Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e336dc86
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e336dc86
编写于
5月 16, 2019
作者:
C
chengduo
提交者:
GitHub
5月 16, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Speed] Refine the Executor when the num_thread=1 (#17405)
Refine the Executor when the num_thread=1
上级
30e178fa
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
261 addition
and
113 deletion
+261
-113
paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.cc
...uid/framework/details/fast_threaded_ssa_graph_executor.cc
+112
-47
paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h
...luid/framework/details/fast_threaded_ssa_graph_executor.h
+18
-0
paddle/fluid/framework/details/ssa_graph_executor.cc
paddle/fluid/framework/details/ssa_graph_executor.cc
+4
-1
paddle/fluid/framework/details/ssa_graph_executor.h
paddle/fluid/framework/details/ssa_graph_executor.h
+1
-1
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
...le/fluid/framework/details/threaded_ssa_graph_executor.cc
+98
-50
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
+12
-1
python/paddle/fluid/tests/unittests/test_parallel_executor_fetch_feed.py
...luid/tests/unittests/test_parallel_executor_fetch_feed.py
+16
-13
未找到文件。
paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.cc
浏览文件 @
e336dc86
...
...
@@ -43,7 +43,7 @@ FastThreadedSSAGraphExecutor::FastThreadedSSAGraphExecutor(
bootstrap_ops_
.
emplace_back
(
op
);
}
}
PADDLE_ENFORCE_GT
(
op_deps_
.
size
(),
0
,
"The graph doesn't have operators."
);
PrepareAtomicOpDeps
();
}
...
...
@@ -52,26 +52,85 @@ FeedFetchList FastThreadedSSAGraphExecutor::Run(
std
::
unique_ptr
<
std
::
unordered_map
<
OpHandleBase
*
,
std
::
atomic
<
int
>>>
op_deps
=
atomic_op_deps_
.
get
();
PrepareAtomicOpDeps
();
size_t
num_ops
=
op_deps
->
size
();
paddle
::
framework
::
FeedFetchList
fetches
;
fetches
.
resize
(
fetch_tensors
.
size
());
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
VarHandleBase
*>>
fetched_vars
;
std
::
vector
<
FetchOpHandl
e
*>
fetch_ops
;
std
::
vector
<
OpHandleBas
e
*>
fetch_ops
;
std
::
vector
<
OpHandleBase
*>
ready_fetch_ops
;
exception_
.
Clear
();
InsertFetchOps
(
fetch_tensors
,
&
fetches
,
&
fetched_vars
,
op_deps
.
get
(),
&
fetch_ops
,
&
ready_fetch_ops
);
if
(
strategy_
.
num_threads_
==
1
&&
traced_ops_
.
size
()
==
num_ops
)
{
// If the num_threads is 1, we can record the order of operator's
// execution in the first iteration, and in subsequent iterations,
// run the recorded operators directly. This strategy could make the
// execution faster.
VLOG
(
3
)
<<
"Run the traced ops."
;
RunTracedOps
(
traced_ops_
);
RunTracedOps
(
fetch_ops
);
if
(
exception_
.
IsCaught
())
{
ExecutionFinal
(
&
fetch_ops
);
}
}
else
{
traced_ops_
.
clear
();
remaining_
=
0
;
auto
complete_q
=
std
::
make_shared
<
BlockingQueue
<
size_t
>>
();
for
(
auto
op
:
bootstrap_ops_
)
{
RunOpAsync
(
op_deps
.
get
(),
op
,
complete_q
);
}
for
(
auto
op
:
ready_fetch_ops
)
{
RunOpAsync
(
op_deps
.
get
(),
op
,
complete_q
);
}
size_t
num_complete
=
0
;
while
(
num_complete
!=
op_deps
->
size
())
{
size_t
num_comp
=
complete_q
->
Pop
();
if
(
num_comp
==
-
1UL
)
{
int
remaining
=
0
;
while
(
true
)
{
remaining
=
remaining_
;
if
(
remaining
==
0
)
{
break
;
}
for
(
int
i
=
0
;
i
<
remaining
;
++
i
)
{
complete_q
->
Pop
();
}
}
if
(
exception_
.
IsCaught
())
{
ExecutionFinal
(
&
fetch_ops
);
}
}
num_complete
+=
num_comp
;
}
}
// Wait FetchOps.
