未验证 提交 e2b82e04 编写于 作者: W whs 提交者: GitHub

【API 2.0】Add conv1d API (#26350)

上级 e6675f4f
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
from paddle import fluid, nn
import paddle.fluid.dygraph as dg
import paddle.nn.functional as F
import paddle.fluid.initializer as I
import unittest
class Conv1dTestCase(unittest.TestCase):
def __init__(self,
methodName='runTest',
batch_size=4,
spartial_shape=(16, ),
num_channels=6,
num_filters=8,
filter_size=3,
padding=0,
padding_mode="zeros",
stride=1,
dilation=1,
groups=1,
no_bias=False,
dtype="float32",
data_format="NCL"):
super(Conv1dTestCase, self).__init__(methodName)
self.batch_size = batch_size
self.num_channels = num_channels
self.num_filters = num_filters
self.spartial_shape = spartial_shape
self.filter_size = filter_size
self.data_format = data_format
self.channel_last = (self.data_format == "NHWC")
self.padding = padding
self.padding_mode = padding_mode
self.stride = stride
self.dilation = dilation
self.groups = groups
self.no_bias = no_bias
self.dtype = dtype
def setUp(self):
input_shape = (self.batch_size, self.num_channels
) + self.spartial_shape if not self.channel_last else (
self.batch_size, ) + self.spartial_shape + (
self.num_channels, )
self.input = np.random.randn(*input_shape).astype(self.dtype)
if isinstance(self.filter_size, int):
filter_size = [self.filter_size]
else:
filter_size = self.filter_size
self.weight_shape = weight_shape = (self.num_filters, self.num_channels
// self.groups) + tuple(filter_size)
self.weight = np.random.uniform(
-1, 1, size=weight_shape).astype(self.dtype)
if not self.no_bias:
self.bias = np.random.uniform(
-1, 1, size=(self.num_filters, )).astype(self.dtype)
else:
self.bias = None
def functional(self, place):
main = fluid.Program()
start = fluid.Program()
with fluid.unique_name.guard():
with fluid.program_guard(main, start):
input_shape = (-1, self.num_channels,
-1) if not self.channel_last else (
-1, -1, self.num_channels)
x_var = fluid.data("input", input_shape, dtype=self.dtype)
w_var = fluid.data(
"weight", self.weight_shape, dtype=self.dtype)
b_var = fluid.data(
"bias", (self.num_filters, ), dtype=self.dtype)
y_var = F.conv1d(
x_var,
w_var,
b_var if not self.no_bias else None,
padding=self.padding,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
data_format=self.data_format)
feed_dict = {"input": self.input, "weight": self.weight}
if self.bias is not None:
feed_dict["bias"] = self.bias
exe = fluid.Executor(place)
exe.run(start)
y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
return y_np
def paddle_nn_layer(self):
x_var = paddle.to_tensor(self.input)
conv = nn.Conv1d(
self.num_channels,
self.num_filters,
self.filter_size,
padding=self.padding,
padding_mode=self.padding_mode,
stride=self.stride,
dilation=self.dilation,
groups=self.groups,
data_format=self.data_format)
conv.weight.set_value(self.weight)
if not self.no_bias:
conv.bias.set_value(self.bias)
y_var = conv(x_var)
y_np = y_var.numpy()
return y_np
def _test_equivalence(self, place):
result1 = self.functional(place)
with dg.guard(place):
result2 = self.paddle_nn_layer()
np.testing.assert_array_almost_equal(result1, result2)
def runTest(self):
place = fluid.CPUPlace()
self._test_equivalence(place)
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
self._test_equivalence(place)
class Conv1dErrorTestCase(Conv1dTestCase):
def runTest(self):
place = fluid.CPUPlace()
with dg.guard(place):
with self.assertRaises(ValueError):
self.paddle_nn_layer()
def add_cases(suite):
suite.addTest(Conv1dTestCase(methodName='runTest'))
suite.addTest(Conv1dTestCase(methodName='runTest', stride=[1], dilation=2))
