Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e2cdd4a3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
e2cdd4a3
编写于
3月 13, 2023
作者:
Z
zhupengyang
提交者:
GitHub
3月 13, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[xpu] optimize multi_encoder_xpu_fuse_pass performance (#51346)
上级
e6ca78c2
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
227 addition
and
178 deletion
+227
-178
paddle/fluid/framework/ir/xpu/multi_encoder_xpu_fuse_pass.cc
paddle/fluid/framework/ir/xpu/multi_encoder_xpu_fuse_pass.cc
+22
-175
paddle/fluid/framework/ir/xpu/multi_encoder_xpu_fuse_pass.h
paddle/fluid/framework/ir/xpu/multi_encoder_xpu_fuse_pass.h
+194
-0
paddle/fluid/framework/ir/xpu/pass_utils.cc
paddle/fluid/framework/ir/xpu/pass_utils.cc
+11
-3
未找到文件。
paddle/fluid/framework/ir/xpu/multi_encoder_xpu_fuse_pass.cc
浏览文件 @
e2cdd4a3
...
...
@@ -23,26 +23,15 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/xpu/multi_encoder_xpu_fuse_pass.h"
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/ir/xpu/pass_utils.h"
#include "paddle/fluid/framework/ir/xpu/quant_utils.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/phi/kernels/concat_kernel.h"
namespace
phi
{
class
DenseTensor
;
}
// namespace phi
namespace
paddle
{
namespace
framework
{
class
Scope
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
...
...
@@ -515,175 +504,26 @@ SingleEncoderXPUPattern::SingleEncoderXPUPattern(
}
// namespace patterns
/*
step1: fuse single ops to single_encoder_xpu
step2: fuse mutitl single_encoder_xpu to multi_encoder_xpu
1. step1
Origin subgraph:
------------ input_variable*
| / | \
| / | \
| v_matmul q_matmul k_matmul
| | | |
| | | |
| v_add q_add add
| | | |
| | | |
| v_reshape q_reshape k_reshape
| | | |
| | | |
| v_transpose q_transpose k_transpose
| | | |
| | \ /
| | qk_matmul
| | |
| | |
| | qk_add
| | |
| | |
| | qk_softmax
| | |
| | |
| ---------qkv_matmul_0
| |
| |
| qkv_transpose
| |
| |
| qkv_reshape
| |
| |
| qkv_matmul_1
| |
| |
| qkv_add_0
| |
| |
----------------------qkv_add_1
|
|
layer_norm_1
/ \
| |
| qkv_matmul_2
| |
| |
| qkv_add_2
| |
| |
| qkv_act
| |
| |
| qkv_matmul_3
| |
| |
| qkv_add_3
| |
\ /
qkv_add_4
|
layer_norm
Fused subgraph:
single_encoder_xpu
2. step2
Origin subgraph:
...
|
single_encoder_xpu
|
(single_encoder_xpu)
|
(single_encoder_xpu)
|
...
Fused subgraph:
multi_encoder_xpu
*/
class
MultiEncoderXPUFusePass
:
public
FusePassBase
{
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
private:
int
ApplySingleEncoderXPUFuse
(
ir
::
Graph
*
graph
,
const
std
::
string
&
act_type
,
const
std
::
string
&
matmul_type_0
,
const
std
::
string
&
matmul_type_1
,
const
std
::
string
&
matmul_type_2
,
bool
norm_before
,
bool
with_q_scale
,
bool
with_mask
)
const
;
bool
ApplyMultiEncoderXPUFuse
(
ir
::
Graph
*
graph
)
const
;
// Mask must be fp32 even if model is fp16
int
CastMask
(
ir
::
Graph
*
graph
)
const
;
// 1. Transpose q_w, k_w, v_w
// 2. Concat q_w, k_w, v_w
// 3. Generate qkv_w_max tensor
// 4. Quant qkv_w to int16
void
PrepareQKVWeight
(
Graph
*
graph
,
Scope
*
scope
,
BlockDesc
*
block
,
Node
*
q_w
,
Node
*
k_w
,
Node
*
v_w
,
Node
**
qkv_w
,
Node
**
qkv_w_max
)
const
;
// 1. Cast bias to fp32
// 2. Concat q/k/v bias
void
PrepareQKVBias
(
Graph
*
graph
,
Scope
*
scope
,
BlockDesc
*
block
,
Node
*
q_bias
,
Node
*
k_bias
,
Node
*
v_bias
,
Node
**
qkv_bias
)
const
;
const
std
::
string
name_scope_
{
"multi_encoder_xpu_fuse_pass"
};
};
void
MultiEncoderXPUFusePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
PADDLE_ENFORCE_NOT_NULL
(
graph
,
platform
::
errors
::
PreconditionNotMet
(
"graph should not be null."