ClearFetchOp
(
graph_
,
&
fetch_ops
);
return
fetches
;
}
void
FastThreadedSSAGraphExecutor
::
InsertFetchOps
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
,
FeedFetchList
*
fetches
,
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
VarHandleBase
*>>
*
fetched_vars
,
std
::
unordered_map
<
OpHandleBase
*
,
std
::
atomic
<
int
>>
*
op_deps
,
std
::
vector
<
OpHandleBase
*>
*
fetch_ops
,
std
::
vector
<
OpHandleBase
*>
*
ready_fetch_ops
)
{
for
(
auto
&
fetch_var_name
:
fetch_tensors
)
{
for
(
auto
&
var_map
:
graph_
->
Get
<
details
::
GraphVars
>
(
details
::
kGraphVars
))
{
for
(
auto
&
var_map
:
graph_
->
Get
<
GraphVars
>
(
kGraphVars
))
{
auto
it
=
var_map
.
find
(
fetch_var_name
);
if
(
it
!=
var_map
.
end
())
{
fetched_vars
[
fetch_var_name
].
push_back
(
*
it
->
second
.
rbegin
());
(
*
fetched_vars
)
[
fetch_var_name
].
push_back
(
*
it
->
second
.
rbegin
());
}
}
}
for
(
size_t
i
=
0
;
i
<
fetch_tensors
.
size
();
++
i
)
{
auto
&
var_name
=
fetch_tensors
[
i
]
;
auto
fetched_var_it
=
fetched_vars
.
find
(
var_name
);
PADDLE_ENFORCE
(
fetched_var_it
!=
fetched_vars
.
end
(),
auto
&
var_name
=
fetch_tensors
.
at
(
i
)
;
auto
fetched_var_it
=
fetched_vars
->
find
(
var_name
);
PADDLE_ENFORCE
(
fetched_var_it
!=
fetched_vars
->
end
(),
"Cannot find fetched variable(%s).(Perhaps the main_program "
"is not set to ParallelExecutor)"
,
var_name
);
...
...
@@ -80,8 +139,8 @@ FeedFetchList FastThreadedSSAGraphExecutor::Run(
ir
::
Node
*
fetch_node
=
graph_
->
CreateEmptyNode
(
"fetch"
,
ir
::
Node
::
Type
::
kOperation
);
auto
*
op
=
new
FetchOpHandle
(
fetch_node
,
&
fetches
,
i
,
&
local_scopes_
);
fetch_ops
.
emplace_back
(
op
);
auto
*
op
=
new
FetchOpHandle
(
fetch_node
,
fetches
,
i
,
&
local_scopes_
);
fetch_ops
->
emplace_back
(
op
);
for
(
auto
&
p
:
places_
)
{
op
->
SetDeviceContext
(
p
,
fetch_ctxs_
.
Get
(
p
));
...
...
@@ -94,55 +153,22 @@ FeedFetchList FastThreadedSSAGraphExecutor::Run(
int
dep
=
static_cast
<
int
>
(
op
->
NotReadyInputSize
());
(
*
op_deps
)[
op
]
=
dep
;
if
(
dep
==
0
)
{
ready_fetch_ops
.
emplace_back
(
op
);
}
}
size_t
num_complete
=
0
;
remaining_
=
0
;
auto
complete_q
=
std
::
make_shared
<
BlockingQueue
<
size_t
>>
();
for
(
auto
op
:
bootstrap_ops_
)
{
RunOpAsync
(
op_deps
.
get
(),
op
,
complete_q
);
}
for
(
auto
op
:
ready_fetch_ops
)
{
RunOpAsync
(
op_deps
.
get
(),
op
,
complete_q
);
}
while
(
num_complete
!=
op_deps
->
size
())
{
size_t
num_comp
=
complete_q
->
Pop
();
if
(
num_comp
==
-
1UL
)
{
int
remaining
=
0
;
while
(
true
)
{
remaining
=
remaining_
;
if
(
remaining
==
0
)
{
break
;
}
for
(
int
i
=
0
;
i
<
remaining
;
++
i
)
{
complete_q
->
Pop
();
}
}
if
(
exception_
.
IsCaught
())
{
ClearFetchOp
(
graph_
,
&
fetch_ops
);
exception_
.
ReThrow
();
}
ready_fetch_ops
->
emplace_back
(
op
);
}
num_complete
+=
num_comp
;
}
// Wait FetchOps.