suite.addTest(Conv1dTestCase(methodName='runTest', stride=2, dilation=(1)))
suite.addTest(
Conv1dTestCase(
methodName='runTest', padding="same", no_bias=True))
suite.addTest(
Conv1dTestCase(
methodName='runTest', filter_size=3, padding='valid'))
suite.addTest(
Conv1dTestCase(
methodName='runTest', padding=2, data_format='NLC'))
suite.addTest(Conv1dTestCase(methodName='runTest', padding=[1]))
suite.addTest(Conv1dTestCase(methodName='runTest', padding=2))
suite.addTest(Conv1dTestCase(methodName='runTest'))
suite.addTest(
Conv1dTestCase(
methodName='runTest', groups=2, padding="valid"))
suite.addTest(
Conv1dTestCase(
methodName='runTest',
num_filters=6,
num_channels=3,
groups=3,
padding="valid",
data_format='NLC'))
def add_error_cases(suite):
suite.addTest(
Conv1dErrorTestCase(
methodName='runTest', padding_mode="reflect", padding="valid"))
suite.addTest(
Conv1dErrorTestCase(
methodName='runTest', data_format="VALID"))
suite.addTest(
Conv1dErrorTestCase(
methodName='runTest', padding_mode="VALID"))
suite.addTest(
Conv1dErrorTestCase(
methodName='runTest', num_channels=5, groups=2))
suite.addTest(
Conv1dErrorTestCase(
methodName='runTest', num_filters=8, num_channels=15, groups=3))
suite.addTest(
Conv1dErrorTestCase(
methodName='runTest', padding=[1, 2, 3, 4, 5]))
def load_tests(loader, standard_tests, pattern):
suite = unittest.TestSuite()
add_cases(suite)
add_error_cases(suite)
return suite
if __name__ == '__main__':
unittest.main()
......@@ -93,6 +93,7 @@ from .layer.common import Dropout2D #DEFINE_ALIAS
from .layer.common import Dropout3D #DEFINE_ALIAS
from .layer.pooling import AdaptiveAvgPool2d #DEFINE_ALIAS
from .layer.pooling import AdaptiveAvgPool3d #DEFINE_ALIAS
from .layer.conv import Conv1d #DEFINE_ALIAS
from .layer.conv import Conv2d #DEFINE_ALIAS
from .layer.conv import Conv3d #DEFINE_ALIAS
from .layer.conv import ConvTranspose2d #DEFINE_ALIAS
......
......@@ -69,6 +69,7 @@ from .common import unfold #DEFINE_ALIAS
# from .common import bilinear_tensor_product #DEFINE_ALIAS
from .common import assign #DEFINE_ALIAS
from .common import interpolate #DEFINE_ALIAS
from .conv import conv1d #DEFINE_ALIAS
from .conv import conv2d #DEFINE_ALIAS
from .conv import conv_transpose2d #DEFINE_ALIAS
from .conv import conv3d #DEFINE_ALIAS
......
......@@ -13,7 +13,13 @@
# limitations under the License.
from __future__ import print_function
__all__ = ['conv2d', 'conv_transpose2d', 'conv3d', 'conv_transpose3d']
__all__ = [
'conv1d',
'conv2d',
'conv_transpose2d',
'conv3d',
'conv_transpose3d',
]
import numpy as np
from ...device import get_cudnn_version
......@@ -88,6 +94,232 @@ def _update_padding_nd(padding, channel_last, num_dims):
return padding, padding_algorithm
def conv1d(x,
weight,
bias=None,
stride=1,
padding=0,
dilation=1,
groups=1,
data_format='NCL',
name=None):
"""
The convolution1D layer calculates the output based on the input, filter
and strides, paddings, dilations, groups parameters. Input and
Output are in NCL format, where N is batch size, C is the number of
channels, L is the length of the feature.
Filter is in MCK format, where M is the number of output image channels,
C is the number of input image channels, K is the size of the kernel.
If the groups is greater than 1, C will equal the number of input image
channels divided by the groups. If bias attribution and activation type
are provided, bias is added to the output of the convolution, and the
corresponding activation function is applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \\ast X + b)
Where:
* :math:`X`: Input value, a tensor with NCL format.
* :math:`W`: Kernel value, a tensor with MCK format.
