Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e316c41a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e316c41a
编写于
10月 31, 2016
作者:
W
wangyang59
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
first try of dcgan implementation
上级
fec6f809
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
526 addition
and
0 deletion
+526
-0
demo/gan/.gitignore
demo/gan/.gitignore
+7
-0
demo/gan/gan_conf_image.py
demo/gan/gan_conf_image.py
+256
-0
demo/gan/gan_trainer_image.py
demo/gan/gan_trainer_image.py
+263
-0
未找到文件。
demo/gan/.gitignore
0 → 100644
浏览文件 @
e316c41a
output/
*.png
.pydevproject
.project
data/
trainLog.txt
demo/gan/gan_conf_image.py
0 → 100644
浏览文件 @
e316c41a
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.trainer_config_helpers
import
*
from
paddle.trainer_config_helpers.layers
import
img_convTrans_layer
from
paddle.trainer_config_helpers.activations
import
LinearActivation
from
numpy.distutils.system_info
import
tmp
mode
=
get_config_arg
(
"mode"
,
str
,
"generator"
)
assert
mode
in
set
([
"generator"
,
"discriminator"
,
"generator_training"
,
"discriminator_training"
])
is_generator_training
=
mode
==
"generator_training"
is_discriminator_training
=
mode
==
"discriminator_training"
is_generator
=
mode
==
"generator"
is_discriminator
=
mode
==
"discriminator"
print
(
'mode=%s'
%
mode
)
noise_dim
=
100
gf_dim
=
64
df_dim
=
64
sample_dim
=
28
# image dim
c_dim
=
1
# image color
s2
,
s4
=
int
(
sample_dim
/
2
),
int
(
sample_dim
/
4
),
s8
,
s16
=
int
(
sample_dim
/
8
),
int
(
sample_dim
/
16
)
settings
(
batch_size
=
100
,
learning_rate
=
1e-4
,
learning_method
=
AdamOptimizer
()
)
def
convTrans_bn
(
input
,
channels
,
output_x
,
num_filters
,
imgSize
,
stride
,
name
,
param_attr
,
bias_attr
,
param_attr_bn
):
tmp
=
imgSize
-
(
output_x
-
1
)
*
stride
if
tmp
<=
1
or
tmp
>
5
:
raise
ValueError
(
"convTrans input-output dimension does not fit"
)
elif
tmp
<=
3
:
filter_size
=
tmp
+
2
padding
=
1
else
:
filter_size
=
tmp
padding
=
0
convTrans
=
img_convTrans_layer
(
input
,
filter_size
=
filter_size
,
num_filters
=
num_filters
,
name
=
name
+
"_convt"
,
num_channels
=
channels
,
act
=
LinearActivation
(),
groups
=
1
,
stride
=
stride
,
padding
=
padding
,
bias_attr
=
bias_attr
,
param_attr
=
param_attr
,
shared_biases
=
True
,
layer_attr
=
None
,
filter_size_y
=
None
,
stride_y
=
None
,
padding_y
=
None
)
convTrans_bn
=
batch_norm_layer
(
convTrans
,
act
=
ReluActivation
(),
name
=
name
+
"_convt_bn"
,
bias_attr
=
bias_attr
,
param_attr
=
param_attr_bn
,
use_global_stats
=
False
)
return
convTrans_bn
def
conv_bn
(
input
,
channels
,
imgSize
,
num_filters
,
output_x
,
stride
,
name
,
param_attr
,
bias_attr
,
param_attr_bn
,
bn
):
tmp
=
imgSize
-
(
output_x
-
1
)
*
stride
if
tmp
<=
1
or
tmp
>
5
:
raise
ValueError
(
"conv input-output dimension does not fit"
)
elif
tmp
<=
3
:
filter_size
=
tmp
+
2
padding
=
1
else
:
filter_size
=
tmp
padding
=
0
print
(
imgSize
,
output_x
,
stride
,
filter_size
,
padding
)
if
bn
:
conv
=
img_conv_layer
(
input
,
filter_size
=
filter_size
,
num_filters
=
num_filters
,
name
=
name
+
"_conv"
,
num_channels
=
channels
,
act
=
LinearActivation
(),
groups
=
1
,
stride
=
stride
,
padding
=
padding
,
bias_attr
=