ClearFetchOp
(
graph_
,
&
fetch_ops
);
return
fetches
;
}
bool
FastThreadedSSAGraphExecutor
::
RunOp
(
OpHandleBase
*
op
,
const
std
::
shared_ptr
<
BlockingQueue
<
size_t
>>
&
complete_q
,
size_t
*
complete
)
{
try
{
RunOpSync
(
op
);
if
(
LIKELY
(
!
exception_
.
IsCaught
()))
{
if
(
LIKELY
(
!
strategy_
.
dry_run_
))
{
op
->
Run
(
strategy_
.
use_cuda_
);
RecordOps
(
op
);
}
++
(
*
complete
);
return
true
;
}
catch
(...)
{
exception_
.
Catch
(
std
::
current_exception
());
}
else
{
--
remaining_
;
complete_q
->
Push
(
-
1UL
);
return
false
;
...
...
@@ -194,6 +220,7 @@ void FastThreadedSSAGraphExecutor::RunOpAsync(
complete_q
->
Push
(
complete
);
});
}
void
FastThreadedSSAGraphExecutor
::
PrepareAtomicOpDeps
()
{
atomic_op_deps_
=
prepare_pool_
.
enqueue
([
&
]
{
auto
*
op_deps
=
new
std
::
unordered_map
<
OpHandleBase
*
,
std
::
atomic
<
int
>>
;
...
...
@@ -206,6 +233,44 @@ void FastThreadedSSAGraphExecutor::PrepareAtomicOpDeps() {
}
const
ir
::
Graph
&
FastThreadedSSAGraphExecutor
::
Graph
()
const
{
return
*
graph_
;
}
void
FastThreadedSSAGraphExecutor
::
RecordOps
(
OpHandleBase
*
op
)
{
if
(
strategy_
.
num_threads_
==
1
&&
!
dynamic_cast
<
FetchOpHandle
*>
(
op
))
{
traced_ops_
.
emplace_back
(
op
);
}
}
void
FastThreadedSSAGraphExecutor
::
ExecutionFinal
(
std
::
vector
<
OpHandleBase
*>
*
fetch_ops
)
{
VLOG
(
3
)
<<
"caught exception "
<<
exception_
.
Type
()
<<
", rethrow it"
;
ClearFetchOp
(
graph_
,
fetch_ops
);
exception_
.
ReThrow
();
}
void
FastThreadedSSAGraphExecutor
::
RunTracedOps
(
const
std
::
vector
<
OpHandleBase
*>
&
traced_ops
)
{
for
(
auto
&
op
:
traced_ops
)
{
if
(
exception_
.
IsCaught
())
{
return
;
}
RunOpSync
(
op
);
}
}
void
FastThreadedSSAGraphExecutor
::
RunOpSync
(
OpHandleBase
*
op
)
{
try
{
if
(
VLOG_IS_ON
(
10
))
{
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
" : "
<<
op
->
DebugString
();
}
if
(
LIKELY
(
!
strategy_
.
dry_run_
))
{
op
->
Run
(
strategy_
.
use_cuda_
);
}
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
" Done "
;
}
catch
(...)
{
exception_
.
Catch
(
std
::
current_exception
());
}
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h
浏览文件 @
e336dc86
...
...
@@ -60,6 +60,8 @@ class FastThreadedSSAGraphExecutor : public SSAGraphExecutor {
::
ThreadPool
pool_
;
::
ThreadPool
prepare_pool_
;
std
::
vector
<
OpHandleBase
*>
traced_ops_
;
bool
RunOp
(
OpHandleBase
*
op
,
const
std
::
shared_ptr
<
BlockingQueue
<
size_t
>>
&
complete_q
,
size_t
*
complete
);
...
...
@@ -69,6 +71,22 @@ class FastThreadedSSAGraphExecutor : public SSAGraphExecutor {
const
std
::
shared_ptr
<
BlockingQueue
<
size_t
>>
&
complete_q
);
void
PrepareAtomicOpDeps
();
inline
void
RecordOps
(
OpHandleBase
*
op
);
inline
void
ExecutionFinal
(
std
::
vector
<
OpHandleBase
*>
*
fetch_ops
);
inline
void
RunOpSync
(
OpHandleBase
*
op
);
void
RunTracedOps
(
const
std
::
vector
<
OpHandleBase
*>
&
traced_ops
);
void
InsertFetchOps
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
,
FeedFetchList
*
fetches
,
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
VarHandleBase
*>>
*
fetched_vars
,
std
::
unordered_map
<
OpHandleBase
*
,
std
::
atomic
<
int
>>
*
op_deps
,
std
::
vector
<
OpHandleBase
*>
*
fetch_ops
,
std
::
vector
<
OpHandleBase
*>
*
ready_fetch_ops
);
};
}
// namespace details
}
// namespace framework
...