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, L_{in})`
Filter shape: :math:`(C_{out}, C_{in}, L_f)`
- Output:
Output shape: :math:`(N, C_{out}, L_{out})`
Where
.. math::
L_{out}&= \\frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
Args:
x (Tensor): The input is 3-D Tensor with shape [N, C, L], the data type
of input is float16 or float32 or float64.
weight (Tensor): The convolution kernel with shape [M, C/g, K], where M is
the number of output channels, g is the number of groups, K is the kernel's size.
bias (Tensor, optional): The bias with shape [M,]. Default: None.
stride (int or tuple, optional): The stride size. If stride is a tuple, it must
contain one integers, (stride_size). Default: 1.
padding(int|str|tuple|list, optional): The padding size. Padding coule be in one of the following forms.
1. a string in ['valid', 'same'].
2. an int, which means the feature map is zero paded by size of `padding` on both sides.
3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
4. a list[int] or tuple[int] whose length is 2. It has the form [pad_before, pad_after].
5. a list or tuple of pairs of ints. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension are also included. Each pair of integers correspond to the amount of padding for a dimension of the input. Padding in batch dimension and channel dimension should be [0, 0] or (0, 0).
The default value is 0.
dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
contain one integer, (dilation_size). Default: 1.
groups (int, optional): The groups number of the conv1d function. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: 1.
data_format (str, optional): Specify the data format of the input, and the data format of the output
will be consistent with that of the input. An optional string from: `"NCL"`, `"NLC"`.
The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
`[batch_size, input_channels, feature_length]`.
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
Returns:
A tensor representing the conv1d, whose data type is the
same with input.
Raises:
ValueError: If the channel dimmention of the input is less than or equal to zero.
ValueError: If `data_format` is not "NCL" or "NLC".
ValueError: If `padding` is a string, but not "SAME" or "VALID".
ValueError: If `padding` is a tuple, but the element corresponding to the input's batch size is not 0
or the element corresponding to the input's channel is not 0.
ShapeError: If the input is not 3-D Tensor.
ShapeError: If the input's dimension size and filter's dimension size not equal.
ShapeError: If the dimension size of input minus the size of `stride` is not 1.
ShapeError: If the number of input channels is not equal to filter's channels * groups.
ShapeError: If the number of output channels is not be divided by groups.
Examples:
.. code-block:: python
import paddle
import paddle.nn.functional as F
import numpy as np
x = np.array([[[4, 8, 1, 9],
[7, 2, 0, 9],
[6, 9, 2, 6]]]).astype(np.float32)
w=np.array(
[[[9, 3, 4],
[0, 0, 7],
[2, 5, 6]],
[[0, 3, 4],
[2, 9, 7],
[5, 6, 8]]]).astype(np.float32)
paddle.disable_static()
x_var = paddle.to_tensor(x)
w_var = paddle.to_tensor(w)
y_var = F.conv1d(x_var, w_var)
y_np = y_var.numpy()
print(y_np)
# [[[133. 238.]
# [160. 211.]]]
"""
cudnn_version = get_cudnn_version()
if cudnn_version is not None:
use_cudnn = True
else:
use_cudnn = False
if data_format not in ["NCL", "NLC"]:
raise ValueError("Attr(data_format) should be 'NCL' or 'NLC'. "
"Received Attr(data_format): {}.".format(data_format))
channel_last = (data_format == "NHWC")
channel_dim = -1 if channel_last else 1
conv2d_data_format = "NHWC" if channel_last else "NCHW"
num_channels = x.shape[channel_dim]
num_filters = weight.shape[0]
if num_channels < 0:
raise ValueError("The channel dimmention of the input({}) "
"should be defined. Received: {}.".format(
x.shape, num_channels))
if num_channels % groups != 0:
raise ValueError(
"the channel of input must be divisible by groups,"
"received: the channel of input is {}, the shape of input is {}"
", the groups is {}".format(num_channels, x.shape, groups))
if num_filters % groups != 0:
raise ValueError(
"the number of filters must be divisible by groups,"
"received: the number of filters is {}, the shape of weight is {}"
", the groups is {}".format(num_filters, weight.shape, groups))
# update attrs
padding, padding_algorithm = _update_padding_nd(padding, channel_last, 1)
if len(padding) == 2:
padding = padding + [0] * 2
elif len(padding) == 1:
padding = padding + [0]
else:
raise ValueError(
"The size of padding's dimmention should 1 or 2. But got padding={}".
