提交 e43ea422 编写于 作者: W wangruting

modify test without cinn

上级 29a13edd
......@@ -72,10 +72,10 @@ def expect_forward(x, norm_shape, w, b):
class TestCompositelayer_norm(unittest.TestCase):
def setUp(self):
self.dtypes = ["float16", "float32"]
self.n_shape = [[4], [3], [2, 3]]
self.shape1s = [[3, 4], [2, 4, 3], [2, 2, 3]]
self.shape2s = [[4], [3], [6]]
self.shape3s = [[4], [3], [6]]
self.n_shape = [[4], [64, 128], [64]]
self.shape1s = [[3, 4], [64, 64, 128], [128, 64, 64]]
self.shape2s = [[4], [64 * 128], [64]]
self.shape3s = [[4], [64 * 128], [64]]
def cal_composite(self, inputs, norm_shape, weight, bias):
paddle.enable_static()
......
......@@ -15,7 +15,7 @@
import unittest
import numpy as np
from utils import TOLERANCE
from utils import SUB_TOLERANCE
import paddle
import paddle.nn.functional as F
......@@ -50,11 +50,11 @@ class Attr:
return
def get_rtol(self, flag):
rtol = TOLERANCE[self.dtype][flag].get("rtol")
rtol = SUB_TOLERANCE[self.dtype][flag].get("rtol")
return rtol
def get_atol(self, flag):
atol = TOLERANCE[self.dtype][flag].get("atol")
atol = SUB_TOLERANCE[self.dtype][flag].get("atol")
return atol
......@@ -65,30 +65,6 @@ def fn(x, norm_shape, w, b):
return F.layer_norm(x, norm_shape, w, b)
# def layer_norm_ (input, weight, bias, epsilon=1e-05, begin_norm_axis = 0):
# axis = np.arange(begin_norm_axis,len(input.shape))
# mean = paddle.mean(input, axis=axis, keepdim=True)
# t1 = input - mean
# t2 = paddle.pow( t1, 2.0)
# t3 = paddle.mean( t2, axis=axis, keepdim=True)
# t4 = t3 + epsilon
# t5 = paddle.sqrt( t4 )
# t7 = t1 / t5
# out = t7
# if weight is not None:
# weight = paddle.reshape(weight, input.shape[begin_norm_axis:])
# out = t7 * paddle.broadcast_to(weight, out.shape)
# if bias is not None:
# bias = paddle.reshape(bias, input.shape[begin_norm_axis:])
# out = out + paddle.broadcast_to(bias, out.shape)
# return out
# def composite_forward(x, norm_shape, w, b):
# b_axis = len(x.shape) - len(norm_shape)
# return layer_norm_(x, w, b, begin_norm_axis=b_axis)
def expect_backward(x, norm_shape, w, b):
paddle.disable_static()
x.stop_gradient = False
......@@ -101,10 +77,10 @@ def expect_backward(x, norm_shape, w, b):
class TestCompositelayer_norm(unittest.TestCase):
def setUp(self):
self.dtypes = ["float16", "float32"]
self.n_shape = [[3, 4], [3], [2, 3]]
self.shape1s = [[3, 4], [2, 4, 3], [2, 2, 3]]
self.shape2s = [[12], [3], [6]]
self.shape3s = [[12], [3], [6]]
self.n_shape = [[4], [64, 128], [64]]
self.shape1s = [[3, 4], [64, 64, 128], [128, 64, 64]]
self.shape2s = [[4], [64 * 128], [64]]
self.shape3s = [[4], [64 * 128], [64]]
def cal_composite_backward(self, inputs, norm_shape, weight, bias):
paddle.enable_static()
......@@ -155,6 +131,49 @@ class TestCompositelayer_norm(unittest.TestCase):
core._set_prim_forward_enabled(False)
return res
def cal2_composite_backward(self, inputs, norm_shape, weight, bias):
paddle.enable_static()
core._set_prim_forward_enabled(True)
startup_program = paddle.static.Program()
main_program = paddle.static.Program()
with paddle.static.program_guard(main_program, startup_program):
x = paddle.static.data(
'x', shape=inputs.shape, dtype=str(inputs.dtype)
)
x.stop_gradient = False
y = fn(x, norm_shape, weight, bias)
blocks = main_program.blocks
fwd_ops = [op.type for op in blocks[0].ops]
# Ensure that layer_norm in original block
self.assertTrue('layer_norm' in fwd_ops)
paddle.incubate.autograd.to_prim(blocks)
fwd_ops_new = [op.type for op in blocks[0].ops]
# Ensure that layer_norm is splitted into small ops
self.assertTrue('layer_norm' not in fwd_ops_new)
z = paddle.static.gradients([y], x)
fwd_ops_grad = [op.type for op in blocks[0].ops]
# Ensure that layer_norm_grad not in grad block
self.assertTrue('layer_norm_grad' not in fwd_ops_grad)
exe = paddle.static.Executor()
exe.run(startup_program)
res = exe.run(
main_program,
feed={
'x': inputs,
},
fetch_list=[z],
)
paddle.disable_static()
core._set_prim_forward_enabled(False)
return res
def compare_backward(self):
x, w, b = generate_data(attrs.shape1, attrs.shape2, attrs.shape3)
n_shape = attrs.n_shape
......@@ -162,25 +181,25 @@ class TestCompositelayer_norm(unittest.TestCase):
w_p = paddle.to_tensor(w)
b_p = paddle.to_tensor(b)
expect = expect_backward(x_p, n_shape, w_p, b_p).numpy()