...
paddle/fluid/framework/details/ssa_graph_executor.cc
浏览文件 @
e336dc86
...
...
@@ -19,10 +19,13 @@ namespace framework {
namespace
details
{
SSAGraphExecutor
::~
SSAGraphExecutor
()
{}
void
ClearFetchOp
(
ir
::
Graph
*
graph
,
std
::
vector
<
FetchOpHandl
e
*>*
fetch_ops
)
{
void
ClearFetchOp
(
ir
::
Graph
*
graph
,
std
::
vector
<
OpHandleBas
e
*>*
fetch_ops
)
{
if
(
fetch_ops
->
empty
())
return
;
for
(
auto
&
op
:
*
fetch_ops
)
{
PADDLE_ENFORCE_NOT_NULL
(
dynamic_cast
<
FetchOpHandle
*>
(
op
),
"The input ops of ClearFetchOp function should be FetchOpHandle."
);
for
(
auto
&
out_var
:
op
->
Node
()
->
outputs
)
{
graph
->
RemoveNode
(
out_var
);
}
...
...
paddle/fluid/framework/details/ssa_graph_executor.h
浏览文件 @
e336dc86
...
...
@@ -38,7 +38,7 @@ class SSAGraphExecutor {
virtual
FeedFetchList
Run
(
const
std
::
vector
<
std
::
string
>&
fetch_tensors
)
=
0
;
};
void
ClearFetchOp
(
ir
::
Graph
*
graph
,
std
::
vector
<
FetchOpHandl
e
*>*
fetch_ops
);
void
ClearFetchOp
(
ir
::
Graph
*
graph
,
std
::
vector
<
OpHandleBas
e
*>*
fetch_ops
);
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/threaded_ssa_graph_executor.cc
浏览文件 @
e336dc86
...
...
@@ -53,74 +53,84 @@ inline FeedFetchList ThreadedSSAGraphExecutor::RunImpl(
new
platform
::
RecordEvent
(
"ThreadedSSAGraphExecutorPrepare"
));
std
::
unique_ptr
<
OpDependentData
>
op_deps
=
op_deps_futures_
.
get
();
CopyOpDeps
();
VLOG
(
10
)
<<
"ThreadedSSAGraphExecutor::Run"
;
std
::
shared_ptr
<
BlockingQueue
<
VarHandleBase
*>>
ready_vars
(
new
BlockingQueue
<
VarHandleBase
*>
);
auto
&
pending_ops
=
op_deps
->
pending_ops_
;
auto
&
pending_vars
=
op_deps
->
pending_vars_
;
auto
&
ready_ops
=
op_deps
->
ready_ops_
;
// For ops (e.g. nccl_all_reduce) that need to coordinate multiple
// streams from multiple GPUs, it's faster to buffer them and schedule
// together since we currently cannot overlap computation and memcpy streams.
// Should revisit it if overlapping is available.
std
::
unordered_set
<
OpHandleBase
*>
delayed_ops
;
size_t
num_ops
=
op_deps
->
num_ops_
;
// Step 2. Insert FetchOps
std
::
vector
<
FetchOpHandl
e
*>
fetch_ops
;
std
::
vector
<
OpHandleBas
e
*>
fetch_ops
;
std
::
unordered_set
<
VarHandleBase
*>
fetch_dependencies
;
FeedFetchList
fetch_data
(
fetch_tensors
.
size
());
InsertFetchOps
(
fetch_tensors
,
&
fetch_ops
,
&
fetch_dependencies
,
&
ready_ops
,
&
pending_ops
,
&
pending_vars
,
&
fetch_data
);
auto
run_all_ops
=
[
&
](
std
::
unordered_set
<
OpHandleBase
*>
&
set
)
{
for
(
auto
*
op
:
set
)
{
RunOp
(
ready_vars
,
op
);
}
set
.
clear
();
};
// Clean run context
run_op_futures_
.
clear
();
exception_holder_
.