format(padding))
stride = utils.convert_to_list(stride, 1, 'stride') + [1]
dilation = utils.convert_to_list(dilation, 1, 'dilation') + [1]
l_type = "conv2d"
if (num_channels == groups and num_filters % num_channels == 0 and
not use_cudnn):
l_type = 'depthwise_conv2d'
use_cudnn = False
inputs = {'Input': [x], 'Filter': [weight]}
attrs = {
'strides': stride,
'paddings': padding,
'dilations': dilation,
'groups': groups,
'use_cudnn': use_cudnn,
'use_mkldnn': False,
'fuse_relu_before_depthwise_conv': False,
"padding_algorithm": padding_algorithm,
"data_format": conv2d_data_format
}
squeeze_aixs = -2 if channel_last else -1
x = nn.unsqueeze(input=x, axes=[squeeze_aixs])
weight = nn.unsqueeze(input=weight, axes=[-1])
if in_dygraph_mode():
attrs = ('strides', stride, 'paddings', padding, 'dilations', dilation,
'groups', groups, 'use_cudnn', use_cudnn, 'use_mkldnn', False,
'fuse_relu_before_depthwise_conv', False, "padding_algorithm",
padding_algorithm, "data_format", conv2d_data_format)
out = getattr(core.ops, l_type)(x, weight, *attrs)
if bias is not None:
out = nn.elementwise_add(out, bias, axis=channel_dim)
else:
inputs = {'Input': [x], 'Filter': [weight]}
attrs = {
'strides': stride,
'paddings': padding,
'dilations': dilation,
'groups': groups,
'use_cudnn': use_cudnn,
'use_mkldnn': False,
'fuse_relu_before_depthwise_conv': False,
"padding_algorithm": padding_algorithm,
"data_format": conv2d_data_format
}
check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
'conv2d')
helper = LayerHelper(l_type, **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
outputs = {"Output": [out]}
helper.append_op(
type=l_type, inputs=inputs, outputs=outputs, attrs=attrs)
if bias is not None:
out = nn.elementwise_add(out, bias, axis=channel_dim)
out = nn.squeeze(input=out, axes=[squeeze_aixs])
return out
def conv2d(x,
weight,
bias=None,
......
......@@ -57,6 +57,7 @@ from .common import Dropout2D #DEFINE_ALIAS
from .common import Dropout3D #DEFINE_ALIAS
from .pooling import AdaptiveAvgPool2d #DEFINE_ALIAS
from .pooling import AdaptiveAvgPool3d #DEFINE_ALIAS
from .conv import Conv1d #DEFINE_ALIAS
from .conv import Conv2d #DEFINE_ALIAS
from .conv import Conv3d #DEFINE_ALIAS
from .conv import ConvTranspose2d #DEFINE_ALIAS
......
......@@ -15,12 +15,11 @@
# TODO: define classes of convolutional neural network
__all__ = [
'Conv1d',
'Conv2d',
'Conv3d',
'ConvTranspose2d',
'ConvTranspose3d',
# 'TreeConv',
# 'Conv1D'
]
import numpy as np
......@@ -40,7 +39,6 @@ def _get_default_param_initializer(num_channels, filter_size):
def _reverse_repeat_list(t, n):
"""Reverse the order of `t` and repeat each element for `n` times.
This can be used to translate padding arg used by Conv and Pooling modules
to the ones used by `F.pad`.
"""
......@@ -113,9 +111,195 @@ class _ConvNd(layers.Layer):
attr=self._bias_attr, shape=[self._out_channels], is_bias=True)
class Conv2d(_ConvNd):
class Conv1d(layers.Layer):
"""
This interface is used to construct a callable object of the ``Conv1d`` class.
For more details, refer to code examples.
The convolution1D layer calculates the output based on the input, filter
and stride, padding, dilation, groups parameters. Input and
Output are in NCL format or NLC format, where N is batch size, C is the number of
the feature map, L is the length of the feature map.
