Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e1679b88
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e1679b88
编写于
1月 05, 2019
作者:
乔
乔龙飞 Qiao Longfei
提交者:
GitHub
1月 05, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #14893 from JiabinYang/feature/add_prefech_hs
Feature/add prefech hs
上级
796322d3
2aa1dc67
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
973 addition
and
192 deletion
+973
-192
paddle/fluid/operators/distributed/parameter_prefetch.cc
paddle/fluid/operators/distributed/parameter_prefetch.cc
+15
-9
paddle/fluid/operators/distributed/parameter_prefetch.h
paddle/fluid/operators/distributed/parameter_prefetch.h
+50
-1
paddle/fluid/operators/hierarchical_sigmoid_op.cc
paddle/fluid/operators/hierarchical_sigmoid_op.cc
+34
-13
paddle/fluid/operators/hierarchical_sigmoid_op.h
paddle/fluid/operators/hierarchical_sigmoid_op.h
+58
-27
paddle/fluid/operators/lookup_table_op.cu
paddle/fluid/operators/lookup_table_op.cu
+2
-1
paddle/fluid/operators/lookup_table_op.h
paddle/fluid/operators/lookup_table_op.h
+2
-1
paddle/fluid/operators/math/matrix_bit_code.cc
paddle/fluid/operators/math/matrix_bit_code.cc
+0
-35
paddle/fluid/operators/math/matrix_bit_code.h
paddle/fluid/operators/math/matrix_bit_code.h
+21
-25
paddle/fluid/operators/nce_op.cc
paddle/fluid/operators/nce_op.cc
+20
-6
paddle/fluid/operators/nce_op.h
paddle/fluid/operators/nce_op.h
+91
-46
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+22
-11
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+2
-1
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
+146
-10
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
+3
-3
python/paddle/fluid/tests/unittests/test_hsigmoid_remote_table_op.py
...le/fluid/tests/unittests/test_hsigmoid_remote_table_op.py
+269
-0
python/paddle/fluid/tests/unittests/test_nce_remote_table_op.py
.../paddle/fluid/tests/unittests/test_nce_remote_table_op.py
+236
-0
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+2
-3
未找到文件。
paddle/fluid/operators/distributed/parameter_prefetch.cc
浏览文件 @
e1679b88
...
...
@@ -32,7 +32,7 @@ namespace paddle {
namespace
operators
{
namespace
distributed
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoD
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
SelectedRows
=
framework
::
SelectedRows
;
using
DDim
=
framework
::
DDim
;
...
...
@@ -117,6 +117,12 @@ static void MergeMultipleVarsIntoOneBySection(
auto
&
id_tensor
=
scope
->
FindVar
(
id_name
)
->
Get
<
framework
::
LoDTensor
>
();
auto
*
out_tensor
=
scope
->
FindVar
(
out_name
)
->
GetMutable
<
framework
::
LoDTensor
>
();
PADDLE_ENFORCE_GT
(
out_tensor
->
numel
(),
0
,
"When calling this method, the LoDTensor's numel must larger than zero. "
"Please check LoDTensor::Resize has been called first."
);
auto
*
out_tensor_data
=
out_tensor
->
mutable_data
<
float
>
(
id_tensor
.
place
());
bool
is_on_cpu_place
=
true
;
...
...
@@ -138,7 +144,7 @@ static void MergeMultipleVarsIntoOneBySection(
auto
row_numel
=
dims
[
1
];
for
(
size
_t
i
=
0
;
i
<
dims
[
0
];
++
i
)
{
for
(
int64
_t
i
=
0
;
i
<
dims
[
0
];
++
i
)
{
auto
id
=
ids_in_this_section
[
i
];
auto
origin_id
=
id
+
abs_sections
[
section_idx
];
auto
&
offsets
=
id_to_offset
[
origin_id
];
...
...
@@ -172,8 +178,9 @@ void prefetch(const std::string& id_name, const std::string& out_name,
const
std
::
vector
<
std
::
string
>&
table_names
,
const
std
::
vector
<
std
::
string
>&
epmap
,
const
std
::
vector
<
int
>&
height_sections
,
const
framework
::
ExecutionContext
&
context
)
{
auto
&
local_scope
=
context
.
scope
().
NewScope
();
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Scope
&
scope
)
{
auto
&
local_scope
=
scope
.
NewScope
();
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
cpu_ctx
=
*
pool
.
Get
(
platform
::
CPUPlace
());
...
...
@@ -190,11 +197,11 @@ void prefetch(const std::string& id_name, const std::string& out_name,
out_var_names
.
push_back
(
out_name
+
"@"
+
epmap
[
i
]);
}
auto
&
id_tensor
=
local_
scope
.
FindVar
(
id_name
)
->
Get
<
framework
::
LoDTensor
>
();
auto
&
id_tensor
=
scope
.
FindVar
(
id_name
)
->
Get
<
framework
::
LoDTensor
>
();
std
::
vector
<
int64_t
>
ids_vector
;
if
(
platform
::
is_cpu_place
(
id_tensor
.
place
()))
{
auto
*
id_data
=
id_tensor
.
data
<
int64_t
>
();
for
(
size
_t
i
=
0
;
i
<
id_tensor
.
numel
();
++
i
)
{
for
(
int64
_t
i
=
0
;
i
<
id_tensor
.
numel
();
++
i
)
{
ids_vector
.
push_back
(
id_data
[
i
]);
}
}
else
{
...
...
@@ -202,7 +209,7 @@ void prefetch(const std::string& id_name, const std::string& out_name,
PADDLE_THROW
(
"paddle is not compiled with CUDA!"
);
#else
auto
cpu_place
=
platform
::
CPUPlace
();
framework
::
Tensor
cpu_tensor
;
framework
::
LoD
Tensor
cpu_tensor
;
auto
*
cpu_tensor_data
=
cpu_tensor
.
mutable_data
<
int64_t
>
(
id_tensor
.
dims
(),
cpu_place
);
auto
stream
=
...
...
@@ -246,8 +253,7 @@ void prefetch(const std::string& id_name, const std::string& out_name,
MergeMultipleVarsIntoOneBySection
(
id_name
,
ids_vector
,
out_name
,
out_var_names
,
height_sections
,
splited_ids
,
context
,
&
local_scope
,
&
actual_ctx
);
context
.
scope
().
DeleteScope
(
&
local_scope
);
scope
.
DeleteScope
(
&
local_scope
);
}
};
// namespace distributed
...
...
paddle/fluid/operators/distributed/parameter_prefetch.h
浏览文件 @
e1679b88
...
...
@@ -27,7 +27,56 @@ void prefetch(const std::string& id_name, const std::string& out_name,
const
std
::
vector
<
std
::
string
>&
table_names
,
const
std
::
vector
<
std
::
string
>&
epmap
,
const
std
::
vector
<
int
>&
height_sections
,
const
framework
::
ExecutionContext
&
context
);
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Scope
&
scope
);
template
<
typename
T
>
void
prefetch_with_reconstruct
(
const
std
::
string
&
id_name
,
const
std
::
string
&
out_name
,
const
std
::
vector
<
std
::
string
>&
table_names
,
const
std
::
vector
<
std
::
string
>&
epmap
,
const
std
::
vector
<
int
>&
height_sections
,
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Scope
&
scope
,
framework
::
LoDTensor
*
original
)
{
prefetch
(
id_name
,
out_name
,
table_names
,
epmap
,
height_sections
,
context
,
scope
);
auto
&
out
=
scope
.
FindVar
(
out_name
)
->
Get
<
framework
::
LoDTensor
>
();
auto
&
ids
=
scope
.
FindVar
(
id_name
)
->
Get
<
framework
::
LoDTensor
>
();
auto
*
original_value
=
original
->
data
<
T
>
();
auto
*
out_value
=
out
.
data
<
T
>
();
size_t
original_width
=
original
->
numel
()
/
original
->
dims
()[
0
];
bool
is_on_cpu_place
=
true
;
if
(
!
platform
::
is_cpu_place
(
ids
.
place
()))
{
is_on_cpu_place
=
false
;
}
if
(
is_on_cpu_place
)
{
for
(
int64_t
i
=
0
;
i
<
ids
.
numel
();
i
++
)
{
const
T
*
out_rows
=
out_value
+
original_width
*
i
;
T
*
original_row
=
original_value
+
original_width
*
ids
.
data
<
int64_t
>
()[
i
];
std
::
memcpy
(
original_row
,
out_rows
,
original_width
*
sizeof
(
T
));
}
}
else
{
#ifndef PADDLE_WITH_CUDA
PADDLE_THROW
(
"paddle is not compiled with CUDA!"
);
#else
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
actual_ctx
=
*
pool
.
Get
(
context
.