actual = self.cal_composite_backward(x_p, n_shape, w_p, b_p)
expect = expect_backward(x_p, n_shape, w_p, b_p)[0].numpy()
actual = self.cal_composite_backward(x, n_shape, w, b)[0]
assert expect.dtype == actual.dtype
np.testing.assert_allclose(
expect,
actual,
rtol=attrs.get_rtol("forward"),
atol=attrs.get_atol("forward"),
rtol=attrs.get_rtol("backward"),
atol=attrs.get_atol("backward"),
)
expect_2 = expect_backward(x_p, n_shape, None, None).numpy()
actual_2 = self.cal_composite_backward(x_p, n_shape, None, None).numpy()
expect_2 = expect_backward(x_p, n_shape, None, None)[0].numpy()
actual_2 = self.cal2_composite_backward(x, n_shape, None, None)[0]
assert expect_2.dtype == actual_2.dtype
np.testing.assert_allclose(
expect_2,
actual_2,
rtol=attrs.get_rtol("forward"),
atol=attrs.get_atol("forward"),
rtol=attrs.get_rtol("backward"),
atol=attrs.get_atol("backward"),
)
def test_backward(self):
......@@ -200,10 +219,10 @@ class TestCompositelayer_normPrimBackward(unittest.TestCase):
def setUp(self):
core._set_prim_backward_enabled(True)
self.dtypes = ["float16", "float32"]
self.n_shape = [[3, 4], [3], [2, 3]]
self.shape1s = [[3, 4], [2, 4, 3], [2, 2, 3]]
self.shape2s = [[12], [3], [6]]
self.shape3s = [[12], [3], [6]]
self.n_shape = [[4], [64, 128], [64]]
self.shape1s = [[3, 4], [64, 64, 128], [128, 64, 64]]
self.shape2s = [[4], [64 * 128], [64]]
self.shape3s = [[4], [64 * 128], [64]]
def cal_composite_backward(self, inputs, norm_shape, weight, bias):
paddle.enable_static()
......@@ -240,6 +259,35 @@ class TestCompositelayer_normPrimBackward(unittest.TestCase):
core._set_prim_all_enabled(False)
return res
def cal2_composite_backward(self, inputs, norm_shape, weight, bias):
paddle.enable_static()
core._set_prim_all_enabled(True)
startup_program = paddle.static.Program()
main_program = paddle.static.Program()
with paddle.static.program_guard(main_program, startup_program):
x = paddle.static.data(
'x', shape=inputs.shape, dtype=str(inputs.dtype)
)
x.stop_gradient = False
y = fn(x, norm_shape, weight, bias)
blocks = main_program.blocks
paddle.incubate.autograd.to_prim(blocks)
z = paddle.static.gradients([y], x)
exe = paddle.static.Executor()
exe.run(startup_program)
res = exe.run(
main_program,
feed={
'x': inputs,
},
fetch_list=[z],
)
paddle.disable_static()
core._set_prim_all_enabled(False)
return res
def compare_backward(self):
x, w, b = generate_data(attrs.shape1, attrs.shape2, attrs.shape3)
n_shape = attrs.n_shape
......@@ -247,25 +295,25 @@ class TestCompositelayer_normPrimBackward(unittest.TestCase):
w_p = paddle.to_tensor(w)
b_p = paddle.to_tensor(b)
expect = expect_backward(x_p, n_shape, w_p, b_p).numpy()
actual = self.cal_composite_backward(x_p, n_shape, w_p, b_p)
expect = expect_backward(x_p, n_shape, w_p, b_p)[0].numpy()
actual = self.cal_composite_backward(x, n_shape, w, b)[0]
assert expect.dtype == actual.dtype
np.testing.assert_allclose(
expect,
actual,
rtol=attrs.get_rtol("forward"),
atol=attrs.get_atol("forward"),
rtol=attrs.get_rtol("prim_backward"),
atol=attrs.get_rtol("prim_backward"),
)
expect_2 = expect_backward(x_p, n_shape, None, None).numpy()
actual_2 = self.cal_composite_backward(x_p, n_shape, None, None).numpy()
expect_2 = expect_backward(x_p, n_shape, None, None)[0].numpy()
actual_2 = self.cal2_composite_backward(x, n_shape, None, None)[0]
assert expect_2.dtype == actual_2.dtype
np.testing.assert_allclose(
expect_2,
actual_2,
rtol=attrs.get_rtol("forward"),
atol=attrs.get_atol("forward"),
rtol=attrs.get_rtol("prim_backward"),
atol=attrs.get_atol("prim_backward"),
)
def test_prim_backward(self):
......
......@@ -19,7 +19,6 @@ TOLERANCE = {
"backward": {"rtol": 1e-3, "atol": 1e-3},
"prim_backward": {"rtol": 1e-3, "atol": 1e-3},
},
"float32": {
"forward": {"rtol": 1e-6, "atol": 1e-6},
"backward": {"rtol": 1e-6, "atol": 1e-6},
......@@ -34,6 +33,11 @@ TOLERANCE = {
# this tolerance is for big composite ops like batch_norm.
SUB_TOLERANCE = {
"float16": {
"forward": {"rtol": 1e-3, "atol": 1e-3},
"backward": {"rtol": 1e-3, "atol": 1e-3},
"prim_backward": {"rtol": 1e-3, "atol": 1e-3},
},
"float32": {
"forward": {"rtol": 1e-5, "atol": 1e-5},
"backward": {"rtol": 1e-5, "atol": 1e-5},
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册