Filter's shape is [MCK] , where M is the number of output feature map,
C is the number of input feature map, K is the size of the kernel.
If the groups is greater than 1, C will equal the number of input feature map divided by the groups.
If bias attribution and activation type are provided, bias is added to the
output of the convolution, and the corresponding activation function is
applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \\sigma (W \\ast X + b)
Where:
* :math:`X`: Input value, a ``Tensor`` with 'NCL' format or 'NLC' format.
* :math:`W`: Filter value, a ``Tensor`` with shape [MCK] .
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, L_{in})`
Kernel shape: :math:`(C_{out}, C_{in}, K)`
- Output:
Output shape: :math:`(N, C_{out}, L_{out})`
Where
.. math::
L_{out}&= \\frac{(L_{in} + 2 * padding - (dilation * (L_f - 1) + 1))}{stride} + 1
Parameters:
in_channels(int): The number of channels in the input image.
out_channels(int): The number of filter. It is as same as the output
feature map.
kernel_size (int|tuple|list): The filter size. If kernel_size is a tuple,
it must contain one integer, (kernel_size).
stride (int|tuple|list, optional): The stride size. If stride is a tuple, it must
contain one integer, (stride_size). Default: 1.
padding(int|str|tuple|list, optional): The size of zeros to be padded. It must be in one of the following forms.
1. a string in ['valid', 'same'].
2. an int, which means the feature map is zero paded by size of `padding` on both sides.
3. a list[int] or tuple[int] whose length is 1, which means the feature map is zero paded by size of `padding[0]` on both sides.
The default value is 0.
dilation (int|tuple|list, optional): The dilation size. If dilation is a tuple, it must
contain one integer, (dilation_size). Default: 1.
groups (int, optional): The groups number of the conv2d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: 1.
padding_mode(str, optional): Four modes: 'zeros', 'reflect', 'replicate', 'circular'.
When in 'zeros' mode, this op uses zeros to pad the input tensor.
When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
When in 'replicate' mode, uses input boundaries to pad the input tensor.
When in 'circular' mode, uses circular input to pad the input tensor.
Default is 'zeros'.
bias(bool, optional): Whether to use bias. Default: True.
param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
of conv1d. If it is set to None or one attribute of ParamAttr, conv1d
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv1d.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv1d
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
Attribute:
**weight** (Parameter): the learnable weights of filter of this layer.
**bias** (Parameter or None): the learnable bias of this layer.
Shape:
- x: 3-D tensor with shape: (batch, in_channels, length) or (batch, length, in_channels).
- output: 3-D tensor with same shape as input x.
Raises:
None
Examples:
.. code-block:: python
import paddle
from paddle.nn import Conv1d
import numpy as np
x = np.array([[[4, 8, 1, 9],
[7, 2, 0, 9],
[6, 9, 2, 6]]]).astype(np.float32)
w=np.array(
[[[9, 3, 4],
[0, 0, 7],
[2, 5, 6]],
[[0, 3, 4],
[2, 9, 7],
[5, 6, 8]]]).astype(np.float32)
paddle.disable_static()
x_t = paddle.to_tensor(x)
conv = Conv1d(3, 2, 3)
conv.weight.set_value(w)
y_t = conv(x_t)
y_np = y_t.numpy()
print(y_np)
# [[[133. 238.]
# [160. 211.]]]
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
padding_mode='zeros',
bias=True,
weight_attr=None,
bias_attr=None,
data_format="NCL",
name=None):
super(Conv1d, self).__init__()
assert weight_attr is not False, "param_attr should not be False here."
self._in_channels = in_channels
self._out_channels = out_channels
self._groups = groups
if in_channels % groups != 0:
raise ValueError("in_channels must be divisible by groups.")
self._kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
self._stride = utils.convert_to_list(stride, 1, 'stride')
self._dilation = utils.convert_to_list(dilation, 1, 'dilation')
self._padding = padding # leave it to F.conv1d
self._weight_attr = weight_attr
self._bias_attr = bias_attr
self._data_format = data_format
self._name = name
self._padding_mode = padding_mode
valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
if padding_mode not in valid_padding_modes:
raise ValueError(
"padding_mode must be one of {}, but got padding_mode='{}'".