));
Init
(
name_scope_
,
graph
);
std
::
vector
<
std
::
string
>
act_types
{
"gelu"
,
"relu"
};
std
::
vector
<
std
::
string
>
matmul_types_0
{
"matmul_v2"
,
"matmul"
,
"mul"
};
std
::
vector
<
std
::
string
>
matmul_types_1
{
"matmul_v2"
,
"matmul"
};
std
::
vector
<
std
::
string
>
matmul_types_2
{
"matmul_v2"
,
"matmul"
};
std
::
vector
<
bool
>
norm_befores
{
true
,
false
};
std
::
vector
<
bool
>
with_q_scales
{
true
,
false
};
std
::
vector
<
bool
>
with_masks
{
true
,
false
};
int
single_encoder_fused_counts
=
0
;
int
multi_encoder_fused_counts
=
0
;
for
(
auto
act_type
:
act_types
)
{
for
(
auto
matmul_type_0
:
matmul_types_0
)
{
for
(
auto
matmul_type_1
:
matmul_types_1
)
{
for
(
auto
matmul_type_2
:
matmul_types_2
)
{
for
(
auto
norm_before
:
norm_befores
)
{
for
(
auto
with_q_scale
:
with_q_scales
)
{
for
(
auto
with_mask
:
with_masks
)
{
single_encoder_fused_counts
+=
ApplySingleEncoderXPUFuse
(
graph
,
act_type
,
matmul_type_0
,
matmul_type_1
,
matmul_type_2
,
norm_before
,
with_q_scale
,
with_mask
);
while
(
ApplyMultiEncoderXPUFuse
(
graph
))
{
multi_encoder_fused_counts
++
;
}
}
}
}
}
}
auto
pattern_params
=
GeneratePatternParams
();
for
(
auto
pattern_param
:
pattern_params
)
{
single_encoder_fused_counts
+=
ApplySingleEncoderXPUFuse
(
graph
,
pattern_param
.
act_type
,
pattern_param
.
matmul_type_0
,
pattern_param
.
matmul_type_1
,
pattern_param
.
matmul_type_2
,
pattern_param
.
norm_before
,
pattern_param
.
with_q_scale
,
pattern_param
.
with_mask
);
while
(
ApplyMultiEncoderXPUFuse
(
graph
))
{
multi_encoder_fused_counts
++
;
}
}
int
cast_mask_counts
=
CastMask
(
graph
);
...
...
@@ -1372,6 +1212,13 @@ int MultiEncoderXPUFusePass::CastMask(ir::Graph* graph) const {
return
cast_counts
;
}
std
::
vector
<
PatternParam
>
MultiEncoderXPUFusePass
::
GeneratePatternParams
()
const
{
return
std
::
vector
<
PatternParam
>
{
// Params are arranged in alphabetic order
{
"gelu"
,
"matmul_v2"
,
"matmul"
,
"matmul_v2"
,
false
,
false
,
true
}};
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
...
...
paddle/fluid/framework/ir/xpu/multi_encoder_xpu_fuse_pass.h
0 → 100644
浏览文件 @
e2cdd4a3
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace
phi
{
class
DenseTensor
;
}
// namespace phi
namespace
paddle
{
namespace
framework
{
class
Scope
;
}
// namespace framework
}
// namespace paddle
namespace
paddle
{
namespace
framework
{
namespace
ir
{
/*
step1: fuse single ops to single_encoder_xpu
step2: fuse mutitl single_encoder_xpu to multi_encoder_xpu
1. step1
Origin subgraph:
------------ input_variable*
| / | \
| / | \
| v_matmul q_matmul k_matmul
| | | |
| | | |
| v_add q_add add
| | | |
| | | |
| v_reshape q_reshape k_reshape
| | | |
| | | |
| v_transpose q_transpose k_transpose
| | | |
| | \ /
| | qk_matmul
| | |
| | |
| | qk_add
| | |
| | |
| | qk_softmax
| | |
| | |
| ---------qkv_matmul_0
| |
| |
| qkv_transpose
| |
| |
| qkv_reshape
| |
| |
| qkv_matmul_1
| |
| |
| qkv_add_0
| |
| |
----------------------qkv_add_1
|
|
layer_norm_1
/ \
| |
| qkv_matmul_2
| |
| |
| qkv_add_2
| |
| |
| qkv_act
| |
| |
| qkv_matmul_3
| |
| |
| qkv_add_3
| |
\ /
qkv_add_4
|
layer_norm
Fused subgraph:
single_encoder_xpu
2. step2
Origin subgraph:
...
|
single_encoder_xpu
|
(single_encoder_xpu)
|
(single_encoder_xpu)
|
...
