Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e2d75bd3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e2d75bd3
编写于
9月 16, 2017
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into crop_op
上级
b21aee63
7bcb1fc3
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
116 addition
and
202 deletion
+116
-202
paddle/gserver/layers/ExpandConvBaseLayer.cpp
paddle/gserver/layers/ExpandConvBaseLayer.cpp
+0
-124
paddle/gserver/layers/ExpandConvBaseLayer.h
paddle/gserver/layers/ExpandConvBaseLayer.h
+0
-57
paddle/gserver/layers/ExpandConvLayer.cpp
paddle/gserver/layers/ExpandConvLayer.cpp
+38
-7
paddle/gserver/layers/ExpandConvLayer.h
paddle/gserver/layers/ExpandConvLayer.h
+5
-4
paddle/operators/sequence_avg_pool_op.cc
paddle/operators/sequence_avg_pool_op.cc
+3
-1
paddle/operators/sequence_avg_pool_op.h
paddle/operators/sequence_avg_pool_op.h
+8
-5
python/paddle/v2/framework/tests/op_test.py
python/paddle/v2/framework/tests/op_test.py
+11
-4
python/paddle/v2/framework/tests/test_seq_pool.py
python/paddle/v2/framework/tests/test_seq_pool.py
+51
-0
未找到文件。
paddle/gserver/layers/ExpandConvBaseLayer.cpp
已删除
100644 → 0
浏览文件 @
b21aee63
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "ExpandConvBaseLayer.h"
#include "paddle/utils/Logging.h"
namespace
paddle
{
bool
ExpandConvBaseLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic convolutional parent class */
ConvBaseLayer
::
init
(
layerMap
,
parameterMap
);
int
index
=
0
;
for
(
auto
&
inputConfig
:
config_
.
inputs
())
{
const
ConvConfig
&
conf
=
inputConfig
.
conv_conf
();
/* Consistent caffe mode for multiple input */
caffeMode_
=
conf
.
caffe_mode
();
// create a new weight
size_t
height
,
width
;
height
=
filterPixels_
[
index
]
*
filterChannels_
[
index
];
width
=
(
!
isDeconv_
)
?
numFilters_
:
channels_
[
index
];
CHECK_EQ
(
parameters_
[
index
]
->
getSize
(),
width
*
height
);
Weight
*
w
=
new
Weight
(
height
,
width
,
parameters_
[
index
]);
weights_
.
emplace_back
(
w
);
index
++
;
}
if
(
biasParameter_
.
get
())
{
if
(
sharedBiases_
)
{
CHECK_EQ
((
size_t
)
numFilters_
,
biasParameter_
->
getSize
());
biases_
=
std
::
unique_ptr
<
Weight
>
(
new
Weight
(
numFilters_
,
1
,
biasParameter_
));
}
else
{
biases_
=
std
::
unique_ptr
<
Weight
>
(
new
Weight
(
getSize
(),
1
,
biasParameter_
));
}
}
getOutputSize
();
return
true
;
}
size_t
ExpandConvBaseLayer
::
getOutputSize
()
{
CHECK_NE
(
inputLayers_
.