bias_attr
,
param_attr
=
param_attr
,
shared_biases
=
True
,
layer_attr
=
None
,
filter_size_y
=
None
,
stride_y
=
None
,
padding_y
=
None
)
conv_bn
=
batch_norm_layer
(
conv
,
act
=
ReluActivation
(),
name
=
name
+
"_conv_bn"
,
bias_attr
=
bias_attr
,
param_attr
=
param_attr_bn
,
use_global_stats
=
False
)
return
conv_bn
else
:
conv
=
img_conv_layer
(
input
,
filter_size
=
filter_size
,
num_filters
=
num_filters
,
name
=
name
+
"_conv"
,
num_channels
=
channels
,
act
=
ReluActivation
(),
groups
=
1
,
stride
=
stride
,
padding
=
padding
,
bias_attr
=
bias_attr
,
param_attr
=
param_attr
,
shared_biases
=
True
,
layer_attr
=
None
,
filter_size_y
=
None
,
stride_y
=
None
,
padding_y
=
None
)
return
conv
def
generator
(
noise
):
"""
generator generates a sample given noise
"""
param_attr
=
ParamAttr
(
is_static
=
is_discriminator_training
)
bias_attr
=
ParamAttr
(
is_static
=
is_discriminator_training
,
initial_mean
=
1.0
,
initial_std
=
0
)
param_attr_bn
=
ParamAttr
(
is_static
=
is_discriminator_training
,
initial_mean
=
1.0
,
initial_std
=
0.02
)
h1
=
fc_layer
(
input
=
noise
,
name
=
"gen_layer_h1"
,
size
=
s8
*
s8
*
gf_dim
*
4
,
bias_attr
=
bias_attr
,
param_attr
=
param_attr
,
#act=ReluActivation())
act
=
LinearActivation
())
h1_bn
=
batch_norm_layer
(
h1
,
act
=
ReluActivation
(),
name
=
"gen_layer_h1_bn"
,
bias_attr
=
bias_attr
,
param_attr
=
param_attr_bn
,
use_global_stats
=
False
)
h2_bn
=
convTrans_bn
(
h1_bn
,
channels
=
gf_dim
*
4
,
output_x
=
s8
,
num_filters
=
gf_dim
*
2
,
imgSize
=
s4
,
stride
=
2
,
name
=
"gen_layer_h2"
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
param_attr_bn
=
param_attr_bn
)
h3_bn
=
convTrans_bn
(
h2_bn
,
channels
=
gf_dim
*
2
,
output_x
=
s4
,
num_filters
=
gf_dim
,
imgSize
=
s2
,
stride
=
2
,
name
=
"gen_layer_h3"
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
param_attr_bn
=
param_attr_bn
)
return
convTrans_bn
(
h3_bn
,
channels
=
gf_dim
,
output_x
=
s2
,
num_filters
=
c_dim
,
imgSize
=
sample_dim
,
stride
=
2
,
name
=
"gen_layer_h4"
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
param_attr_bn
=
param_attr_bn
)
def
discriminator
(
sample
):
"""
discriminator ouputs the probablity of a sample is from generator
or real data.
The output has two dimenstional: dimension 0 is the probablity
of the sample is from generator and dimension 1 is the probabblity
of the sample is from real data.
"""
param_attr
=
ParamAttr
(
is_static
=
is_generator_training
)
bias_attr
=
ParamAttr
(
is_static
=
is_generator_training
,
initial_mean
=
1.0
,
initial_std
=
0
)
param_attr_bn
=
ParamAttr
(
is_static
=
is_generator_training
,
initial_mean
=
1.0
,
initial_std
=
0.02
)
h0
=
conv_bn
(
sample
,
channels
=
c_dim
,
imgSize
=
sample_dim
,
num_filters
=
df_dim
,
output_x
=
s2
,
stride
=
2
,
name
=
"dis_h0"
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
param_attr_bn
=
param_attr_bn
,
bn
=
False
)
h1_bn
=
conv_bn
(
h0
,
channels
=
df_dim
,
imgSize
=
s2
,
num_filters
=
df_dim
*
2
,
output_x
=
s4
,
stride
=
2
,
name
=
"dis_h1"
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
param_attr_bn
=
param_attr_bn
,
bn
=
True
)
h2_bn
=
conv_bn
(
h1_bn
,
channels
=
df_dim
*
2
,
imgSize
=
s4
,
num_filters
=
df_dim
*
4
,
output_x