GetPlace
());
for
(
int64_t
i
=
0
;
i
<
ids
.
numel
();
i
++
)
{
const
T
*
out_rows
=
out_value
+
original_width
*
i
;
T
*
original_row
=
original_value
+
original_width
*
ids
.
data
<
int64_t
>
()[
i
];
auto
stream
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
&
actual_ctx
)
->
stream
();
memory
::
Copy
(
boost
::
get
<
platform
::
CUDAPlace
>
(
ids
.
place
()),
original_row
,
platform
::
CPUPlace
(),
out_rows
,
original_width
*
sizeof
(
T
),
stream
);
}
#endif
}
}
};
// namespace distributed
};
// namespace operators
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.cc
浏览文件 @
e1679b88
...
...
@@ -67,6 +67,11 @@ class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"PreOut"
),
"Output(PreOut) should not be null."
);
auto
with_prefetch
=
ctx
->
Attrs
().
Get
<
bool
>
(
"remote_prefetch"
);
if
(
with_prefetch
)
{
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"W_Out"
),
"Output(W_Out) should not be null."
);
}
const
int64_t
batch_size
=
ctx
->
GetInputDim
(
"X"
)[
0
];
std
::
vector
<
int64_t
>
output_shape
({
batch_size
,
1
});
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
...
...
@@ -95,7 +100,7 @@ class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Label"
,
"(LoDTensor, required), The labels of training data. It's a"
"tensor with shape [N, 1]."
);
AddInput
(
"PTable"
,
AddInput
(
"P
ath
Table"
,
"(LoDTensor, optional), The Path Table from root to current word"
"it should have shape like [N, L], L is the length of the Path"
)
.
AsDispensable
();
...
...
@@ -119,8 +124,30 @@ class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
"[batch_size, code_length], where code_length represents the "
"maximum path length from root to leaf nodes."
)
.
AsIntermediate
();
AddOutput
(
"W_Out"
,
"(LoDTensor, optinal) using input 'W' as Output to make it mutable"
"When we are using prefetch"
)
.
AsIntermediate
();
AddAttr
<
AttrType
>
(
"num_classes"
,
"(int, optional), The number of classes"
)
.
SetDefault
(
2
);
// for parameter prefetch
AddAttr
<
bool
>
(
"remote_prefetch"
,
""
).
SetDefault
(
false
);
AddAttr
<
int
>
(
"trainer_id"
,
"trainer id from 0 ~ worker_num."
).
SetDefault
(
0
);
AddAttr
<
std
::
vector
<
int
>>
(
"height_sections"
,
"Height for each output SelectedRows."
)
.
SetDefault
(
std
::
vector
<
int
>
({}));
AddAttr
<
std
::
vector
<
std
::
string
>>
(
"epmap"
,
"(string vector, default 127.0.0.1:6164)"
"Server endpoints in the order of input variables for mapping"
)
.
SetDefault
({});
AddAttr
<
std
::
vector
<
std
::
string
>>
(
"table_names"
,
"(string vector, the splited table names that will be fetched from "
"parameter server)"
"in the order of input variables for mapping"
)
.
SetDefault
({});
AddComment
(
R"DOC(
The hierarchical sigmoid operator organize the classes into a binary tree.
At each node, a sigmoid function is used to calculate the probability of
...
...
@@ -189,23 +216,17 @@ class HierarchicalSigmoidGradOpGradVarTypeInference
<<
" is set to SelectedRows"
;
block
->
Var
(
w_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
if
(
hasBias
)
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"Bias"
)
<<
" is set to SelectedRows"
;
block
->
Var
(
bias_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
}
else
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"W"
)
<<
" is set to LoDTensor"
;
block
->
Var
(
w_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
if
(
hasBias
)
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"Bias"
)
<<
" is set to LoDTensor"
;
block
->
Var
(
bias_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
}
if
(
hasBias
)
{
VLOG
(
30
)
<<
"hierarchical_sigmoid_grad op "
<<
framework
::
GradVarName
(
"Bias"
)
<<
" is set to LoDTensor"
;
block
->
Var
(
bias_grad_var_name
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
block
->
Var
(
w_grad_var_name
)
->
SetDataType
(
block
->
Var
(
"W"
)
->
GetDataType
());
}
...
...
paddle/fluid/operators/hierarchical_sigmoid_op.h
浏览文件 @
e1679b88
...
...
@@ -14,7 +14,9 @@ limitations under the License. */
#pragma once
#include <iostream>
#include <iterator>
#include <set>
#include <string>
#include <vector>
#include "paddle/fluid/framework/mixed_vector.h"
#include "paddle/fluid/framework/op_registry.h"
...
...
@@ -24,6 +26,10 @@ limitations under the License. */
#include "paddle/fluid/operators/math/matrix_bit_code.h"
#include "paddle/fluid/platform/transform.h"
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
#endif
namespace
paddle
{
namespace
operators
{
...
...
@@ -34,8 +40,9 @@ using platform::Transform;
static
std
::
vector
<
int64_t
>
PathToRows
(
const
framework
::
LoDTensor
&
path
)
{
std
::
set
<
int64_t
>
rows
;
const
int64_t
*
paths
=
path
.
data
<
int64_t
>
();
for
(
int64_t
i
=
0
;
i
<
path
.
numel
();
++
i
)
{
int64_t
row
=
path
.
data
<
int64_t
>
()
[
i
];
int64_t
row
=
path
s
[
i
];
if
(
row
<
0
)
{
continue
;
}
...
...
@@ -49,13 +56,54 @@ class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
in
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
));
auto
&
w
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"W"
));
auto
*
path
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PTable"
);
auto
*
path
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"P
ath
Table"
);
auto
*
code
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PathCode"
);
auto
&
label
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Label"
));
auto
*
bias
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Bias"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
pre_out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"PreOut"
);
size_t
num_classes
=
static_cast
<
size_t
>
(
ctx
.
Attr
<
int
>
(
"num_classes"
));
// for remote prefetch
auto
epmap
=
ctx
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"epmap"
);
if
(
!
epmap
.
empty
())
{
// if epmap is not empty, then the parameter will be fetched from remote
// parameter
// server
auto
height_sections
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"height_sections"
);
auto
table_names
=
ctx
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"table_names"
);
std
::
vector
<
int64_t
>
real_rows
=
PathToRows
(
*
path
);
framework
::
Scope
&
local_scope
=
ctx
.
scope
().
NewScope
();
auto
*
ids
=
local_scope
.
Var
(
"Ids@Prefetch"
);
auto
*
x_tensor
=
ids
->
GetMutable
<
framework
::
LoDTensor
>
();
x_tensor
->
mutable_data
<
int64_t
>
(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
real_rows
.
size
()),
1
}),
ctx
.
GetPlace
());
// copy.
std
::
memcpy
(
x_tensor
->
data
<
int64_t
>
(),
real_rows
.
data
(),
real_rows
.
size
()
*
sizeof
(
int64_t
));
framework
::
DDim
w_dims
=
ctx
.
Input
<
Tensor
>
(
"W"
)
->
dims
();
w_dims
[
0
]
=
x_tensor
->
dims
()[
0
];
auto
*
w_tensor
=
local_scope
.
Var
(
"W@Prefetch"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
w_tensor
->
Resize
(
w_dims
);
#ifdef PADDLE_WITH_DISTRIBUTE
// w_Out is set to used by prefetch, never change it in other cases
auto
*
w_out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"W_Out"
);
operators
::
distributed
::
prefetch_with_reconstruct
<
T
>
(
"Ids@Prefetch"
,
"W@Prefetch"
,
table_names
,
epmap
,
height_sections
,
ctx
,
local_scope
,
w_out
);
#else
PADDLE_THROW
(
"paddle is not compiled with distribute support, can not do "
"parameter prefetch!"
);
#endif
}
bool
is_custom
=
false
;
if
(
path
)
{
is_custom
=
true
;
...
...
@@ -116,9 +164,8 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
in
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
));
auto
&
w
=
detail
::
Ref
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"W"
));
auto
*
path
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PTable"
);
auto
*
path
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"P
ath
Table"
);
auto
*
code
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"PathCode"
);
auto
*
bias
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Bias"
);
auto
*
in_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
bool
is_sparse
=
ctx
.
Attr
<
bool
>
(
"is_sparse"
);
...
...
@@ -173,15 +220,14 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
}
// TODO(guosheng): multiply pre_out_grad with subgradient of clipping to
// be consistent with the clipping in forward.
auto
*
bias_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Bias"
));
if
(
bias_grad
)
{
bias_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
zero
(
dev_ctx
,
bias_grad
,
static_cast
<
T
>
(
0.0
));
bit_code
->
AddGrad
(
pre_out_grad
,
bias_grad
);
}
if
(
!
is_sparse
)
{
auto
*
bias_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Bias"
));
if
(
bias_grad
)
{
bias_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
zero
(
dev_ctx
,
bias_grad
,
static_cast
<
T
>
(
0.0
));
bit_code
->
AddGrad
(
pre_out_grad
,
bias_grad
);
}
auto
*
w_grad
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"W"
));
w_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
...