size
(),
0UL
);
size_t
layerSize
=
ConvBaseLayer
::
calOutputSize
();
return
layerSize
;
}
void
ExpandConvBaseLayer
::
addSharedBias
()
{
size_t
mapW
=
getOutputSize
()
/
numFilters_
;
size_t
mapH
=
getOutputValue
()
->
getElementCnt
()
/
mapW
;
MatrixPtr
out
=
Matrix
::
create
(
getOutputValue
()
->
getData
(),
mapH
,
mapW
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
transOutValue_
,
mapW
,
mapH
,
false
,
useGpu_
);
out
->
transpose
(
transOutValue_
,
false
);
// false means no memory allocation
transOutValue_
->
reshape
(
transOutValue_
->
getElementCnt
()
/
numFilters_
,
numFilters_
);
MatrixPtr
bias
=
Matrix
::
create
(
biases_
->
getW
()
->
getData
(),
1
,
biases_
->
getW
()
->
getElementCnt
(),
false
,
useGpu_
);
transOutValue_
->
addBias
(
*
bias
,
1.0
f
);
transOutValue_
->
reshape
(
mapW
,
mapH
);
transOutValue_
->
transpose
(
out
,
false
);
// false means no memory allocation
out
->
clear
();
bias
->
clear
();
}
void
ExpandConvBaseLayer
::
addUnsharedBias
()
{
MatrixPtr
outValue
=
getOutputValue
();
MatrixPtr
bias
=
Matrix
::
create
(
biases_
->
getW
()
->
getData
(),
1
,
biases_
->
getW
()
->
getElementCnt
(),
false
,
useGpu_
);
outValue
->
addBias
(
*
bias
,
1.0
f
);
}
void
ExpandConvBaseLayer
::
bpropSharedBias
(
MatrixPtr
biases
,
MatrixPtr
v
)
{
size_t
mapW
=
getOutputSize
()
/
numFilters_
;
size_t
mapH
=
v
->
getElementCnt
()
/
mapW
;
MatrixPtr
vTmp
=
Matrix
::
create
(
v
->
getData
(),
mapH
,
mapW
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
transOutValue_
,
mapW
,
mapH
,
false
,
useGpu_
);
vTmp
->
transpose
(
transOutValue_
,
false
);
// false means no memory allocation
transOutValue_
->
reshape
(
transOutValue_
->
getElementCnt
()
/
numFilters_
,
numFilters_
);
biases
->
collectBias
(
*
transOutValue_
,
1.0
f
);
}
void
ExpandConvBaseLayer
::
bpropBiases
(
MatrixPtr
v
)
{
MatrixPtr
biases
=
Matrix
::
create
(
biases_
->
getWGrad
()
->
getData
(),
1
,
biases_
->
getWGrad
()
->
getElementCnt
(),
false
,
useGpu_
);
if
(
sharedBiases_
)
{
bpropSharedBias
(
biases
,
v
);
}
else
{
biases
->
collectBias
(
*
v
,
1.0
f
);
}
biases
->
clear
();
}
}
// namespace paddle
paddle/gserver/layers/ExpandConvBaseLayer.h
已删除
100644 → 0
浏览文件 @
b21aee63
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "ConvBaseLayer.h"
#include "paddle/math/Matrix.h"
namespace
paddle
{
/**
* @brief A subclass of ConvBaseLayer that is a superclass of both
* ExpandConvLayer and ExpandConvTransLayer
*/
class
ExpandConvBaseLayer
:
public
ConvBaseLayer
{
protected:
/// The transpose of output, which is an auxiliary matrix.
MatrixPtr
transOutValue_
;
public:
explicit
ExpandConvBaseLayer
(
const
LayerConfig
&
config
)
:
ConvBaseLayer
(
config
)
{}
~
ExpandConvBaseLayer
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
size_t
getOutputSize
();
/**
* Add shared bias.
*/
void
addSharedBias
();
/**
* Add unshared bias.
*/
void
addUnsharedBias
();
void
bpropSharedBias
(
MatrixPtr
biases
,
MatrixPtr
v
);
void
bpropBiases
(
MatrixPtr
v
);
};
}
// namespace paddle
paddle/gserver/layers/ExpandConvLayer.cpp
浏览文件 @
e2d75bd3
...
...
@@ -36,7 +36,36 @@ inline bool isDepthwiseConv(int channels, int groups) {
bool
ExpandConvLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic convolutional parent class */
ExpandConvBaseLayer
::
init
(
layerMap
,
parameterMap
);
ConvBaseLayer
::
init
(
layerMap
,
parameterMap
);
int
index
=
0
;
for
(
auto
&
inputConfig
:
config_
.
inputs
())
{
const
ConvConfig
&
conf
=
inputConfig
.
conv_conf
();
/* Consistent caffe mode for multiple input */
caffeMode_
=
conf
.
caffe_mode
();
// create a new weight
size_t
height
,
width
;
height
=
filterPixels_
[
index
]
*
filterChannels_
[
index
];
width
=
(
!
isDeconv_
)
?
numFilters_
:
channels_
[
index
];
CHECK_EQ
(
parameters_
[
index
]
->
getSize
(),
width
*
height
);
Weight
*
w
=
new
Weight
(
height
,
width
,
parameters_
[
index
]);
weights_
.
emplace_back
(
w
);
index
++
;
}
if
(
biasParameter_
.
get
())
{
if
(
sharedBiases_
)
{
CHECK_EQ
((
size_t
)
numFilters_
,
biasParameter_
->
getSize
());
biases_
=
std
::
unique_ptr
<
Weight
>
(
new
Weight
(
1
,
numFilters_
,
biasParameter_
,
0
));
}
else
{
biases_
=
std
::
unique_ptr
<
Weight
>
(
new
Weight
(
1
,
getSize
(),
biasParameter_
,
0
));
}
}
getOutputSize
();
size_t
numInputs
=
config_
.
inputs_size
();
inputShape_
.
resize
(
numInputs
);
...
