未验证 提交 e4857e0b 编写于 作者: J JYChen 提交者: GitHub

Revert "[zero-dim] Support 0-d for kthvalue and mode (#49122)" (#49172)

This reverts commit 9df0ab32.
上级 64f780c0
......@@ -1751,15 +1751,13 @@ void KthvalueInferMeta(const MetaTensor& x,
dim_size,
dim_size,
axis));
if (dim_size > 0) {
PADDLE_ENFORCE_GE(axis,
-dim_size,
phi::errors::InvalidArgument(
"the axis must be [-%d, %d), but received %d .",
dim_size,
dim_size,
axis));
}
PADDLE_ENFORCE_GE(axis,
-dim_size,
phi::errors::InvalidArgument(
"the axis must be [-%d, %d), but received %d .",
dim_size,
dim_size,
axis));
if (axis < 0) axis += dim_size;
PADDLE_ENFORCE_GE(
k,
......@@ -1768,8 +1766,8 @@ void KthvalueInferMeta(const MetaTensor& x,
"the k in the kthvalue must >= 1, but received %d .", k));
PADDLE_ENFORCE_GE(
input_dims.size(),
0,
phi::errors::InvalidArgument("input of kthvalue must have >= 0d shape"));
1,
phi::errors::InvalidArgument("input of kthvalue must have >= 1d shape"));
if (config.is_runtime) {
PADDLE_ENFORCE_GE(
input_dims[axis],
......@@ -1783,7 +1781,7 @@ void KthvalueInferMeta(const MetaTensor& x,
for (int64_t i = 0; i < axis; i++) {
dimvec.emplace_back(input_dims[i]);
}
if (keepdim && dim_size > 0) {
if (keepdim) {
dimvec.emplace_back(static_cast<int64_t>(1));
}
for (int64_t i = axis + 1; i < dim_size; i++) {
......@@ -2032,38 +2030,33 @@ void ModeInferMeta(const MetaTensor& x,
MetaTensor* indices) {
auto input_dims = x.dims();
const int& dim_size = input_dims.size();
PADDLE_ENFORCE_LT(axis,
dim_size,
phi::errors::InvalidArgument(
"the axis must be [-%d, %d), but received %d .",
dim_size,
dim_size,
axis));
if (dim_size > 0) {
PADDLE_ENFORCE_GE(axis,
-dim_size,
phi::errors::InvalidArgument(
"the axis must be [-%d, %d), but received %d .",
dim_size,
dim_size,
axis));
}
PADDLE_ENFORCE_EQ(
(axis < dim_size) && (axis >= (-1 * dim_size)),
true,
errors::InvalidArgument(
"the axis of ModeOp must be [-%d, %d), but you set axis is %d",
dim_size,
dim_size,
axis));
PADDLE_ENFORCE_GE(
input_dims.size(),
0,
errors::InvalidArgument("input of ModeOp must have >= 0d shape"));
1,
errors::InvalidArgument("input of ModeOp must have >= 1d shape"));
if (axis < 0) axis += dim_size;
std::vector<int64_t> dimvec;
for (int64_t i = 0; i < axis; i++) {
dimvec.emplace_back(input_dims[i]);
}
if (keepdim && dim_size > 0) {
if (keepdim) {
dimvec.emplace_back(static_cast<int64_t>(1));
}
for (int64_t i = axis + 1; i < dim_size; i++) {
dimvec.emplace_back(input_dims[i]);
}
DDim dims = phi::make_ddim(dimvec);
PADDLE_ENFORCE_GE(input_dims.size(),
1,
errors::InvalidArgument("input shape should >= 1d"));
out->set_dims(dims);
out->share_lod(x);
out->set_dtype(x.dtype());
......
......@@ -55,14 +55,6 @@ void KthvalueGradKernel(const Context& dev_ctx,
DenseTensor* d_x) {
auto in_dims = x.dims();
auto out_dims = indices.dims();
T* x_grad_data = dev_ctx.template Alloc<T>(d_x);
// For 0D Tensor
if (in_dims.size() == 0) {
phi::funcs::set_constant(dev_ctx, d_x, 1.0);
return;
}
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
if (!keepdim) {
std::vector<int> tmp_out_shape;
......@@ -75,7 +67,7 @@ void KthvalueGradKernel(const Context& dev_ctx,
}
out_dims = phi::make_ddim(tmp_out_shape);
}
T* x_grad_data = dev_ctx.template Alloc<T>(d_x);
if (axis == in_dims.size() - 1) {
const int64_t input_height =
phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1));
......