...
@@ -200,21 +246,6 @@ class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
w_grad_value
->
mutable_data
<
T
>
(
temp_dim
,
ctx
.
GetPlace
());
zero
(
dev_ctx
,
w_grad_value
,
static_cast
<
T
>
(
0.0
));
auto
*
bias_grad
=
ctx
.
Output
<
framework
::
SelectedRows
>
(
framework
::
GradVarName
(
"Bias"
));
if
(
bias_grad
)
{
bias_grad
->
set_rows
(
real_rows
);
// build ids -> rows index map
bias_grad
->
SyncIndex
();
bias_grad
->
set_height
(
bias
->
dims
()[
0
]);
auto
*
bias_grad_value
=
bias_grad
->
mutable_value
();
std
::
vector
<
int64_t
>
dims
=
{
static_cast
<
int64_t
>
(
real_rows
.
size
()),
bias
->
dims
()[
1
]};
bias_grad_value
->
mutable_data
<
T
>
(
framework
::
make_ddim
(
dims
),
ctx
.
GetPlace
());
zero
(
dev_ctx
,
bias_grad_value
,
static_cast
<
T
>
(
0.0
));
bit_code
->
AddGrad
(
pre_out_grad
,
bias_grad
);
}
bit_code
->
MulGradWeight
(
pre_out_grad
,
w_grad
,
in
);
}
bit_code
->
MulGradError
(
pre_out_grad
,
w
,
in_grad
);
...
...
paddle/fluid/operators/lookup_table_op.cu
浏览文件 @
e1679b88
...
...
@@ -92,7 +92,8 @@ class LookupTableCUDAKernel : public framework::OpKernel<T> {
// server
#ifdef PADDLE_WITH_DISTRIBUTE
operators
::
distributed
::
prefetch
(
id_name
,
out_name
,
table_names
,
epmap
,
height_sections
,
context
);
height_sections
,
context
,
context
.
scope
());
#else
PADDLE_THROW
(
"paddle is not compiled with distribute support, can not do "
...
...
paddle/fluid/operators/lookup_table_op.h
浏览文件 @
e1679b88
...
...
@@ -59,7 +59,8 @@ class LookupTableKernel : public framework::OpKernel<T> {
// server
#ifdef PADDLE_WITH_DISTRIBUTE
operators
::
distributed
::
prefetch
(
id_name
,
out_name
,
table_names
,
epmap
,
height_sections
,
context
);
height_sections
,
context
,
context
.
scope
());
#else
PADDLE_THROW
(
"paddle is not compiled with distribute support, can not do "
...
...
paddle/fluid/operators/math/matrix_bit_code.cc
浏览文件 @
e1679b88
...
...
@@ -84,41 +84,6 @@ void MatrixBitCodeFunctor<T>::AddGrad(const framework::Tensor &tmat,
code_table_
.
apply_visitor
(
func
);
}
template
<
typename
T
>
struct
MatrixBitCodeFunctorSelectedRowsAddGrad
:
public
boost
::
static_visitor
<
void
>
{
const
framework
::
Tensor
&
tmat_
;
framework
::
SelectedRows
*
vec_
;
MatrixBitCodeFunctorSelectedRowsAddGrad
(
const
framework
::
Tensor
&
tmat
,
framework
::
SelectedRows
*
vec
)
:
tmat_
(
tmat
),
vec_
(
vec
)
{}
template
<
typename
CodeTable
>
void
operator
()(
const
CodeTable
&
code_table
)
{
size_t
batch_size
=
tmat_
.
dims
()[
0
];
size_t
width
=
tmat_
.
dims
()[
1
];
auto
*
vec_data
=
vec_
->
mutable_value
()
->
template
data
<
T
>();
auto
*
tmat_data
=
tmat_
.
data
<
T
>
();
for
(
size_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
auto
code
=
code_table
.
get_code
(
i
);
int
code_length
=
code
.
get_length
();
for
(
int
j
=
0
;
j
<
code_length
;
++
j
)
{
size_t
index
=
code
.
calc_index
(
j
);
int64_t
row_index
=
vec_
->
GetIndexFromId
(
static_cast
<
int64_t
>
(
index
));
vec_data
[
row_index
]
+=
tmat_data
[
i
*
width
+
j
];
}
}
}
};
template
<
typename
T
>
void
MatrixBitCodeFunctor
<
T
>::
AddGrad
(
const
framework
::
Tensor
&
tmat
,
framework
::
SelectedRows
*
vec
)
{
MatrixBitCodeFunctorSelectedRowsAddGrad
<
T
>
func
(
tmat
,
vec
);
code_table_
.
apply_visitor
(
func
);
}
template
<
typename
T
>
struct
MatrixBitCodeFunctorSum
:
public
boost
::
static_visitor
<
void
>
{
const
framework
::
Tensor
&
tmat_
;
...
...
paddle/fluid/operators/math/matrix_bit_code.h
浏览文件 @
e1679b88
...
...
@@ -124,11 +124,12 @@ class SimpleCode {
template
<
typename
T
>
class
CustomCode
{
public:
CustomCode
(
const
framework
::
Tensor
&
ptable
,
const
framework
::
Tensor
&
pcode
,
const
int64_t
*
ids
,
int
index
)
{
seq_len_
=
ptable
.
dims
()[
1
];
ptable_data_
=
ptable
.
data
<
T
>
()
+
seq_len_
*
index
;
pcode_data_
=
pcode
.
data
<
T
>
()
+
seq_len_
*
index
;
CustomCode
(
const
framework
::
Tensor
&
path_table
,
const
framework
::
Tensor
&
path_code
,
const
int64_t
*
ids
,
int
index
)
{
seq_len_
=
path_table
.
dims
()[
1
];
path_table_data_
=
path_table
.
data
<
T
>
()
+
seq_len_
*
index
;
path_code_data_
=
path_code
.
data
<
T
>
()
+
seq_len_
*
index
;
}
/**
* Here the id of root should be 1 rather than 0, thus the encoding of class c
...
...
@@ -139,25 +140,25 @@ class CustomCode {
* Binary classification path is the suffixes of encoding, thus leave out the
* left most bit in calc_bit.
*/
size_t
calc_index
(
int
bit
)
const
{
return
ptable_data_
[
bit
];
}
bool
calc_bit
(
int
bit
)
const
{
return
pcode_data_
[
bit
];
}
size_t
calc_index
(
int
bit
)
const
{
return
p
ath_
table_data_
[
bit
];
}
bool
calc_bit
(
int
bit
)
const
{
return
p
ath_
code_data_
[
bit
];
}
// NOTE: this function is not thread-safe.
int
get_length
()
const
{
if
(
length_
<
0
)
{
auto
len
=
seq_len_
;
length_
=
st
atic_cast
<
int
>
(
std
::
find_if
(
ptable_data_
,
p
table_data_
+
len
,
[](
const
T
&
val
)
{
return
val
<
0
;
})
-
p
table_data_
);
length_
=
static_cast
<
int
>
(
st
d
::
find_if
(
path_table_data_
,
path_
table_data_
+
len
,
[](
const
T
&
val
)
{
return
val
<
0
;
})
-
path_
table_data_
);
}
return
length_
;
}
private:
int64_t
seq_len_
;
const
T
*
ptable_data_
;
const
T
*
pcode_data_
;
const
T
*
p
ath_
table_data_
;
const
T
*
p
ath_
code_data_
;
mutable
int
length_
{
-
1
};
};
...
...
@@ -181,9 +182,9 @@ class SimpleCodeTable {
template
<
typename
T
>
class
CustomCodeTable
{
public:
CustomCodeTable
(
const
framework
::
Tensor
&
ptable
,
const
framework
::
Tensor
&
pcode
,
const
int64_t
*
ids
)
:
ptable_
(
p
table
),
pcode_
(
p
code
),
ids_
(
ids
)
{}
CustomCodeTable
(
const
framework
::
Tensor
&
p
ath_
table
,
const
framework
::
Tensor
&
p
ath_
code
,
const
int64_t
*
ids
)
:
ptable_
(
p
ath_table
),
pcode_
(
path_
code
),
ids_
(
ids
)
{}
CustomCode
<
T
>
get_code
(
int64_t
code
)
const
{
return
CustomCode
<
T
>
(
ptable_
,
pcode_
,
ids_
,
code
);
...
...