=
s8
,
stride
=
2
,
name
=
"dis_h2"
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
param_attr_bn
=
param_attr_bn
,
bn
=
True
)
return
fc_layer
(
input
=
h2_bn
,
name
=
"dis_prob"
,
size
=
2
,
bias_attr
=
bias_attr
,
param_attr
=
param_attr
,
act
=
SoftmaxActivation
())
if
is_generator_training
:
noise
=
data_layer
(
name
=
"noise"
,
size
=
noise_dim
)
sample
=
generator
(
noise
)
if
is_discriminator_training
:
sample
=
data_layer
(
name
=
"sample"
,
size
=
sample_dim
*
sample_dim
*
c_dim
)
if
is_generator_training
or
is_discriminator_training
:
label
=
data_layer
(
name
=
"label"
,
size
=
1
)
prob
=
discriminator
(
sample
)
cost
=
cross_entropy
(
input
=
prob
,
label
=
label
)
classification_error_evaluator
(
input
=
prob
,
label
=
label
,
name
=
mode
+
'_error'
)
outputs
(
cost
)
if
is_generator
:
noise
=
data_layer
(
name
=
"noise"
,
size
=
noise_dim
)
outputs
(
generator
(
noise
))
demo/gan/gan_trainer_image.py
0 → 100644
浏览文件 @
e316c41a
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
argparse
import
itertools
import
random
import
numpy
import
sys
,
os
from
PIL
import
Image
from
paddle.trainer.config_parser
import
parse_config
from
paddle.trainer.config_parser
import
logger
import
py_paddle.swig_paddle
as
api
from
py_paddle
import
DataProviderConverter
import
matplotlib.pyplot
as
plt
def
plot2DScatter
(
data
,
outputfile
):
# Generate some test data
x
=
data
[:,
0
]
y
=
data
[:,
1
]
print
"The mean vector is %s"
%
numpy
.
mean
(
data
,
0
)
print
"The std vector is %s"
%
numpy
.
std
(
data
,
0
)
heatmap
,
xedges
,
yedges
=
numpy
.
histogram2d
(
x
,
y
,
bins
=
50
)
extent
=
[
xedges
[
0
],
xedges
[
-
1
],
yedges
[
0
],
yedges
[
-
1
]]
plt
.
clf
()
plt
.
scatter
(
x
,
y
)
# plt.show()
plt
.
savefig
(
outputfile
,
bbox_inches
=
'tight'
)
def
CHECK_EQ
(
a
,
b
):
assert
a
==
b
,
"a=%s, b=%s"
%
(
a
,
b
)
def
copy_shared_parameters
(
src
,
dst
):
src_params
=
[
src
.
getParameter
(
i
)
for
i
in
xrange
(
src
.
getParameterSize
())]
src_params
=
dict
([(
p
.
getName
(),
p
)
for
p
in
src_params
])
for
i
in
xrange
(
dst
.
getParameterSize
()):
dst_param
=
dst
.
getParameter
(
i
)
src_param
=
src_params
.
get
(
dst_param
.
getName
(),
None
)
if
src_param
is
None
:
continue
src_value
=
src_param
.
getBuf
(
api
.
PARAMETER_VALUE
)
dst_value
=
dst_param
.
getBuf
(
api
.
PARAMETER_VALUE
)
CHECK_EQ
(
len
(
src_value
),
len
(
dst_value
))
dst_value
.
copyFrom
(
src_value
)
dst_param
.
setValueUpdated
()
def
print_parameters
(
src
):
src_params
=
[
src
.
getParameter
(
i
)
for
i
in
xrange
(
src
.
getParameterSize
())]
print
"***************"
for
p
in
src_params
:
print
"Name is %s"
%
p
.
getName
()
print
"value is %s
\n
"
%
p
.
getBuf
(
api
.
PARAMETER_VALUE
).
copyToNumpyArray
()
def
load_mnist_data
(
imageFile
):
f
=
open
(
imageFile
,
"rb"
)
f
.
read
(
16
)
# Define number of samples for train/test
if
"train"
in
imageFile
:
#n = 60000
n
=
60000
else
:
n
=
10000
data
=
numpy
.
zeros
((
n
,
28
*
28
),
dtype
=
"float32"
)
for
i
in
range
(
n
):
pixels
=
[]
for
j
in
range
(
28
*
28
):
pixels
.
append
(
float
(
ord
(
f
.
read
(
1
)))
/
255.0
)
data
[
i
,
:]
=
pixels
f
.
close
()
return
data
def
saveImages
(
images
,
path
):
for
i
in
xrange
(
10
):
im
=
Image
.