format(valid_padding_modes, padding_mode))
if padding_mode in {'reflect', 'replicate', 'circular'
} and not isinstance(padding, np.int):
raise ValueError(
"when padding_mode in ['reflect', 'replicate', 'circular'], type of padding must be int"
)
if not isinstance(padding, str):
self._padding = utils.convert_to_list(padding, 1, 'padding') * 2
num_filter_channels = in_channels // groups
filter_shape = [self._out_channels, num_filter_channels
] + self._kernel_size
self.weight = self.create_parameter(
attr=self._weight_attr,
shape=filter_shape,
default_initializer=_get_default_param_initializer(
self._in_channels, filter_shape))
self.bias = self.create_parameter(
attr=self._bias_attr, shape=[self._out_channels],
is_bias=True) if bias else None
def forward(self, x):
padding = 0
if self._padding_mode != "zeros":
x = F.pad(x,
self._padding,
mode=self._padding_mode,
data_format=self._data_format)
else:
padding = self._padding
out = F.conv1d(
x,
self.weight,
bias=self.bias,
padding=padding,
stride=self._stride,
dilation=self._dilation,
groups=self._groups,
data_format=self._data_format,
name=self._name)
return out
class Conv2d(_ConvNd):
"""
This interface is used to construct a callable object of the ``Conv2d`` class.
For more details, refer to code examples.
The convolution2D layer calculates the output based on the input, filter
......@@ -132,22 +316,16 @@ class Conv2d(_ConvNd):
If bias attribution and activation type are provided, bias is added to the
output of the convolution, and the corresponding activation function is
applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \\sigma (W \\ast X + b)
Where:
* :math:`X`: Input value, a ``Tensor`` with NCHW format.
* :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Parameters:
in_channels(int): The number of channels in the input image.
out_channels(int): The number of channels produced by convolution.
......@@ -183,37 +361,25 @@ class Conv2d(_ConvNd):
is not set, the bias is initialized zero. Default: None.
data_format (str, optional): Data format that specifies the layout of input.
It can be "NCHW" or "NHWC". Default: "NCHW".
Attribute:
**weight** (Parameter): the learnable weights of filter of this layer.
**bias** (Parameter or None): the learnable bias of this layer.
Shape:
- x: :math:`(N, C_{in}, H_{in}, W_{in})`
- output: :math:`(N, C_{out}, H_{out}, W_{out})`
Where
.. math::
H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (kernel_size[0] - 1) + 1))}{strides[0]} + 1 \\\\
W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (kernel_size[1] - 1) + 1))}{strides[1]} + 1
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
x = np.random.uniform(-1, 1, (2, 4, 8, 8)).astype('float32')
paddle.disable_static()
x_var = paddle.to_tensor(x)
conv = nn.Conv2d(4, 6, (3, 3))
y_var = conv(x_var)
......@@ -294,43 +460,28 @@ class ConvTranspose2d(_ConvNd):
is applied to the final result.
The details of convolution transpose layer, please refer to the following explanation and references
`conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \\ast X + b)
Where:
* :math:`X`: Input value, a ``Tensor`` with NCHW format.
* :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
- Input:
Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
- Output:
Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
Where
.. math::
H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Parameters:
in_channels(int): The number of channels in the input image.
out_channels(int): The number of channels produced by the convolution.
......@@ -369,35 +520,23 @@ class ConvTranspose2d(_ConvNd):
is not set, the bias is initialized zero. Default: None.
data_format (str, optional): Data format that specifies the layout of input.
It can be "NCHW" or "NHWC". Default: "NCHW".