......@@ -82,22 +82,8 @@ void KthvalueKernel(const Context& dev_ctx,
DenseTensor* indices) {
const auto& in_dims = x.dims();
if (axis < 0) axis += in_dims.size();
T* output_data = dev_ctx.template Alloc<T>(output);
int64_t* indices_data = dev_ctx.template Alloc<int64_t>(indices);
// For 0D Tensor
if (in_dims.size() == 0) {
PADDLE_ENFORCE_EQ(k,
1,
phi::errors::InvalidArgument(
"the k in the kthvalue must less equal than the "
"elemenents number of the input X, but received %d .",
k));
phi::Copy<Context>(dev_ctx, x, dev_ctx.GetPlace(), false, output);
phi::funcs::set_constant(dev_ctx, indices, 0);
return;
}
auto out_dims = output->dims();
if (axis == in_dims.size() - 1) {
const int64_t& input_height =
......
......@@ -17,7 +17,6 @@
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/mode.h"
namespace phi {
......@@ -33,17 +32,9 @@ void ModeGradKernel(const Context& dev_ctx,
auto in_dims = x.dims();
auto out_dims = indices.dims();
T* x_grad_data = dev_ctx.template Alloc<T>(x_grad);
// axis < 0, get the real axis
axis = (axis < 0) ? (in_dims.size() + axis) : axis;
// For 0D Tensor
if (in_dims.size() == 0) {
phi::funcs::set_constant(dev_ctx, x_grad, 1.0);
return;
}
if (!keepdim) {
std::vector<int> tmp_out_shape;
for (int i = 0; i < axis; i++) {
......@@ -55,6 +46,7 @@ void ModeGradKernel(const Context& dev_ctx,
}
out_dims = phi::make_ddim(tmp_out_shape);
}
T* x_grad_data = dev_ctx.template Alloc<T>(x_grad);
if (axis == in_dims.size() - 1) {
// allocate the memory for the input_grad
......
......@@ -16,7 +16,6 @@
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/mode.h"
namespace phi {
......@@ -35,13 +34,6 @@ void ModeKernel(const Context& dev_ctx,
T* output_data = dev_ctx.template Alloc<T>(out);
int64_t* indices_data = dev_ctx.template Alloc<int64_t>(indices);
if (in_dims.size() == 0) {
phi::Copy<Context>(dev_ctx, x, dev_ctx.GetPlace(), false, out);
phi::funcs::set_constant(dev_ctx, indices, 0);
return;
}
// if axis is not the last dim, transpose it to the last dim, do the
// calculation, then tranpose it back to original axis.
if (axis == in_dims.size() - 1) {
......
......@@ -16,7 +16,6 @@
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/top_k_function_cuda.h"
namespace phi {
......@@ -44,15 +43,8 @@ void KthvalueGradKernel(const Context& dev_ctx,
DenseTensor* d_x) {
const auto& in_dims = x.dims();
auto out_dims = indices.dims();
T* x_grad_data = dev_ctx.template Alloc<T>(d_x);
// For 0D Tensor
if (in_dims.size() == 0) {
phi::funcs::set_constant(dev_ctx, d_x, 1.0);
return;
}
if (axis < 0) axis += in_dims.size();
T* x_grad_data = dev_ctx.template Alloc<T>(d_x);
const T* out_grad_data = d_out.data<T>();
const int64_t* indices_data = indices.data<int64_t>();
int pre, n, post;
......