...
@@ -108,6 +137,12 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
return
true
;
}
size_t
ExpandConvLayer
::
getOutputSize
()
{
CHECK_NE
(
inputLayers_
.
size
(),
0UL
);
size_t
layerSize
=
ConvBaseLayer
::
calOutputSize
();
return
layerSize
;
}
// i is the index of input layers
#define BACKWARD_INPUT(i, inputs, outputs) \
backward_[2 * i]->calc(inputs, outputs)
...
...
@@ -155,11 +190,7 @@ void ExpandConvLayer::forward(PassType passType) {
/* add the bias-vector */
if
(
biases_
.
get
())
{
if
(
sharedBiases_
)
{
addSharedBias
();
}
else
{
addUnsharedBias
();
}
output_
.
value
->
addBias
(
*
biases_
->
getW
(),
1.0
,
sharedBiases_
);
}
/* activation */
...
...
@@ -171,7 +202,7 @@ void ExpandConvLayer::backward(const UpdateCallback &callback) {
MatrixPtr
outGrad
=
getOutputGrad
();
if
(
biases_
&&
biases_
->
getWGrad
())
{
b
propBiases
(
outGrad
);
b
iases_
->
getWGrad
()
->
collectBias
(
*
getOutputGrad
(),
1
,
sharedBiases_
);
/* Increasing the number of gradient */
biases_
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
...
...
paddle/gserver/layers/ExpandConvLayer.h
浏览文件 @
e2d75bd3
...
...
@@ -15,7 +15,7 @@ limitations under the License. */
#pragma once
#include <vector>
#include "
Expand
ConvBaseLayer.h"
#include "ConvBaseLayer.h"
#include "paddle/math/Matrix.h"
namespace
paddle
{
...
...
@@ -28,10 +28,9 @@ namespace paddle {
* The config file api is img_conv_layer.
*/
class
ExpandConvLayer
:
public
Expand
ConvBaseLayer
{
class
ExpandConvLayer
:
public
ConvBaseLayer
{
public:
explicit
ExpandConvLayer
(
const
LayerConfig
&
config
)
:
ExpandConvBaseLayer
(
config
)
{}
explicit
ExpandConvLayer
(
const
LayerConfig
&
config
)
:
ConvBaseLayer
(
config
)
{}
~
ExpandConvLayer
()
{}
...
...
@@ -41,6 +40,8 @@ public:
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
)
override
;
size_t
getOutputSize
();
protected:
std
::
vector
<
TensorShape
>
inputShape_
;
std
::
vector
<
TensorShape
>
filterShape_
;
...
...
paddle/operators/sequence_avg_pool_op.cc
浏览文件 @
e2d75bd3
...
...
@@ -63,7 +63,9 @@ class SequenceAvgPoolGradOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Gradient of Out should not be null"
);
"Gradient of Out should not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"The input X should not be null."
);
auto
og_dims
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
();
auto
x_dims
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
)
->
dims
();
...
...
paddle/operators/sequence_avg_pool_op.h
浏览文件 @
e2d75bd3
...
...
@@ -21,6 +21,9 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
...
...
@@ -43,8 +46,8 @@ class SequenceAvgPoolKernel : public framework::OpKernel {
static_cast
<
int
>
(
lod
[
0
][
i
+
1
]));
Tensor
out_t
=
out
->
Slice
<
T
>
(
i
,
i
+
1
);
int64_t
h
=
static_cast
<
int64_t
>
(
lod
[
0
][
i
+
1
]
-
lod
[
0
][
i
]);
auto
in_e
=
EigenMatrix
<
T
>::
From
(
in_t
,
{
h
,
w
}
);
auto
out_e
=
Eigen
Matrix
<
T
>::
From
(
out_t
,
{
h
,
w
}
);
auto
in_e
=
EigenMatrix
<
T
>::
From
(
in_t
,
framework
::
make_ddim
({
h
,
w
})
);
auto
out_e
=
Eigen
Vector
<
T
>::
Flatten
(
out_t
);
out_e
.
device
(
place
)
=
in_e
.
mean
(
Eigen
::
array
<
int
,
1
>
({{
0
}}));
}
}
...