Clear
();
event
.
reset
(
nullptr
);
// Step 3. Execution
while
(
!
pending_vars
.
empty
())
{
// 1. Run All Ready ops
// Keep loop until all vars are ready.
run_all_ops
(
ready_ops
);
// 2. Find ready variable
bool
timeout
;
auto
cur_ready_vars
=
ready_vars
->
PopAll
(
1
,
&
timeout
);
if
(
timeout
)
{
if
(
exception_holder_
.
IsCaught
())
{
VLOG
(
3
)
<<
"caught exception "
<<
exception_holder_
.
Type
()
<<
", rethrow it"
;
if
(
strategy_
.
num_threads_
==
1
&&
traced_ops_
.
size
()
==
num_ops
)
{
// If the num_threads is 1, we can record the order of operator's
// execution in the first iteration, and in subsequent iterations,
// run the recorded operators directly. This strategy could make the
// execution faster.
VLOG
(
3
)
<<
"Run the traced ops."
;
RunTracedOps
(
traced_ops_
);
RunTracedOps
(
fetch_ops
);
if
(
exception_holder_
.
IsCaught
())
{
ExecutionFinal
(
&
fetch_ops
);
}
}
else
{
traced_ops_
.
clear
();
auto
run_all_ops
=
[
&
](
std
::
unordered_set
<
OpHandleBase
*>
&
set
)
{
for
(
auto
*
op
:
set
)
{
RunOp
(
ready_vars
,
op
);
}
set
.
clear
();
};
// Clean run context
run_op_futures_
.
clear
();
while
(
!
pending_vars
.
empty
())
{
// 1. Run All Ready ops
// Keep loop until all vars are ready.
run_all_ops
(
ready_ops
);
// 2. Find ready variable
bool
timeout
;
auto
cur_ready_vars
=
ready_vars
->
PopAll
(
1
,
&
timeout
);
if
(
timeout
)
{
for
(
auto
&
run_op_future
:
run_op_futures_
)
{
run_op_future
.
wait
();
}
ClearFetchOp
(
graph_
,
&
fetch_ops
);
exception_holder_
.
ReThrow
();
}
else
{
continue
;
if
(
exception_holder_
.
IsCaught
())
{
ExecutionFinal
(
&
fetch_ops
);
}
else
{
continue
;
}
}
}
// 3. Remove the dependency of ready_var.
// Find the ready_ops after the ready_var.
for
(
auto
ready_var
:
cur_ready_vars
)
{
pending_vars
.
erase
(
ready_var
);
for
(
auto
*
op
:
ready_var
->
PendingOps
())
{
auto
&
deps
=
pending_ops
[
op
];
--
deps
;
if
(
deps
==
0
)
{
ready_ops
.
insert
(
op
);
// 3. Remove the dependency of ready_var.
// Find the ready_ops after the ready_var.
for
(
auto
ready_var
:
cur_ready_vars
)
{
pending_vars
.
erase
(
ready_var
);
for
(
auto
*
op
:
ready_var
->
PendingOps
())
{
auto
&
deps
=
pending_ops
[
op
];
--
deps
;
if
(
deps
==
0
)
{
ready_ops
.
insert
(
op
);
}
}
}
}
PADDLE_ENFORCE
(
ready_ops
.
empty
());
}
PADDLE_ENFORCE
(
ready_ops
.
empty
());
// Wait FetchOps.
ClearFetchOp
(
graph_
,
&
fetch_ops
);
...
...
@@ -137,7 +147,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
void
ThreadedSSAGraphExecutor
::
InsertFetchOps
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
,
std
::
vector
<
FetchOpHandl
e
*>
*
fetch_ops
,
std
::
vector
<
OpHandleBas
e
*>
*
fetch_ops
,
std
::
unordered_set
<
VarHandleBase
*>
*
fetch_dependencies
,
std
::
unordered_set
<
OpHandleBase
*>
*
ready_ops
,
std
::
unordered_map
<
OpHandleBase
*
,
size_t
>
*
pending_ops
,
...
...
@@ -243,6 +253,9 @@ void ThreadedSSAGraphExecutor::PrepareOpDeps() {
InsertPendingOp
(
&
pending_ops
,
op
);
}
}
op_deps_
->
num_ops_
=
ready_ops
.
size
()
+
pending_ops
.
size
();
PADDLE_ENFORCE_GT
(
op_deps_
->
num_ops_
,
0
,
"The graph doesn't have operators."
