
optimizer
.
clear_grad
()
return
res_loss
def
test_sharding_api
():
paddle
.
distributed
.
init_parallel_env
()
# just test warning
model
=
Model
()
model
=
paddle
.
amp
.
decorate
(
models
=
model
,
level
=
"O2"
)
optimizer
=
optimizer_setting
(
model
=
model
,
use_multi_precision
=
True
)
model
,
optimizer
,
scaler
=
group_sharded_parallel
(
model
=
model
,
optimizer
=
optimizer
,
level
=
"p_g_os"
,
)
data
=
[
paddle
.
randn
([
8
,
4096
])
for
i
in
range
(
20
)]
model
=
Model
()
sd3_model
=
Model
()
sd3_model
.
set_state_dict
(
model
.
state_dict
())
# dp fp32
dp_fp32_loss
=
train_mlp
(
model
,
use_multi_precision
=
False
,
use_sharding
=
False
,
data
=
data
)
# stage3 fp32
sd3_fp32_loss
=
train_mlp
(
sd3_model
,
shard_level
=
"p_g_os"
,
use_multi_precision
=
False
,
use_sharding
=
True
,
data
=
data
,
)
print
(
"dp_fp32_loss: "
,
dp_fp32_loss
)
print
(
"sd3_fp32_loss: "
,
sd3_fp32_loss
)
for
i
in
range
(
len
(
dp_fp32_loss
)):
np
.
testing
.
assert_allclose
(
np
.
array
(
dp_fp32_loss
[
i
]),
np
.
array
(
sd3_fp32_loss
[
i
]),
rtol
=
1e-8
,
atol
=
1e-8
,
)
model
=
Model
()
sd3_model
=
Model
()
sd3_model
.
set_state_dict
(
model
.
state_dict
())
# dp fp16
dp_fp16_loss
=
train_mlp
(
model
,
use_multi_precision
=
True
,
use_sharding
=
False
,
data
=
data
)
# stage3 fp16
sd3_fp16_loss
=
train_mlp
(
sd3_model
,
shard_level
=
"p_g_os"
,
use_multi_precision
=
True
,
use_sharding
=
True
,
data
=
data
,
)
print
(
"dp_fp316_loss: "
,
dp_fp32_loss
)
print
(
"sd3_fp32_loss: "
,
sd3_fp32_loss
)
for
i
in
range
(
len
(
dp_fp16_loss
)):
np
.
testing
.
assert_allclose
(
np
.
array
(
dp_fp16_loss
[
i
]),
np
.
array
(
sd3_fp16_loss
[
i
]),
rtol
=
1e-5
,
atol
=
1e-5
,
)
if
__name__
==
'__main__'
:
with
_test_eager_guard
():
test_sharding_api
()
python/paddle/fluid/tests/unittests/collective/fleet/test_dygraph_group_sharded_api_for_eager.py
浏览文件 @
e4ee872c
...
...
@@ -27,6 +27,10 @@ class TestDygraphGroupSharded(TestMultipleGpus):
def
test_dygraph_group_sharded
(
self
):
self
.
run_mnist_2gpu
(
'dygraph_group_sharded_api_eager.py'
)
# check stage3 for some functions.
def
test_dygraph_group_sharded
(
self
):
self
.
run_mnist_2gpu
(
'dygraph_group_sharded_stage3_eager.py'
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录