......@@ -167,19 +167,6 @@ void KthvalueKernel(const Context& dev_ctx,
T* output_data = dev_ctx.template Alloc<T>(output);
int64_t* indices_data = dev_ctx.template Alloc<int64_t>(indices);
// For 0D Tensor
if (in_dims.size() == 0) {
PADDLE_ENFORCE_EQ(k,
1,
phi::errors::InvalidArgument(
"the k in the kthvalue must less equal than the "
"elemenents number of the input X, but received %d .",
k));
phi::Copy<Context>(dev_ctx, x, dev_ctx.GetPlace(), false, output);
phi::funcs::set_constant(dev_ctx, indices, 0);
return;
}
if (axis == in_dims.size() - 1) {
const int64_t& input_height =
phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1));
......
......@@ -16,7 +16,6 @@
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/mode.h"
namespace phi {
......@@ -62,12 +61,6 @@ void ModeGradKernel(const Context& dev_ctx,
const T* out_grad_data = out_grad.data<T>();
const int64_t* indices_data = indices.data<int64_t>();
// For 0D Tensor
if (in_dims.size() == 0) {
phi::funcs::set_constant(dev_ctx, x_grad, 1.0);
return;
}
int pre, n, post;
funcs::GetDims(in_dims, axis, &pre, &n, &post);
......
......@@ -16,7 +16,6 @@
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/mode.h"
namespace phi {
......@@ -39,13 +38,6 @@ void ModeKernel(const Context& dev_ctx,
T* output_data = dev_ctx.template Alloc<T>(out);
int64_t* indices_data = dev_ctx.template Alloc<int64_t>(indices);
// For 0D Tensor
if (in_dims.size() == 0) {
phi::Copy<Context>(dev_ctx, x, dev_ctx.GetPlace(), false, out);
phi::funcs::set_constant(dev_ctx, indices, 0);
return;
}
if (axis == in_dims.size() - 1) {
const int64_t& input_height =
phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1));
......
......@@ -177,12 +177,6 @@ class TestKthvalueOpErrors(unittest.TestCase):
self.assertRaises(ValueError, test_dim_range_error)
def test_k_error_0_dim_input():
x_0d = paddle.full([], 1)
x_0d.kthvalue(k=8)
self.assertRaises(ValueError, test_k_error_0_dim_input)
class TestModeOpInStatic(unittest.TestCase):
def setUp(self):
......
......@@ -712,36 +712,6 @@ class TestSundryAPI(unittest.TestCase):
self.assertEqual(out.numpy()[3], 2)
self.assertEqual(out.grad.shape, [5])
def test_kthvalue(self):
places = ['cpu']
if paddle.is_compiled_with_cuda():
places.append('gpu')
for place in places:
paddle.set_device(place)
x = paddle.randn(())
x.stop_gradient = False
out = paddle.kthvalue(x, 1)
out[0].backward()
self.assertEqual(out[0].shape, [])
self.assertEqual(out[1].shape, [])
def test_mode(self):
places = ['cpu']
if paddle.is_compiled_with_cuda():
places.append('gpu')
for place in places:
paddle.set_device(place)
x = paddle.randn(())
x.stop_gradient = False
out = paddle.mode(x)
out[0].backward()
self.assertEqual(out[0].shape, [])
self.assertEqual(out[1].shape, [])
class TestSundryAPIStatic(unittest.TestCase):
def setUp(self):
......@@ -944,28 +914,6 @@ class TestSundryAPIStatic(unittest.TestCase):
self.assertEqual(res[0].shape, (5,))
self.assertEqual(res[0][3], 2)
@prog_scope()
def test_kthvalue(self):
x = paddle.full([], 1, 'float32')
out = paddle.kthvalue(x, 1)
paddle.static.append_backward(out[0])
prog = paddle.static.default_main_program()
res = self.exe.run(prog, fetch_list=[out])
self.assertEqual(len(res[0].shape), 0)
self.assertEqual(len(res[0].shape), 0)
@prog_scope()
def test_mode(self):
x = paddle.full([], 1, 'float32')
out = paddle.mode(x)
paddle.static.append_backward(out[0])
prog = paddle.static.default_main_program()
res = self.exe.run(prog, fetch_list=[out])
self.assertEqual(len(res[0].shape), 0)
self.assertEqual(len(res[0].shape), 0)
# Use to test API whose zero-dim input tensors don't have grad and not need to test backward in OpTest.
class TestNoBackwardAPI(unittest.TestCase):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册