);
for
(
auto
ready_var
:
ready_vars
)
{
pending_vars
.
erase
(
ready_var
);
for
(
auto
*
op
:
ready_var
->
PendingOps
())
{
...
...
@@ -264,6 +277,7 @@ void ThreadedSSAGraphExecutor::CopyOpDeps() {
op_deps_
->
pending_vars_
.
end
());
op_deps
->
ready_ops_
.
insert
(
op_deps_
->
ready_ops_
.
begin
(),
op_deps_
->
ready_ops_
.
end
());
op_deps
->
num_ops_
=
op_deps_
->
num_ops_
;
return
std
::
unique_ptr
<
OpDependentData
>
(
op_deps
);
});
}
...
...
@@ -272,25 +286,59 @@ void ThreadedSSAGraphExecutor::RunOp(
const
std
::
shared_ptr
<
BlockingQueue
<
VarHandleBase
*>>
&
ready_var_q
,
details
::
OpHandleBase
*
op
)
{
auto
op_run
=
[
ready_var_q
,
op
,
this
]
{
RunOpSync
(
op
);
try
{
if
(
VLOG_IS_ON
(
10
))
{
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
" : "
<<
op
->
DebugString
();
}
if
(
LIKELY
(
!
strategy_
.
dry_run_
))
{
op
->
Run
(
strategy_
.
use_cuda_
);
}
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
" Done "
;
ready_var_q
->
Extend
(
op
->
Outputs
());
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
" Signal posted"
;
}
catch
(...)
{
exception_holder_
.
Catch
(
std
::
current_exception
());
}
};
if
(
pool_
)
{
run_op_futures_
.
emplace_back
(
pool_
->
enqueue
(
op_run
));
}
else
{
op_run
();
}
RecordOps
(
op
);
}
void
ThreadedSSAGraphExecutor
::
RunTracedOps
(
const
std
::
vector
<
OpHandleBase
*>
&
traced_ops
)
{
for
(
auto
&
op
:
traced_ops
)
{
if
(
exception_holder_
.
IsCaught
())
{
return
;
}
RunOpSync
(
op
);
}
}
void
ThreadedSSAGraphExecutor
::
RunOpSync
(
OpHandleBase
*
op
)
{
try
{
if
(
VLOG_IS_ON
(
10
))
{
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
" : "
<<
op
->
DebugString
();
}
if
(
LIKELY
(
!
strategy_
.
dry_run_
))
{
op
->
Run
(
strategy_
.
use_cuda_
);
}
VLOG
(
10
)
<<
op
<<
" "
<<
op
->
Name
()
<<
" Done "
;
}
catch
(...)
{
exception_holder_
.
Catch
(
std
::
current_exception
());
}
}
void
ThreadedSSAGraphExecutor
::
ExecutionFinal
(
std
::
vector
<
OpHandleBase
*>
*
fetch_ops
)
{
VLOG
(
3
)
<<
"caught exception "
<<
exception_holder_
.
Type
()
<<
", rethrow it"
;
ClearFetchOp
(
graph_
,
fetch_ops
);
exception_holder_
.
ReThrow
();
}
void
ThreadedSSAGraphExecutor
::
RecordOps
(
OpHandleBase
*
op
)
{
if
(
strategy_
.
num_threads_
==
1
&&
!
dynamic_cast
<
FetchOpHandle
*>
(
op
))
{
traced_ops_
.
emplace_back
(
op
);
}
}
}
// namespace details
}
// namespace framework
...
...
paddle/fluid/framework/details/threaded_ssa_graph_executor.h
浏览文件 @
e336dc86
...
...
@@ -44,6 +44,7 @@ struct OpDependentData {
std
::
unordered_map
<
OpHandleBase
*
,
size_t
>
pending_ops_
;
std
::
unordered_set
<
VarHandleBase
*>
pending_vars_
;
std
::
unordered_set
<
OpHandleBase
*>
ready_ops_
;
size_t
num_ops_
{
0
};
};
class
ThreadedSSAGraphExecutor
:
public
SSAGraphExecutor
{
...
...