@@ -210,11 +211,11 @@ class MatrixBitCodeFunctor {
ids_
(
ids
),
code_table_
(
SimpleCodeTable
(
num_classes
,
ids
))
{}
MatrixBitCodeFunctor
(
const
framework
::
Tensor
&
ptable
,
const
framework
::
Tensor
&
pcode
,
const
int64_t
*
ids
)
:
num_classes_
(
static_cast
<
size_t
>
(
ptable
.
dims
()[
1
])),
MatrixBitCodeFunctor
(
const
framework
::
Tensor
&
p
ath_
table
,
const
framework
::
Tensor
&
p
ath_
code
,
const
int64_t
*
ids
)
:
num_classes_
(
static_cast
<
size_t
>
(
p
ath_
table
.
dims
()[
1
])),
ids_
(
ids
),
code_table_
(
CustomCodeTable
<
int64_t
>
(
p
table
,
p
code
,
ids
))
{}
code_table_
(
CustomCodeTable
<
int64_t
>
(
p
ath_table
,
path_
code
,
ids
))
{}
/* For j < code_length
tmat(i, j) += vec(0, index(i, j))
*/
...
...
@@ -225,11 +226,6 @@ class MatrixBitCodeFunctor {
*/
void
AddGrad
(
const
framework
::
Tensor
&
tmat
,
framework
::
Tensor
*
vec
);
/* For selected rows For j < code_length
vec(0, index(i, j)) += tmat(i, j)
*/
void
AddGrad
(
const
framework
::
Tensor
&
tmat
,
framework
::
SelectedRows
*
vec
);
/* For j < code_length
sum(i, 0) = \sum_j bit(i, j) * tmat(i, j)
*/
...
...
paddle/fluid/operators/nce_op.cc
浏览文件 @
e1679b88
...
...
@@ -153,6 +153,24 @@ class NCEOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
bool
>
(
"is_sparse"
,
"(boolean, default false) Sparse update."
)
.
SetDefault
(
false
);
// for parameter prefetch
AddAttr
<
bool
>
(
"remote_prefetch"
,
""
).
SetDefault
(
false
);
AddAttr
<
int
>
(
"trainer_id"
,
"trainer id from 0 ~ worker_num."
).
SetDefault
(
0
);
AddAttr
<
std
::
vector
<
int
>>
(
"height_sections"
,
"Height for each output SelectedRows."
)
.
SetDefault
(
std
::
vector
<
int
>
({}));
AddAttr
<
std
::
vector
<
std
::
string
>>
(
"epmap"
,
"(string vector, default 127.0.0.1:6164)"
"Server endpoints in the order of input variables for mapping"
)
.
SetDefault
({});
AddAttr
<
std
::
vector
<
std
::
string
>>
(
"table_names"
,
"(string vector, the splited table names that will be fetched from "
"parameter server)"
"in the order of input variables for mapping"
)
.
SetDefault
({});
AddAttr
<
std
::
vector
<
int
>>
(
"custom_neg_classes"
,
"This attribute only be used in unitest. Classes "
"in this list wiil be used as negative classes "
...
...
@@ -222,24 +240,20 @@ class NCEOpGradVarTypeInference : public framework::VarTypeInference {
void
operator
()(
const
framework
::
OpDesc
&
op_desc
,
framework
::
BlockDesc
*
block
)
const
override
{
auto
weight_grad
=
op_desc
.
Output
(
framework
::
GradVarName
(
"Weight"
)).
front
();
auto
bias_grad
=
op_desc
.
Output
(
framework
::
GradVarName
(
"Bias"
)).
front
();
auto
attr
=
op_desc
.
GetAttr
(
"is_sparse"
);
bool
is_sparse
=
boost
::
get
<
bool
>
(
attr
);
if
(
is_sparse
)
{
VLOG
(
3
)
<<
"nce_op_grad op "
<<
weight_grad
<<
" and "
<<
bias_grad
VLOG
(
3
)
<<
"nce_op_grad op "
<<
weight_grad
<<
" and "
<<
" is set to SelectedRows"
;
block
->
Var
(
weight_grad
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
block
->
Var
(
bias_grad
)
->
SetType
(
framework
::
proto
::
VarType
::
SELECTED_ROWS
);
}
else
{
VLOG
(
3
)
<<
"nce_op_grad op "
<<
weight_grad
<<
" and "
<<
bias_grad
VLOG
(
3
)
<<
"nce_op_grad op "
<<
weight_grad
<<
" and "
<<
" is set to LoDTensor"
;
block
->
Var
(
weight_grad
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
block
->
Var
(
bias_grad
)
->
SetType
(
framework
::
proto
::
VarType
::
LOD_TENSOR
);
}
block
->
Var
(
weight_grad
)
->
SetDataType
(
block
->
Var
(
"Input"
)
->
GetDataType
());
block
->
Var
(
bias_grad
)
->
SetDataType
(
block
->
Var
(
"Input"
)
->
GetDataType
());
}
};
...
...
paddle/fluid/operators/nce_op.h
浏览文件 @
e1679b88
...
...
@@ -15,8 +15,10 @@ limitations under the License. */
#pragma once
#include <math.h>
#include <iterator>
#include <random>
#include <set>
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
...
...
@@ -24,6 +26,10 @@ limitations under the License. */
#include "paddle/fluid/operators/math/sampler.h"
#include "unsupported/Eigen/CXX11/Tensor"
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
#endif
namespace
paddle
{
namespace
operators
{
...
...
@@ -43,7 +49,6 @@ void PrepareSamples(const framework::ExecutionContext &context,
auto
label
=
context
.
Input
<
Tensor
>
(
"Label"
);
const
int64_t
*
label_data
=
label
->
data
<
int64_t
>
();
auto
label_dims
=
label
->
dims
();
// int num_total_classes = context.Attr<int>("num_total_classes");
// for unitest
std
::
vector
<
int
>
custom_neg_classes
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"custom_neg_classes"
);
...
...
@@ -144,15 +149,82 @@ class NCEKernel : public framework::OpKernel<T> {
}
// forward mul
auto
input_mat
=
EigenMatrix
<
T
>::
From
(
*
(
context
.
Input
<
Tensor
>
(
"Input"
)));
auto
weight_mat
=
EigenMatrix
<
T
>::
From
(
*
(
context
.
Input
<
Tensor
>
(
"Weight"
)));
for
(
int64_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
Eigen
::
Tensor
<
T
,
0
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>
result
=
(
input_mat
.
chip
(
static_cast
<
int
>
(
i
/
sample_labels
->
dims
()[
1
]),
0
)
*
weight_mat
.
chip
(
sample_labels_data
[
i
],
0
))
.
sum
();
sample_out_data
[
i
]
+=
result
(
0
);
sample_out_data
[
i
]
=
(
1.
/
(
1.
+
exp
(
-
sample_out_data
[
i
])));
// for remote prefetch
auto
epmap
=
context
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"epmap"
);
if
(
!
epmap
.
empty
())
{
// if epmap is not empty, then the parameter will be fetched from remote
// parameter
// server
std
::
vector
<
int64_t
>
labels
;
for
(
int64_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
labels
.
push_back
(
sample_labels_data
[
i
]);
}
std
::
set
<
T
>
st
(
labels
.
begin
(),
labels
.
end
());
labels
.
assign
(
st
.
begin
(),
st
.
end
());
framework
::
Scope
&
local_scope
=
context
.
scope
().
NewScope
();
auto
height_sections
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"height_sections"
);
auto
table_names
=
context
.
Attr
<
std
::
vector
<
std
::
string
>>
(
"table_names"
);
auto
*
ids
=
local_scope
.
Var
(
"Ids@Prefetch"
);
auto
*
x_tensor
=
ids
->
GetMutable
<
framework
::
LoDTensor
>
();
x_tensor
->
mutable_data
<
int64_t
>
(
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
labels
.
size
()),
1
}),
context
.
GetPlace
());
// copy.
std
::
memcpy
(
x_tensor
->
data
<
int64_t
>
(),
labels
.
data
(),
labels
.
size
()
*
sizeof
(
int64_t
));
std
::
vector
<
int
>
w_dims
=
paddle
::
framework
::
vectorize2int
(
context
.
Input
<
Tensor
>
(
"Weight"
)
->
dims
());
w_dims
[
0
]
=
static_cast
<
int
>
(
labels
.
size
());
auto
*
w_tensor
=
local_scope
.
Var
(
"Weight@Prefetch"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
w_tensor
->
Resize
(
framework
::
make_ddim
(
w_dims
));
#ifdef PADDLE_WITH_DISTRIBUTE
operators
::
distributed
::
prefetch
(
"Ids@Prefetch"
,
"Weight@Prefetch"
,
table_names
,
epmap
,
height_sections
,
context
,
local_scope
);
#else
PADDLE_THROW
(
"paddle is not compiled with distribute support, can not do "
"parameter prefetch!"
);
#endif
auto
weight_mat
=
EigenMatrix
<
T
>::
From
(
(
local_scope
.