fromarray
(
images
[
i
,
:].
reshape
((
28
,
28
))
*
255.0
).
convert
(
'RGB'
)
im
.
save
(
path
+
"/image_"
+
str
(
i
)
+
".png"
)
def
get_real_samples
(
batch_size
,
data_np
):
return
data_np
[
numpy
.
random
.
choice
(
data_np
.
shape
[
0
],
batch_size
,
replace
=
False
),:]
def
get_noise
(
batch_size
,
noise_dim
):
return
numpy
.
random
.
normal
(
size
=
(
batch_size
,
noise_dim
)).
astype
(
'float32'
)
def
get_fake_samples
(
generator_machine
,
batch_size
,
noise
):
gen_inputs
=
prepare_generator_data_batch
(
batch_size
,
noise
)
gen_inputs
.
resize
(
1
)
gen_outputs
=
api
.
Arguments
.
createArguments
(
0
)
generator_machine
.
forward
(
gen_inputs
,
gen_outputs
,
api
.
PASS_TEST
)
fake_samples
=
gen_outputs
.
getSlotValue
(
0
).
copyToNumpyMat
()
return
fake_samples
def
get_training_loss
(
training_machine
,
inputs
):
outputs
=
api
.
Arguments
.
createArguments
(
0
)
training_machine
.
forward
(
inputs
,
outputs
,
api
.
PASS_TEST
)
loss
=
outputs
.
getSlotValue
(
0
).
copyToNumpyMat
()
return
numpy
.
mean
(
loss
)
def
prepare_discriminator_data_batch_pos
(
batch_size
,
data_np
):
real_samples
=
get_real_samples
(
batch_size
,
data_np
)
labels
=
numpy
.
ones
(
batch_size
,
dtype
=
'int32'
)
inputs
=
api
.
Arguments
.
createArguments
(
2
)
inputs
.
setSlotValue
(
0
,
api
.
Matrix
.
createCpuDenseFromNumpy
(
real_samples
))
inputs
.
setSlotIds
(
1
,
api
.
IVector
.
createCpuVectorFromNumpy
(
labels
))
return
inputs
def
prepare_discriminator_data_batch_neg
(
generator_machine
,
batch_size
,
noise
):
fake_samples
=
get_fake_samples
(
generator_machine
,
batch_size
,
noise
)
#print fake_samples.shape
labels
=
numpy
.
zeros
(
batch_size
,
dtype
=
'int32'
)
inputs
=
api
.
Arguments
.
createArguments
(
2
)
inputs
.
setSlotValue
(
0
,
api
.
Matrix
.
createCpuDenseFromNumpy
(
fake_samples
))
inputs
.
setSlotIds
(
1
,
api
.
IVector
.
createCpuVectorFromNumpy
(
labels
))
return
inputs
def
prepare_generator_data_batch
(
batch_size
,
noise
):
label
=
numpy
.
ones
(
batch_size
,
dtype
=
'int32'
)
#label = numpy.zeros(batch_size, dtype='int32')
inputs
=
api
.
Arguments
.
createArguments
(
2
)
inputs
.
setSlotValue
(
0
,
api
.
Matrix
.
createCpuDenseFromNumpy
(
noise
))
inputs
.
setSlotIds
(
1
,
api
.
IVector
.
createCpuVectorFromNumpy
(
label
))
return
inputs
def
find
(
iterable
,
cond
):
for
item
in
iterable
:
if
cond
(
item
):
return
item
return
None
def
get_layer_size
(
model_conf
,
layer_name
):
layer_conf
=
find
(
model_conf
.
layers
,
lambda
x
:
x
.
name
==
layer_name
)
assert
layer_conf
is
not
None
,
"Cannot find '%s' layer"
%
layer_name
return
layer_conf
.
size
def
main
():
api
.
initPaddle
(
'--use_gpu=0'
,
'--dot_period=10'
,
'--log_period=100'
)
gen_conf
=
parse_config
(
"gan_conf_image.py"
,
"mode=generator_training"
)
dis_conf
=
parse_config
(
"gan_conf_image.py"
,
"mode=discriminator_training"
)
generator_conf
=
parse_config
(
"gan_conf_image.py"
,
"mode=generator"
)
batch_size
=
dis_conf
.
opt_config
.
batch_size
noise_dim
=
get_layer_size
(
gen_conf
.
model_config
,
"noise"
)
sample_dim
=
get_layer_size
(
dis_conf
.
model_config
,
"sample"
)
data_np
=
load_mnist_data
(
"./data/raw_data/train-images-idx3-ubyte"
)
# this create a gradient machine for discriminator
dis_training_machine
=
api
.