Attribute:
**weight** (Parameter): the learnable weights of filters of this layer.
**bias** (Parameter or None): the learnable bias of this layer.
Shape:
- x: :math:`(N, C_{in}, H_{in}, W_{in})`
- output: :math:`(N, C_{out}, H_{out}, W_{out})`
Where
.. math::
H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel_size[0] - 1) + 1 \\\\
W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel_size[1] - 1) + 1 \\\\
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
x = np.random.uniform(-1, 1, (2, 4, 8, 8)).astype('float32')
paddle.disable_static()
x_var = paddle.to_tensor(x)
conv = nn.ConvTranspose2d(4, 6, (3, 3))
y_var = conv(x_var)
......@@ -456,9 +595,7 @@ class ConvTranspose2d(_ConvNd):
class Conv3d(_ConvNd):
"""
**Convlution3d Layer**
The convolution3d layer calculates the output based on the input, filter
and strides, paddings, dilations, groups parameters. Input(Input) and
Output(Output) are multidimensional tensors with a shape of
......@@ -468,22 +605,16 @@ class Conv3d(_ConvNd):
but adds one dimension(depth). If bias attribution and activation type are
provided, bias is added to the output of the convolution, and the
corresponding activation function is applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \\ast X + b)
In the above equation:
* :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
* :math:`W`: Filter value, a tensor with MCDHW format.
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Parameters:
in_channels(int): The number of input channels in the input image.
out_channels(int): The number of output channels produced by the convolution.
......@@ -519,42 +650,29 @@ class Conv3d(_ConvNd):
is not set, the bias is initialized zero. The default value is None.
data_format (str, optional): Data format that specifies the layout of input.
It can be "NCDHW" or "NDHWC". Default: "NCDHW".
Attribute:
**weight** (Parameter): the learnable weights of filters of this layer.
**bias** (Parameter): the learnable bias of this layer.
Shape:
- x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
- output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
Where
.. math::
D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1
Raises:
ValueError: If the shapes of input, filter_size, stride, padding and
groups mismatch.
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
x = np.random.uniform(-1, 1, (2, 4, 8, 8, 8)).astype('float32')
paddle.disable_static()
x_var = dg.to_variable(x)
conv = nn.Conv3d(4, 6, (3, 3, 3))
y_var = conv(x_var)
......@@ -620,9 +738,7 @@ class Conv3d(_ConvNd):
class ConvTranspose3d(_ConvNd):
"""
**Convlution3D transpose layer**
The convolution3D transpose layer calculates the output based on the input,
filter, and dilations, strides, paddings. Input(Input) and output(Output)
are in NCDHW format. Where N is batch size, C is the number of channels,
......@@ -634,26 +750,18 @@ class ConvTranspose3d(_ConvNd):
If bias attribution and activation type are provided, bias is added to
the output of the convolution, and the corresponding activation function
is applied to the final result.
For each input :math:`X`, the equation is:
.. math::
Out = \sigma (W \\ast X + b)
In the above equation:
* :math:`X`: Input value, a tensor with NCDHW format.
* :math:`W`: Filter value, a tensor with MCDHW format.
* :math:`\\ast`: Convolution operation.
* :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
* :math:`\\sigma`: Activation function.
* :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Example:
**Note**:
The conv_transpose3d can be seen as the backward of the conv3d. For conv3d,
when stride > 1, conv3d maps multiple input shape to the same output shape,
so for conv_transpose3d, when stride > 1, input shape maps multiple output shape.
......@@ -664,8 +772,6 @@ class ConvTranspose3d(_ConvNd):
and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must
between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`,
conv_transpose3d can compute the kernel size automatically.
Parameters:
in_channels(int): The number of channels in the input image.
out_channels(int): The number of channels produced by the convolution.
......@@ -710,41 +816,28 @@ class ConvTranspose3d(_ConvNd):
should follow the formula above. Default: None.
data_format (str, optional): Data format that specifies the layout of input.
It can be "NCDHW" or "NDHWC". Default: "NCDHW".
Attribute:
**weight** (Parameter): the learnable weights of filters of this layer.
**bias** (Parameter): the learnable bias of this layer.
Shape:
- x: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
- output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
Where
.. math::
D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (kernel_size[0] - 1) + 1 \\\\
H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (kernel_size[1] - 1) + 1 \\\\
W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (kernel_size[2] - 1) + 1 \\\\
Raises:
ValueError: If the shapes of input, filter_size, stride, padding and
groups mismatch.
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn as nn
x = np.random.uniform(-1, 1, (2, 4, 8, 8, 8)).astype('float32')
paddle.disable_static()
x_var = paddle.to_tensor(x)
conv = nn.Conv3DTranspose(4, 6, (3, 3, 3))
y_var = conv(x_var)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册