Var
(
"Weight@Prefetch"
)
->
Get
<
framework
::
LoDTensor
>
()));
for
(
int64_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
std
::
vector
<
int64_t
>::
iterator
it
=
std
::
find
(
labels
.
begin
(),
labels
.
end
(),
sample_labels_data
[
i
]);
int
idx
=
std
::
distance
(
labels
.
begin
(),
it
);
Eigen
::
Tensor
<
T
,
0
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>
result
=
(
input_mat
.
chip
(
static_cast
<
int
>
(
i
/
sample_labels
->
dims
()[
1
]),
0
)
*
weight_mat
.
chip
(
idx
,
0
))
.
sum
();
sample_out_data
[
i
]
+=
result
(
0
);
sample_out_data
[
i
]
=
(
1.
/
(
1.
+
exp
(
-
sample_out_data
[
i
])));
}
context
.
scope
().
DeleteScope
(
&
local_scope
);
}
else
{
auto
weight_mat
=
EigenMatrix
<
T
>::
From
(
*
(
context
.
Input
<
Tensor
>
(
"Weight"
)));
for
(
int64_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
Eigen
::
Tensor
<
T
,
0
,
Eigen
::
RowMajor
,
Eigen
::
DenseIndex
>
result
=
(
input_mat
.
chip
(
static_cast
<
int
>
(
i
/
sample_labels
->
dims
()[
1
]),
0
)
*
weight_mat
.
chip
(
sample_labels_data
[
i
],
0
))
.
sum
();
sample_out_data
[
i
]
+=
result
(
0
);
sample_out_data
[
i
]
=
(
1.
/
(
1.
+
exp
(
-
sample_out_data
[
i
])));
}
}
// forward cost
for
(
int64_t
i
=
0
;
i
<
sample_labels
->
dims
()[
0
];
++
i
)
{
out_data
[
i
]
=
0
;
...
...
@@ -240,18 +312,19 @@ class NCEGradKernel : public framework::OpKernel<T> {
sample_grad_data
[
i
]
*=
d_out_data
[
sample_idx
];
}
// get d_bias
auto
d_bias
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
if
(
d_bias
!=
nullptr
)
{
T
*
d_bias_data
=
d_bias
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
fill
(
d_bias_data
,
d_bias_data
+
d_bias
->
numel
(),
0.0
);
for
(
int64_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
d_bias_data
[
sample_labels_data
[
i
]]
+=
sample_grad_data
[
i
];
}
}
bool
is_sparse
=
context
.
Attr
<
bool
>
(
"is_sparse"
);
if
(
!
is_sparse
)
{
// get d_bias
auto
d_bias
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
if
(
d_bias
!=
nullptr
)
{
T
*
d_bias_data
=
d_bias
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
fill
(
d_bias_data
,
d_bias_data
+
d_bias
->
numel
(),
0.0
);
for
(
int64_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
d_bias_data
[
sample_labels_data
[
i
]]
+=
sample_grad_data
[
i
];
}
}
// get d_w
auto
d_w
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Weight"
));
if
(
d_w
!=
nullptr
)
{
...
...
@@ -273,34 +346,6 @@ class NCEGradKernel : public framework::OpKernel<T> {
std
::
set
<
T
>
st
(
labels
.
begin
(),
labels
.
end
());
labels
.
assign
(
st
.
begin
(),
st
.
end
());
auto
*
bias_var
=
context
.
InputVar
(
"Bias"
);
DDim
bias_dim
;
if
(
bias_var
->
IsType
<
LoDTensor
>
())
{
bias_dim
=
context
.
Input
<
LoDTensor
>
(
"Bias"
)
->
dims
();
}
else
if
(
bias_var
->
IsType
<
SelectedRows
>
())
{
auto
*
table_t
=
context
.
Input
<
SelectedRows
>
(
"Bias"
);
bias_dim
=
table_t
->
value
().
dims
();
}
else
{
PADDLE_THROW
(
"The parameter Bias of a NCE_OP "
"must be either LoDTensor or SelectedRows"
);
}
auto
d_bias
=
context
.
Output
<
SelectedRows
>
(
framework
::
GradVarName
(
"Bias"
));
d_bias
->
set_rows
(
labels
);
d_bias
->
set_height
(
bias_dim
[
0
]);
d_bias
->
mutable_value
()
->
Resize
(
{
static_cast
<
int64_t
>
(
labels
.
size
()),
bias_dim
[
1
]});
T
*
d_bias_data
=
d_bias
->
mutable_value
()
->
mutable_data
<
T
>
(
context
.
GetPlace
());
std
::
fill
(
d_bias_data
,
d_bias_data
+
labels
.
size
(),
0.0
);
for
(
int64_t
i
=
0
;
i
<
sample_labels
->
numel
();
++
i
)
{
d_bias_data
[
d_bias
->
Index
(
sample_labels_data
[
i
])]
+=
sample_grad_data
[
i
];
}
auto
*
table_var
=
context
.
InputVar
(
"Weight"
);
DDim
table_dim
;
if
(
table_var
->
IsType
<
LoDTensor
>
())
{
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
e1679b88
...
...
@@ -26,7 +26,7 @@ from ..initializer import Normal, Constant
from
..framework
import
Variable
,
OpProtoHolder
from
..param_attr
import
ParamAttr
from
.layer_function_generator
import
autodoc
,
templatedoc
,
_generate_doc_string_
from
.tensor
import
concat
from
.tensor
import
concat
,
assign
from
.
import
utils
from
..
import
unique_name
from
functools
import
reduce
...
...
@@ -340,9 +340,7 @@ def embedding(input,
"""
helper
=
LayerHelper
(
'embedding'
,
**
locals
())
remote_prefetch
=
False
if
os
.
environ
.
get
(
'PADDLE_ENABLE_REMOTE_PREFETCH'
):
remote_prefetch
=
True
remote_prefetch
=
is_sparse
and
(
not
is_distributed
)
if
remote_prefetch
:
assert
is_sparse
is
True
and
is_distributed
is
False
w
=
helper
.
create_parameter
(
...
...
@@ -5032,12 +5030,18 @@ def nce(input,
else
:
num_neg_samples
=
int
(
num_neg_samples
)
remote_prefetch
=
is_sparse
print
(
"With sparse mode, if your models has only small parameter prefetch may cause speed down"
)
attrs
=
{
'num_total_classes'
:
int
(
num_total_classes
),
'num_neg_samples'
:
num_neg_samples
,
'seed'
:
seed
,
'sampler'
:
sampler
,
'is_sparse'
:
is_sparse
'is_sparse'
:
is_sparse
,
'remote_prefetch'
:
remote_prefetch
}
helper
.
append_op
(
...
...
@@ -5147,7 +5151,10 @@ def hsigmoid(input,
pass
weights
=
None
remote_prefetch
=
is_sparse
print
(
"With sparse mode, if your models has only small parameter prefetch may cause speed down"
)
if
not
is_custom
:
weights
=
helper
.
create_parameter
(
attr
=
helper
.
param_attr
,
...
...
@@ -5163,7 +5170,7 @@ def hsigmoid(input,
inputs
=
{
"X"
:
input
,
"W"
:
weights
,
"PTable"
:
path_table
,
"P
ath
Table"
:
path_table
,
"PathCode"
:
path_code
,
"Label"
:
label
}
...
...
@@ -5186,9 +5193,13 @@ def hsigmoid(input,
type
=
"hierarchical_sigmoid"
,
inputs
=
inputs
,
outputs
=
{
"Out"
:
out
,
"PreOut"
:
pre_out
},
attrs
=
{
"num_classes"
:
num_classes
,
"is_sparse"
:
is_sparse
})
"PreOut"
:
pre_out
,
"W_Out"
:
weights
},
attrs
=
{
"num_classes"
:
num_classes
,
"is_sparse"
:
is_sparse
,
"remote_prefetch"
:
remote_prefetch
})
return
out
...
...
@@ -7684,7 +7695,7 @@ def brelu(x, t_min=0.0, t_max=24.0, name=None):
Examples:
.. code-block:: python
.. code-block:: python
x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
...
...
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
e1679b88
...
...
@@ -21,6 +21,8 @@ if(NOT WITH_DISTRIBUTE)
LIST
(
REMOVE_ITEM TEST_OPS test_dist_simnet_bow
)
LIST
(
REMOVE_ITEM TEST_OPS test_dist_mnist_batch_merge
)
LIST
(
REMOVE_ITEM TEST_OPS test_dist_text_classification
)
LIST
(
REMOVE_ITEM TEST_OPS test_nce_remote_table_op
)
LIST
(
REMOVE_ITEM TEST_OPS test_hsigmoid_remote_table_op
)
endif
(
NOT WITH_DISTRIBUTE
)
if
(
NOT
${
WITH_GPU
}
)
...