GradientMachine
.
createFromConfigProto
(
dis_conf
.
model_config
)
gen_training_machine
=
api
.
GradientMachine
.
createFromConfigProto
(
gen_conf
.
model_config
)
# generator_machine is used to generate data only, which is used for
# training discrinator
logger
.
info
(
str
(
generator_conf
.
model_config
))
generator_machine
=
api
.
GradientMachine
.
createFromConfigProto
(
generator_conf
.
model_config
)
dis_trainer
=
api
.
Trainer
.
create
(
dis_conf
,
dis_training_machine
)
gen_trainer
=
api
.
Trainer
.
create
(
gen_conf
,
gen_training_machine
)
dis_trainer
.
startTrain
()
gen_trainer
.
startTrain
()
copy_shared_parameters
(
gen_training_machine
,
dis_training_machine
)
copy_shared_parameters
(
gen_training_machine
,
generator_machine
)
curr_train
=
"dis"
curr_strike
=
0
MAX_strike
=
100
for
train_pass
in
xrange
(
100
):
dis_trainer
.
startTrainPass
()
gen_trainer
.
startTrainPass
()
for
i
in
xrange
(
1000
):
# data_batch_dis = prepare_discriminator_data_batch(
# generator_machine, batch_size, noise_dim, sample_dim)
# dis_loss = get_training_loss(dis_training_machine, data_batch_dis)
noise
=
get_noise
(
batch_size
,
noise_dim
)
data_batch_dis_pos
=
prepare_discriminator_data_batch_pos
(
batch_size
,
data_np
)
dis_loss_pos
=
get_training_loss
(
dis_training_machine
,
data_batch_dis_pos
)
data_batch_dis_neg
=
prepare_discriminator_data_batch_neg
(
generator_machine
,
batch_size
,
noise
)
dis_loss_neg
=
get_training_loss
(
dis_training_machine
,
data_batch_dis_neg
)
dis_loss
=
(
dis_loss_pos
+
dis_loss_neg
)
/
2.0
data_batch_gen
=
prepare_generator_data_batch
(
batch_size
,
noise
)
gen_loss
=
get_training_loss
(
gen_training_machine
,
data_batch_gen
)
if
i
%
100
==
0
:
print
"d_pos_loss is %s d_neg_loss is %s"
%
(
dis_loss_pos
,
dis_loss_neg
)
print
"d_loss is %s g_loss is %s"
%
(
dis_loss
,
gen_loss
)
if
(
not
(
curr_train
==
"dis"
and
curr_strike
==
MAX_strike
))
and
((
curr_train
==
"gen"
and
curr_strike
==
MAX_strike
)
or
dis_loss
>
gen_loss
):
if
curr_train
==
"dis"
:
curr_strike
+=
1
else
:
curr_train
=
"dis"
curr_strike
=
1
dis_trainer
.
trainOneDataBatch
(
batch_size
,
data_batch_dis_neg
)
dis_trainer
.
trainOneDataBatch
(
batch_size
,
data_batch_dis_pos
)
# dis_loss = numpy.mean(dis_trainer.getForwardOutput()[0]["value"])
# print "getForwardOutput loss is %s" % dis_loss
copy_shared_parameters
(
dis_training_machine
,
gen_training_machine
)
else
:
if
curr_train
==
"gen"
:
curr_strike
+=
1
else
:
curr_train
=
"gen"
curr_strike
=
1
gen_trainer
.
trainOneDataBatch
(
batch_size
,
data_batch_gen
)
copy_shared_parameters
(
gen_training_machine
,
dis_training_machine
)
copy_shared_parameters
(
gen_training_machine
,
generator_machine
)
dis_trainer
.
finishTrainPass
()
gen_trainer
.
finishTrainPass
()
fake_samples
=
get_fake_samples
(
generator_machine
,
batch_size
,
noise
)
save_dir
=
"./pass_"
+
str
(
train_pass
)
if
not
os
.
path
.
exists
(
save_dir
):
os
.
makedirs
(
save_dir
)
saveImages
(
fake_samples
,
save_dir
)
dis_trainer
.
finishTrain
()
gen_trainer
.
finishTrain
()
if
__name__
==
'__main__'
:
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录