...
@@ -54,9 +57,9 @@ template <typename Place, typename T>
class
SequenceAvgPoolGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Output
<
LoDTensor
>
(
"X"
);
auto
*
in_g
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out_g
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
in_g
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
dims
=
in
->
dims
();
auto
lod
=
in
->
lod
();
...
...
@@ -71,7 +74,7 @@ class SequenceAvgPoolGradKernel : public framework::OpKernel {
int64_t
h
=
static_cast
<
int64_t
>
(
lod
[
0
][
i
+
1
]
-
lod
[
0
][
i
]);
auto
in_g_e
=
EigenMatrix
<
T
>::
From
(
in_g_t
,
{
h
,
w
});
auto
out_g_e
=
EigenMatrix
<
T
>::
From
(
out_g_t
,
{
1
,
w
});
Eigen
::
DSizes
<
int
,
2
>
bcast
(
h
,
w
);
Eigen
::
DSizes
<
int
,
2
>
bcast
(
h
,
1
);
in_g_e
.
device
(
place
)
=
(
out_g_e
/
static_cast
<
T
>
(
h
)).
broadcast
(
bcast
);
}
}
...
...
python/paddle/v2/framework/tests/op_test.py
浏览文件 @
e2d75bd3
...
...
@@ -47,17 +47,24 @@ def set_input(scope, op, inputs, place):
if
in_name
in
inputs
:
if
in_dup
:
sub_in
=
inputs
[
in_name
]
for
sub_in_name
,
sub_in_
array
in
sub_in
:
for
sub_in_name
,
sub_in_
val
in
sub_in
:
var
=
scope
.
find_var
(
sub_in_name
)
tensor
=
var
.
get_tensor
()
sub_in_array
=
sub_in_val
[
0
]
\
if
isinstance
(
sub_in_val
,
tuple
)
else
sub_in_val
tensor
.
set_dims
(
sub_in_array
.
shape
)
tensor
.
set
(
sub_in_array
,
place
)
if
isinstance
(
sub_in_val
,
tuple
):
tensor
.
set_lod
(
sub_in_val
[
1
])
else
:
var
=
scope
.
find_var
(
in_name
)
tensor
=
var
.
get_tensor
()
arr
=
inputs
[
in_name
]
tensor
.
set_dims
(
arr
.
shape
)
tensor
.
set
(
arr
,
place
)
in_val
=
inputs
[
in_name
]
in_array
=
in_val
[
0
]
if
isinstance
(
in_val
,
tuple
)
else
in_val
tensor
.
set_dims
(
in_array
.
shape
)
tensor
.
set
(
in_array
,
place
)
if
isinstance
(
in_val
,
tuple
):
tensor
.
set_lod
(
in_val
[
1
])
def
set_output_grad
(
scope
,
op
,
outputs
,
place
):
...
...
python/paddle/v2/framework/tests/test_seq_pool.py
0 → 100644
浏览文件 @
e2d75bd3
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
class
TestSeqAvgPool1D
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
'sequence_avg_pool'
# one level, batch size is 4
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
23
]).
astype
(
'float32'
)
lod
=
[[
0
,
4
,
5
,
8
,
11
]]
out
=
np
.
zeros
((
4
,
23
)).
astype
(
'float32'
)
for
i
in
range
(
4
):
sub_x
=
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:]
out
[
i
]
=
sub_x
.
mean
(
axis
=
0
)
self
.
inputs
=
{
'X'
:
(
x
,
lod
)}
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
class
TestSeqAvgPool2D
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
'sequence_avg_pool'
# one level, batch size is 4
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
13
,
3
,
17
]).
astype
(
'float32'
)
lod
=
[[
0
,
4
,
5
,
8
,
13
]]
out
=
np
.
zeros
((
4
,
3
,
17
)).
astype
(
'float32'
)
for
i
in
range
(
4
):
sub_x
=
np
.
reshape
(
x
[
lod
[
0
][
i
]:
lod
[
0
][
i
+
1
],
:],
(
-
1
,
3
*
17
))
out
[
i
]
=
np
.
reshape
(
sub_x
.
mean
(
axis
=
0
),
(
3
,
17
))
self
.
inputs
=
{
'X'
:
(
x
,
lod
)}
self
.
outputs
=
{
'Out'
:
out
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
([
"X"
],
"Out"
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录