...
@@ -32,7 +34,6 @@ endif()
list
(
REMOVE_ITEM TEST_OPS test_seq_concat_op
)
# FIXME(helin): https://github.com/PaddlePaddle/Paddle/issues/8290
list
(
REMOVE_ITEM TEST_OPS test_modified_huber_loss_op
)
# FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5184
list
(
REMOVE_ITEM TEST_OPS test_lstm_unit_op
)
# # FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5185
list
(
REMOVE_ITEM TEST_OPS test_nce
)
# FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/7778
list
(
REMOVE_ITEM TEST_OPS test_recurrent_op
)
# FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/6152
list
(
REMOVE_ITEM TEST_OPS test_cond_op
)
# FIXME(qijun): https://github.com/PaddlePaddle/Paddle/issues/5101#issuecomment-339814957
...
...
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
浏览文件 @
e1679b88
...
...
@@ -14,14 +14,15 @@
from
__future__
import
print_function
import
traceback
import
math
import
collections
import
six
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
from
paddle.fluid.transpiler.distribute_transpiler
import
delete_ops
import
traceback
import
collections
import
six
class
TranspilerTest
(
unittest
.
TestCase
):
...
...
@@ -520,7 +521,7 @@ class TestLocalLookupTable(TestDistLookupTableBase):
'split_selected_rows'
,
'send'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_selected_rows'
,
'send'
,
'send_barrier'
,
'recv'
,
'recv'
,
'
recv'
,
'recv'
,
'fetch_barrier'
,
'concat'
,
'concat
'
'recv'
,
'
fetch_barrier
'
]
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
...
...
@@ -560,7 +561,7 @@ class TestDistLookupTable(TestDistLookupTableBase):
'lookup_table_grad'
,
'split_selected_rows'
,
'send'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_ids'
,
'send'
,
'send_barrier'
,
'recv'
,
'recv'
,
'
recv'
,
'fetch_barrier'
,
'concat
'
'recv'
,
'recv'
,
'
fetch_barrier
'
]
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
startup_ops
=
[
...
...
@@ -607,8 +608,7 @@ class TestAsyncLocalLookupTable(TestDistLookupTableBase):
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'split_selected_rows'
,
'send'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_selected_rows'
,
'send'
,
'recv'
,
'recv'
,
'recv'
,
'recv'
,
'concat'
,
'concat'
'sum'
,
'split_selected_rows'
,
'send'
,
'recv'
,
'recv'
]
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
...
...
@@ -648,8 +648,7 @@ class TestAsyncDistLookupTable(TestDistLookupTableBase):
'mul_grad'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'split_selected_rows'
,
'send'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_ids'
,
'send'
,
'recv'
,
'recv'
,
'recv'
,
'concat'
'lookup_table_grad'
,
'sum'
,
'split_ids'
,
'send'
,
'recv'
,
'recv'
]
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
startup_ops
=
[
...
...
@@ -824,5 +823,142 @@ class TestRemoteLookupTable(TestDistLookupTableBase):
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
# test for remote prefetch
class
TestRemoteNce
(
TestDistLookupTableBase
):
def
network_with_table
(
self
,
is_sparse
,
is_distributed
):
num_total_classes
=
20
sampler
=
"uniform"
nid_freq_arr
=
np
.
random
.
dirichlet
(
np
.
ones
(
20
)
*
1000
).
astype
(
'float32'
)
input
=
fluid
.
layers
.
data
(
name
=
"input"
,
shape
=
[
10
],
dtype
=
"float32"
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
w_param
=
fluid
.
default_main_program
().
global_block
().
create_parameter
(
shape
=
[
num_total_classes
,
10
],
dtype
=
'float32'
,
name
=
'nce_w'
,
initializer
=
fluid
.
initializer
.
ConstantInitializer
())
b_param
=
fluid
.
default_main_program
().
global_block
().
create_parameter
(
shape
=
[
num_total_classes
,
1
],
dtype
=
'float32'
,
name
=
'nce_b'
,
initializer
=
fluid
.
initializer
.
ConstantInitializer
())
cost
=
fluid
.
layers
.
nce
(
input
=
input
,
label
=
label
,
num_total_classes
=
num_total_classes
,
sampler
=
sampler
,
custom_dist
=
nid_freq_arr
.
tolist
(),
sample_weight
=
None
,
param_attr
=
'nce_w'
,
bias_attr
=
'nce_b'
,
seed
=
1
,
num_neg_samples
=
5
,
is_sparse
=
is_sparse
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
# optimizer
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.003
)
optimizer
.
minimize
(
avg_cost
)
def
net_conf
(
self
):
import
os
os
.
environ
[
'PADDLE_ENABLE_REMOTE_PREFETCH'
]
=
"1"
self
.
network_with_table
(
is_sparse
=
True
,
is_distributed
=
False
)
def
transpiler_test_impl
(
self
):
trainer
,
_
=
self
.
get_trainer
()
out_vars
=
[
"nce_w"
]
in_vars
=
[
"nce_b"
]
recv_var_names
=
[]
for
op
in
trainer
.
blocks
[
0
].
ops
:
if
op
.
type
==
"recv"
:
for
var
in
op
.
output
(
"Out"
):
recv_var_names
.
append
(
var
)
for
out_var
in
out_vars
:
self
.
assertFalse
(
out_var
in
recv_var_names
)
for
in_var
in
in_vars
:
self
.
assertTrue
(
in_var
in
recv_var_names
)
# test for remote prefetch
class
TestRemoteHsigmoid
(
TestDistLookupTableBase
):
def
network_with_table
(
self
,
is_sparse
,
is_distributed
):
num_total_classes
=
3
input
=
fluid
.
layers
.
data
(
name
=
"input"
,
shape
=
[
1
],
dtype
=
"float32"
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
path_table
=
fluid
.
layers
.
data
(
name
=
'path_table'
,
shape
=
[
3
],
dtype
=
'int64'
)
path_code
=
fluid
.
layers
.
data
(
name
=
'path_code'
,
shape
=
[
3
],
dtype
=
'int64'
)
w_param
=
fluid
.
default_main_program
().
global_block
().
create_parameter
(
shape
=
[
num_total_classes
,
10
],
dtype
=
'float32'
,
name
=
'hs_w'
,
initializer
=
fluid
.
initializer
.
ConstantInitializer
())
b_param
=
fluid
.
default_main_program
().
global_block
().
create_parameter
(
shape
=
[
3
,
1
],
dtype
=
'float32'
,
name
=
'hs_b'
,
initializer
=
fluid
.
initializer
.
ConstantInitializer
())
emb
=
fluid
.
layers
.
embedding
(
input
=
input
,
is_sparse
=
is_sparse
,
size
=
[
3
,
3
],
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
1
/
math
.
sqrt
(
num_total_classes
))))
cost
=
fluid
.
layers
.
hsigmoid
(
input
=
emb
,
label
=
label
,
num_classes
=
num_total_classes
,
path_table
=
path_table
,
path_code
=
path_code
,
is_custom
=
True
,
is_sparse
=
is_sparse
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
# optimizer
optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.003
)
optimizer
.
minimize
(
avg_cost
)
def
net_conf
(
self
):
import
os
os
.
environ
[
'PADDLE_ENABLE_REMOTE_PREFETCH'
]
=
"1"
self
.
network_with_table
(
is_sparse
=
True
,
is_distributed
=
False
)
def
transpiler_test_impl
(
self
):
trainer
,
_
=
self
.
get_trainer
()
params_to_check
=
list
()
for
op
in
trainer
.
blocks
[
0
].
ops
:
if
op
.
type
==
"hierarchical_sigmoid"
:
params_to_check
=
[
op
.
input
(
"W"
)[
0
],
op
.
input
(
"Bias"
)[
0
]]
for
name
in
[
"epmap"
,
"table_names"
,
"epmap"
]:
assert
op
.
has_attr
(
name
)
if
name
==
"epmap"
:
assert
op
.
attr
(
name
)[
0
]
==
u
'127.0.0.1:6174'
elif
name
==
"table_names"
:
assert
op
.
attr
(
name
)[
0
]
==
u
'hierarchical_sigmoid_0.w_0'
else
:
assert
op
.
attr
(
name
)
==
3
elif
op
.
type
==
"lookup_table"
:
params_to_check
.
append
(
op
.
input
(
"W"
)[
0
])
else
:
pass
op_count
=
0
for
op
in
trainer
.
blocks
[
0
].
ops
:
if
op
.
type
==
"recv"
:
assert
len
(
op
.
output
(
"Out"
))
==
1
assert
op
.
output
(
"Out"
)[
0
]
==
u
'hierarchical_sigmoid_0.b_0'
op_count
+=
1
assert
op_count
==
1
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_hsigmoid_op.py
浏览文件 @
e1679b88
...
