提交 e19134e0 编写于 作者: L Luo Tao

add cost function in v2.layer

上级 ac712688
...@@ -77,7 +77,9 @@ import data_type ...@@ -77,7 +77,9 @@ import data_type
__all__ = [ __all__ = [
'parse_network', 'data', 'fc', 'max_id', 'classification_cost', 'parse_network', 'data', 'fc', 'max_id', 'classification_cost',
'cross_entropy_cost' 'cross_entropy_cost', 'cross_entropy_with_selfnorm_cost', 'regression_cost',
'multi_binary_label_cross_entropy_cost', 'rank_cost', 'lambda_cost',
'sum_cost', 'huber_cost'
] ]
...@@ -137,7 +139,8 @@ def __convert_to_v2__(method_name, name_prefix, parent_names): ...@@ -137,7 +139,8 @@ def __convert_to_v2__(method_name, name_prefix, parent_names):
parent_layers = dict() parent_layers = dict()
other_kwargs = dict() other_kwargs = dict()
for pname in parent_names: for pname in parent_names:
parent_layers[pname] = kwargs[pname] if kwargs.has_key(pname):
parent_layers[pname] = kwargs[pname]
for key in kwargs.keys(): for key in kwargs.keys():
if key not in parent_names: if key not in parent_names:
...@@ -189,27 +192,61 @@ class DataLayerV2(Layer): ...@@ -189,27 +192,61 @@ class DataLayerV2(Layer):
data = DataLayerV2 data = DataLayerV2
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input']) fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
max_id = __convert_to_v2__( max_id = __convert_to_v2__(
'maxid_layer', name_prefix='maxid_layer', parent_names=['input']) 'maxid_layer', name_prefix='maxid', parent_names=['input'])
classification_cost = __convert_to_v2__( classification_cost = __convert_to_v2__(
'classification_cost', 'classification_cost',
name_prefix='classification_cost', name_prefix='classification_cost',
parent_names=['input', 'label']) parent_names=['input', 'label', 'weight'])
regression_cost = __convert_to_v2__(
'regression_cost',
name_prefix='regression_cost',
parent_names=['input', 'label', 'weight'])
cross_entropy_cost = __convert_to_v2__( cross_entropy_cost = __convert_to_v2__(
'cross_entropy', 'cross_entropy',
name_prefix='cross_entropy', name_prefix='cross_entropy',
parent_names=['input', 'label']) parent_names=['input', 'label'])
cross_entropy_with_selfnorm_cost = __convert_to_v2__(
'cross_entropy_with_selfnorm',
name_prefix='cross_entropy_with_selfnorm',
parent_names=['input', 'label'])
multi_binary_label_cross_entropy_cost = __convert_to_v2__(
'multi_binary_label_cross_entropy',
name_prefix='multi_binary_label_cross_entropy',
parent_names=['input', 'label'])
rank_cost = __convert_to_v2__(
'rank_cost',
name_prefix='rank_cost',
parent_names=['left', 'right', 'label', 'weight'])
lambda_cost = __convert_to_v2__(
'lambda_cost', name_prefix='lambda_cost', parent_names=['input', 'score'])
sum_cost = __convert_to_v2__(
'sum_cost', name_prefix='sum_cost', parent_names=['input'])
huber_cost = __convert_to_v2__(
'huber_cost', name_prefix='huber_cost', parent_names=['input', 'label'])
if __name__ == '__main__': if __name__ == '__main__':
pixel = data(name='pixel', type=data_type.dense_vector(784)) pixel = data(name='pixel', type=data_type.dense_vector(784))
label = data(name='label', type=data_type.integer_value(10)) label = data(name='label', type=data_type.integer_value(10))
weight = data(name='weight', type=data_type.dense_vector(10))
score = data(name='score', type=data_type.dense_vector(1))
hidden = fc(input=pixel, size=100, act=conf_helps.SigmoidActivation()) hidden = fc(input=pixel, size=100, act=conf_helps.SigmoidActivation())
inference = fc(input=hidden, size=10, act=conf_helps.SoftmaxActivation()) inference = fc(input=hidden, size=10, act=conf_helps.SoftmaxActivation())
maxid = max_id(input=inference) maxid = max_id(input=inference)
cost1 = classification_cost(input=inference, label=label) cost1 = classification_cost(input=inference, label=label)
cost2 = cross_entropy_cost(input=inference, label=label) cost2 = classification_cost(input=inference, label=label, weight=weight)
cost3 = cross_entropy_cost(input=inference, label=label)
cost4 = cross_entropy_with_selfnorm_cost(input=inference, label=label)
cost5 = regression_cost(input=inference, label=label)
cost6 = regression_cost(input=inference, label=label, weight=weight)
cost7 = multi_binary_label_cross_entropy_cost(input=inference, label=label)
cost8 = rank_cost(left=score, right=score, label=score)
cost9 = lambda_cost(input=inference, score=score)
cost10 = sum_cost(input=inference)
cost11 = huber_cost(input=score, label=label)
print parse_network(cost1)
print parse_network(cost2)
print parse_network(cost1, cost2) print parse_network(cost1, cost2)
print parse_network(cost2) print parse_network(cost3, cost4)
print parse_network(cost5, cost6)
print parse_network(cost7, cost8, cost9, cost10, cost11)
print parse_network(inference, maxid) print parse_network(inference, maxid)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册