Fused subgraph:
multi_encoder_xpu
*/
struct
PatternParam
{
std
::
string
act_type
;
// "gelu", "relu"
std
::
string
matmul_type_0
;
// "matmul_v2", "matmul", "mul"
std
::
string
matmul_type_1
;
// "matmul_v2", "matmul"
std
::
string
matmul_type_2
;
// "matmul_v2", "matmul"
bool
norm_before
;
bool
with_q_scale
;
bool
with_mask
;
};
class
MultiEncoderXPUFusePass
:
public
FusePassBase
{
protected:
void
ApplyImpl
(
ir
::
Graph
*
graph
)
const
override
;
private:
int
ApplySingleEncoderXPUFuse
(
ir
::
Graph
*
graph
,
const
std
::
string
&
act_type
,
const
std
::
string
&
matmul_type_0
,
const
std
::
string
&
matmul_type_1
,
const
std
::
string
&
matmul_type_2
,
bool
norm_before
,
bool
with_q_scale
,
bool
with_mask
)
const
;
bool
ApplyMultiEncoderXPUFuse
(
ir
::
Graph
*
graph
)
const
;
// Mask must be fp32 even if model is fp16
int
CastMask
(
ir
::
Graph
*
graph
)
const
;
// 1. Transpose q_w, k_w, v_w
// 2. Concat q_w, k_w, v_w
// 3. Generate qkv_w_max tensor
// 4. Quant qkv_w to int16
void
PrepareQKVWeight
(
Graph
*
graph
,
Scope
*
scope
,
BlockDesc
*
block
,
Node
*
q_w
,
Node
*
k_w
,
Node
*
v_w
,
Node
**
qkv_w
,
Node
**
qkv_w_max
)
const
;
// 1. Cast bias to fp32
// 2. Concat q/k/v bias
void
PrepareQKVBias
(
Graph
*
graph
,
Scope
*
scope
,
BlockDesc
*
block
,
Node
*
q_bias
,
Node
*
k_bias
,
Node
*
v_bias
,
Node
**
qkv_bias
)
const
;
// Iterating all attrs costs too much time.
// Just provide several cases.
std
::
vector
<
PatternParam
>
GeneratePatternParams
()
const
;
const
std
::
string
name_scope_
{
"multi_encoder_xpu_fuse_pass"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/xpu/pass_utils.cc
浏览文件 @
e2cdd4a3
...
...
@@ -105,6 +105,12 @@ size_t HashTensor(const phi::DenseTensor& in) {
template
size_t
HashTensor
<
int16_t
>(
const
phi
::
DenseTensor
&
in
);
template
size_t
HashTensor
<
float
>(
const
phi
::
DenseTensor
&
in
);
std
::
string
GetPrefixWithoutHash
(
const
std
::
string
&
name
,
const
phi
::
DenseTensor
&
tensor
)
{
std
::
size_t
found
=
name
.
find
(
"_#"
);
return
found
==
std
::
string
::
npos
?
name
:
name
.
substr
(
0
,
found
);
}
template
<
typename
T
>
void
PrepareWeight
(
Graph
*
graph
,
Scope
*
scope
,
...
...
@@ -122,8 +128,9 @@ void PrepareWeight(Graph* graph,
size_t
dst_hash
=
HashTensor
<
T
>
(
dst_tensor
);
size_t
dst_max_hash
=
HashTensor
<
float
>
(
dst_max_tensor
);
std
::
string
dst_name
=
src_name
+
"_"
+
std
::
to_string
(
dst_hash
);
std
::
string
dst_max_name
=
src_name
+
"_max_"
+
std
::
to_string
(
dst_max_hash
);
std
::
string
pre_name
=
GetPrefixWithoutHash
(
src_name
,
*
src_tensor
);
std
::
string
dst_name
=
pre_name
+
"_#"
+
std
::
to_string
(
dst_hash
);
std
::
string
dst_max_name
=
pre_name
+
"_max_#"
+
std
::
to_string
(
dst_max_hash
);
*
dst
=
FindNodeWithName
(
graph
,
dst_name
);
if
(
*
dst
==
nullptr
)
{
// Create dst node
...
...
@@ -199,7 +206,8 @@ void PrepareBias(
phi
::
DenseTensor
dst_tensor
;
CastToFp32
(
src_tensor
,
&
dst_tensor
);
size_t
dst_hash
=
HashTensor
<
float
>
(
dst_tensor
);
std
::
string
dst_name
=
src_name
+
"_"
+
std
::
to_string
(
dst_hash
);
std
::
string
pre_name
=
GetPrefixWithoutHash
(
src_name
,
*
src_tensor
);
std
::
string
dst_name
=
pre_name
+
"_#"
+
std
::
to_string
(
dst_hash
);
*
dst
=
FindNodeWithName
(
graph
,
dst_name
);
if
(
*
dst
==
nullptr
)
{
// Create dst node
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录