...
@@ -185,7 +185,7 @@ class TestHSigmoidOpSparse(OpTest):
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'PTable'
:
path_table
,
'P
ath
Table'
:
path_table
,
'PathCode'
:
path_code
,
'Label'
:
label
,
'Bias'
:
bias
...
...
@@ -287,7 +287,7 @@ class TestHSigmoidOpWithCostumTree(OpTest):
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'PTable'
:
path_table
,
'P
ath
Table'
:
path_table
,
'PathCode'
:
path_code
,
'Label'
:
label
,
'Bias'
:
bias
...
...
@@ -324,7 +324,7 @@ class TestHSigmoidOpWithCostumTreeWithoutBias(OpTest):
self
.
inputs
=
{
'X'
:
x
,
'W'
:
w
,
'PTable'
:
path_table
,
'P
ath
Table'
:
path_table
,
'PathCode'
:
path_code
,
'Label'
:
label
,
}
...
...
python/paddle/fluid/tests/unittests/test_hsigmoid_remote_table_op.py
0 → 100644
浏览文件 @
e1679b88
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
os
import
signal
import
time
import
unittest
from
multiprocessing
import
Process
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
from
paddle.fluid.framework
import
Program
,
program_guard
def
run_pserver
(
pserver_id
,
use_cuda
,
sync_mode
):
scope
=
fluid
.
core
.
Scope
()
program
=
Program
()
with
fluid
.
scope_guard
(
scope
):
with
program_guard
(
program
,
startup_program
=
Program
()):
# create table parameter in scope
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
# create and initialize Param Variable
param
=
scope
.
var
(
'table'
).
get_tensor
()
param_array
=
np
.
ones
((
5
,
8
)).
astype
(
"float32"
)
for
i
in
range
(
len
(
param_array
)):
param_array
[
i
]
*=
param_array
[
i
]
*
i
+
pserver_id
*
10
+
1
param
.
set
(
param_array
,
place
)
optimize_block
=
program
.
_create_block
(
program
.
global_block
().
idx
)
program
.
global_block
().
append_op
(
type
=
"listen_and_serv"
,
inputs
=
{
'X'
:
[]},
outputs
=
{},
attrs
=
{
"optimize_blocks"
:
[
optimize_block
],
"endpoint"
:
'127.0.0.1:0'
,
"Fanin"
:
1
,
"sync_mode"
:
True
,
"grad_to_block_id"
:
[]
})
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
program
)
class
TestListenAndServOp
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
ps_timeout
=
5
def
_start_pserver
(
self
,
pserver_id
,
use_cuda
,
sync_mode
,
pserver_func
):
p
=
Process
(
target
=
pserver_func
,
args
=
(
pserver_id
,
use_cuda
,
sync_mode
))
p
.
daemon
=
True
p
.
start
()
return
p
def
_wait_ps_ready
(
self
,
pid
):
start_left_time
=
self
.
ps_timeout
sleep_time
=
0.5
while
True
:
assert
start_left_time
>=
0
,
"wait ps ready failed"
time
.
sleep
(
sleep_time
)
try
:
# the listen_and_serv_op would touch a file which contains the listen port
# on the /tmp directory until it was ready to process all the RPC call.
os
.
stat
(
"/tmp/paddle.%d.port"
%
pid
)
return
except
os
.
error
:
start_left_time
-=
sleep_time
def
_get_pserver_port
(
self
,
pid
):
with
open
(
"/tmp/paddle.%d.port"
%
pid
,
'r'
)
as
f
:
port
=
int
(
f
.
read
().
strip
())
return
port
def
_run_hsigmoid_op_one_pserver
(
self
,
place
,
port
):
scope
=
fluid
.
core
.
Scope
()
program
=
Program
()
with
fluid
.
scope_guard
(
scope
):
with
program_guard
(
program
,
startup_program
=
Program
()):
x
=
scope
.
var
(
'X'
).
get_tensor
()
x_array
=
np
.
random
.
random
((
4
,
8
)).
astype
(
"float32"
)
*
2
x
.
set
(
x_array
,
place
)
# create and initialize Param Variable
param
=
scope
.
var
(
'W'
).
get_tensor
()
param_array
=
np
.
zeros
((
5
,
8
)).
astype
(
"float32"
)
*
2
param
.
set
(
param_array
,
place
)
path_table
=
scope
.
var
(
'PathTable'
).
get_tensor
()
path_table_array
=
np
.
array
(
[(
0
,
2
,
-
1
,
-
1
,
-
1
),
(
0
,
1
,
2
,
-
1
,
-
1
),
(
0
,
1
,
4
,
-
1
,
-
1
),
(
0
,
2
,
-
1
,
-
1
,
-
1
)]).
astype
(
"int64"
)
#np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
path_table
.
set
(
path_table_array
,
place
)
path_code
=
scope
.
var
(
'PathCode'
).
get_tensor
()
path_code_array
=
np
.
array
(
[(
0
,
0
,
-
1
,
-
1
,
-
1
),
(
1
,
1
,
1
,
-
1
,
-
1
),
(
1
,
0
,
0
,
-
1
,
-
1
),
(
0
,
1
,
-
1
,
-
1
,
-
1
)]).
astype
(
"int64"
)
#np.array to store
path_code
.
set
(
path_code_array
,
place
)
label
=
scope
.
var
(
'Label'
).
get_tensor
()
label_array
=
np
.
array
([
0
,
1
,
4
,
5
])
label
.
set
(
label_array
,
place
)
bias
=
scope
.
var
(
'Bias'
).
get_tensor
()
bias_array
=
np
.
random
.
random
((
5
,
1
)).
astype
(
"float32"
)
bias
.
set
(
bias_array
,
place
)
out
=
scope
.
var
(
'Out'
).
get_tensor
()
pre_out
=
scope
.
var
(
'PreOut'
).
get_tensor
w_out
=
scope
.
var
(
'W_Out'
).
get_tensor
()
w_out
.
set
(
param_array
,
place
)
emaps
=
[
'127.0.0.1:'
+
str
(
port
)]
table_names
=
[
'table'
]
height_sections
=
[
2
]
# create and run sgd operator
hsigmoid_op
=
Operator
(
"hierarchical_sigmoid"
,
X
=
'X'
,
W
=
'W'
,
PathTable
=
'PathTable'
,
PathCode
=
'PathCode'
,
Label
=
'Label'
,
Bias
=
'Bias'
,
Out
=
'Out'
,
PreOut
=
'PreOut'
,
W_Out
=
'W_Out'
,
remote_prefetch
=
True
,
epmap
=
emaps
,
table_names
=
table_names
,
height_sections
=
height_sections
)
hsigmoid_op
.
run
(
scope
,
place
)
# get and compare result
result_array
=
np
.
array
(
w_out
)
self
.
assertEqual
(
list
(
result_array
.
shape
),
[
5
,
8
])
correct
=
None
for
i
in
range
(
5
):
if
i
!=
3
:
correct
=
np
.
full
((
1
,
8
),
i
+
1
).
astype
(
"float32"
)
self
.
assertTrue
((
result_array
[
i
]
==
correct
).
all
())
else
:
correct
=
np
.
full
((
1
,
8
),
0
).
astype
(
"float32"
)
self
.
assertTrue
((
result_array
[
i
]
==
correct
).
all
())
def
_run_hsigmoid_op_two_pserver
(
self
,
place
,
port0
,
port1
):
scope
=
fluid
.
core
.