@@ -80,6 +81,7 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
std
::
list
<
std
::
future
<
void
>>
run_op_futures_
;
::
ThreadPool
prepare_pool_
;
std
::
unique_ptr
<::
ThreadPool
>
pool_
;
std
::
vector
<
OpHandleBase
*>
traced_ops_
;
void
InsertPendingOp
(
std
::
unordered_map
<
OpHandleBase
*
,
size_t
>
*
pending_ops
,
OpHandleBase
*
op_instance
)
const
;
...
...
@@ -89,7 +91,7 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
VarHandleBase
*
var
)
const
;
void
InsertFetchOps
(
const
std
::
vector
<
std
::
string
>
&
fetch_tensors
,
std
::
vector
<
FetchOpHandl
e
*>
*
fetch_ops
,
std
::
vector
<
OpHandleBas
e
*>
*
fetch_ops
,
std
::
unordered_set
<
VarHandleBase
*>
*
fetch_dependencies
,
std
::
unordered_set
<
OpHandleBase
*>
*
ready_ops
,
std
::
unordered_map
<
OpHandleBase
*
,
size_t
>
*
pending_ops
,
...
...
@@ -97,7 +99,16 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
FeedFetchList
*
fetch_data
);
void
PrepareOpDeps
();
void
CopyOpDeps
();
inline
void
RecordOps
(
OpHandleBase
*
op
);
inline
void
ExecutionFinal
(
std
::
vector
<
OpHandleBase
*>
*
fetch_ops
);
inline
void
RunOpSync
(
OpHandleBase
*
op
);
void
RunTracedOps
(
const
std
::
vector
<
OpHandleBase
*>
&
traced_ops
);
};
}
// namespace details
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_fetch_feed.py
浏览文件 @
e336dc86
...
...
@@ -45,7 +45,8 @@ class TestFetchAndFeed(unittest.TestCase):
def
parallel_exe
(
self
,
use_cuda
,
run_parallel_exe
,
use_experimental_executor
=
False
,
use_faster_executor
=
False
,
num_threads
=
4
,
seed
=
1
):
main_program
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
...
...
@@ -72,7 +73,8 @@ class TestFetchAndFeed(unittest.TestCase):
build_strategy
.
enable_inplace
=
False
build_strategy
.
memory_optimize
=
False
exec_strategy
=
fluid
.
ExecutionStrategy
()
exec_strategy
.
use_experimental_executor
=
use_experimental_executor
exec_strategy
.
use_experimental_executor
=
use_faster_executor
exec_strategy
.
num_threads
=
num_threads
train_cp
=
compiler
.
CompiledProgram
(
main_program
).
with_data_parallel
(
loss_name
=
loss
.
name
,
build_strategy
=
build_strategy
,
...
...
@@ -143,24 +145,25 @@ class TestFetchAndFeed(unittest.TestCase):
if
batch_id
==
2
:
break
def
test_fetch_with_threaded_executor
(
self
):
if
core
.
is_compiled_with_cuda
():
self
.
parallel_exe
(
use_cuda
=
True
,
run_parallel_exe
=
self
.
run_parallel_exe_with_fetch
)
self
.
parallel_exe
(
use_cuda
=
False
,
run_parallel_exe
=
self
.
run_parallel_exe_with_fetch
)
def
test_fetch_with_fast_threaded_executor
(
self
):
def
check_executor
(
self
,
use_faster_executor
=
False
,
num_threads
=
4
):
if
core
.
is_compiled_with_cuda
():
self
.
parallel_exe
(
use_cuda
=
True
,
run_parallel_exe
=
self
.
run_parallel_exe_with_fetch
,
use_experimental_executor
=
True
)
use_faster_executor
=
use_faster_executor
,
num_threads
=
num_threads
)
self
.
parallel_exe
(
use_cuda
=
False
,
run_parallel_exe
=
self
.
run_parallel_exe_with_fetch
,
use_experimental_executor
=
True
)
use_faster_executor
=
use_faster_executor
,
num_threads
=
num_threads
)
def
test_fetch
(
self
):
for
use_faster_executor
in
{
True
,
False
}:
self
.
check_executor
(
use_faster_executor
=
use_faster_executor
,
num_threads
=
4
)
self
.
check_executor
(
use_faster_executor
=
use_faster_executor
,
num_threads
=
1
)
def
test_feed
(
self
):
if
core
.
is_compiled_with_cuda
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录