Scope
()
program
=
Program
()
with
fluid
.
scope_guard
(
scope
):
with
program_guard
(
program
,
startup_program
=
Program
()):
x
=
scope
.
var
(
'X'
).
get_tensor
()
x_array
=
np
.
random
.
random
((
4
,
8
)).
astype
(
"float32"
)
*
2
x
.
set
(
x_array
,
place
)
# create and initialize Param Variable
param
=
scope
.
var
(
'W'
).
get_tensor
()
param_array
=
np
.
zeros
((
5
,
8
)).
astype
(
"float32"
)
*
2
param
.
set
(
param_array
,
place
)
path_table
=
scope
.
var
(
'PathTable'
).
get_tensor
()
path_table_array
=
np
.
array
(
[(
0
,
2
,
-
1
,
-
1
,
-
1
),
(
0
,
1
,
3
,
-
1
,
-
1
),
(
0
,
1
,
4
,
-
1
,
-
1
),
(
0
,
2
,
-
1
,
-
1
,
-
1
)]).
astype
(
"int64"
)
#np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
path_table
.
set
(
path_table_array
,
place
)
path_code
=
scope
.
var
(
'PathCode'
).
get_tensor
()
path_code_array
=
np
.
array
(
[(
0
,
0
,
-
1
,
-
1
,
-
1
),
(
1
,
1
,
1
,
-
1
,
-
1
),
(
1
,
0
,
0
,
-
1
,
-
1
),
(
0
,
1
,
-
1
,
-
1
,
-
1
)]).
astype
(
"int64"
)
#np.array to store
path_code
.
set
(
path_code_array
,
place
)
label
=
scope
.
var
(
'Label'
).
get_tensor
()
label_array
=
np
.
array
([
0
,
1
,
4
,
5
])
label
.
set
(
label_array
,
place
)
bias
=
scope
.
var
(
'Bias'
).
get_tensor
()
bias_array
=
np
.
random
.
random
((
5
,
1
)).
astype
(
"float32"
)
bias
.
set
(
bias_array
,
place
)
out
=
scope
.
var
(
'Out'
).
get_tensor
()
pre_out
=
scope
.
var
(
'PreOut'
).
get_tensor
w_out
=
scope
.
var
(
'W_Out'
).
get_tensor
()
w_out
.
set
(
param_array
,
place
)
emaps
=
[
'127.0.0.1:'
+
str
(
port0
),
'127.0.0.1:'
+
str
(
port1
)]
table_names
=
[
'table'
,
'table'
]
height_sections
=
[
2
,
3
]
# create and run sgd operator
hsigmoid_op
=
Operator
(
"hierarchical_sigmoid"
,
X
=
'X'
,
W
=
'W'
,
PathTable
=
'PathTable'
,
PathCode
=
'PathCode'
,
Label
=
'Label'
,
Bias
=
'Bias'
,
Out
=
'Out'
,
PreOut
=
'PreOut'
,
W_Out
=
'W_Out'
,
remote_prefetch
=
True
,
epmap
=
emaps
,
table_names
=
table_names
,
height_sections
=
height_sections
)
hsigmoid_op
.
run
(
scope
,
place
)
# get and compare result
result_array
=
np
.
array
(
w_out
)
self
.
assertEqual
(
list
(
result_array
.
shape
),
[
5
,
8
])
correct
=
None
for
i
in
range
(
5
):
if
i
<
2
:
correct
=
np
.
full
((
1
,
8
),
i
+
1
).
astype
(
"float32"
)
self
.
assertTrue
((
result_array
[
i
]
==
correct
).
all
())
else
:
correct
=
np
.
full
((
1
,
8
),
i
+
9
).
astype
(
"float32"
)
self
.
assertTrue
((
result_array
[
i
]
==
correct
).
all
())
def
test_hsigmoid_op_remote
(
self
):
os
.
environ
[
'PADDLE_ENABLE_REMOTE_PREFETCH'
]
=
"1"
# run pserver on CPU in sync mode
p0
=
self
.
_start_pserver
(
0
,
False
,
True
,
run_pserver
)
self
.
_wait_ps_ready
(
p0
.
pid
)
port0
=
self
.
_get_pserver_port
(
p0
.
pid
)
p1
=
self
.
_start_pserver
(
1
,
False
,
True
,
run_pserver
)
self
.
_wait_ps_ready
(
p1
.
pid
)
port1
=
self
.
_get_pserver_port
(
p1
.
pid
)
places
=
[
core
.
CPUPlace
()]
for
place
in
places
:
self
.
_run_hsigmoid_op_one_pserver
(
place
,
port0
)
self
.
_run_hsigmoid_op_two_pserver
(
place
,
port0
,
port1
)
# raise SIGTERM to pserver
os
.
kill
(
p0
.
pid
,
signal
.
SIGINT
)
p0
.
join
()
os
.
kill
(
p1
.
pid
,
signal
.
SIGINT
)
p1
.
join
()
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_nce_remote_table_op.py
0 → 100644
浏览文件 @
e1679b88
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
os
import
signal
import
time
import
unittest
from
multiprocessing
import
Process
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
from
paddle.fluid.framework
import
Program
,
program_guard
def
nce
(
input
,
weight
,
bias
,
sample_weight
,
labels
,
num_classes
,
num_sample_class
):
samples
=
[]
sample_labels
=
[]
batch_size
=
input
.
shape
[
0
]
num_true_class
=
labels
.
shape
[
1
]
for
i
in
range
(
batch_size
):
w
=
1
if
sample_weight
is
None
else
sample_weight
[
i
]
for
label
in
labels
[
i
]:
samples
.
append
((
i
,
label
,
True
,
w
))
sample_labels
.
append
(
label
)
for
num
in
range
(
num_sample_class
):
samples
.
append
((
i
,
num
,
False
,
w
))
sample_labels
.
append
(
num
)
# forward bias
sample_out
=
np
.
zeros
(
len
(
samples
)).
astype
(
np
.
float32
)
if
bias
is
not
None
:
for
i
in
range
(
len
(
samples
)):
sample_out
[
i
]
=
bias
[
samples
[
i
][
1
]]
# forward weight
for
i
in
range
(
len
(
samples
)):
sample_out
[
i
]
+=
np
.
dot
(
input
[
samples
[
i
][
0
]],
weight
[
samples
[
i
][
1
]])
# forward activation
sample_out
=
1.0
/
(
1.0
+
np
.
exp
(
-
sample_out
))
# forward cost
out
=
np
.
zeros
(
batch_size
).
astype
(
np
.
float32
)
b
=
1.0
/
num_classes
*
num_sample_class
for
i
in
range
(
len
(
samples
)):
o
=
sample_out
[
i
]
cost
=
-
np
.
log
(
o
/
(
o
+
b
))
if
samples
[
i
][
2
]
else
-
np
.
log
(
b
/
(
o
+
b
))
out
[
samples
[
i
][
0
]]
+=
cost
*
samples
[
i
][
3
]
return
(
out
[:,
np
.
newaxis
],
np
.
array
(
sample_out
).
reshape
(
batch_size
,
num_sample_class
+
num_true_class
),
np
.
array
(
sample_labels
).
reshape
(
batch_size
,
num_sample_class
+
num_true_class
))
def
run_pserver
(
pserver_id
,
use_cuda
,
sync_mode
):
scope
=
fluid
.
core
.
Scope
()
program
=
Program
()
with
fluid
.
scope_guard
(
scope
):
with
program_guard
(
program
,
startup_program
=
Program
()):
# create table parameter in scope
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
# create and initialize Param Variable
param
=
scope
.
var
(
'table'
).
get_tensor
()
param_array
=
np
.
ones
((
5
,
8
)).
astype
(
"float32"
)
for
i
in
range
(
len
(
param_array
)):
param_array
[
i
]
*=
param_array
[
i
]
*
i
+
pserver_id
*
10
+
1
param
.
set
(
param_array
,
place
)
optimize_block
=
program
.
_create_block
(
program
.
global_block
().
idx
)
program
.
global_block
().
append_op
(
type
=
"listen_and_serv"
,
inputs
=
{
'X'
:
[]},
outputs
=
{},
attrs
=
{
"optimize_blocks"
:
[
optimize_block
],
"endpoint"
:
'127.0.0.1:0'
,
"Fanin"
:
1
,
"sync_mode"
:
True
,
"grad_to_block_id"
:
[]
})
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
program
)
class
TestListenAndServOp
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
ps_timeout
=
5
def
_start_pserver
(
self
,
pserver_id
,
use_cuda
,
sync_mode
,
pserver_func
):
p
=
Process
(
target
=
pserver_func
,
args
=
(
pserver_id
,
use_cuda
,
sync_mode
))
p
.
daemon
=
True
p
.
start
()
return
p
def
_wait_ps_ready
(
self
,
pid
):
start_left_time
=
self
.
ps_timeout
sleep_time
=
0.5
while
True
:
assert
start_left_time
>=
0
,
"wait ps ready failed"
time
.
sleep
(
sleep_time
)
try
:
# the listen_and_serv_op would touch a file which contains the listen port
# on the /tmp directory until it was ready to process all the RPC call.
os
.
stat
(
"/tmp/paddle.%d.port"
%
pid
)
return
except
os
.
error
:
start_left_time
-=
sleep_time
def
_get_pserver_port
(
self
,
pid
):
with
open
(
"/tmp/paddle.%d.port"
%
pid
,
'r'
)
as
f
:
port
=
int
(
f
.
read
().
strip
())
return
port
def
_run_nce_op_two_pserver
(
self
,
place
,
port0
,
port1
):
scope
=
fluid
.
core
.
Scope
()
program
=
Program
()
with
fluid
.
scope_guard
(
scope
):
with
program_guard
(
program
,
startup_program
=
Program
()):
x
=
scope
.
var
(
'Input'
).
get_tensor
()
x_array
=
np
.
random
.
random
((
4
,
8
)).
astype
(
"float32"
)
x
.
set
(
x_array
,
place
)
# create and initialize Param Variable
param
=
scope
.
var
(
'Weight'
).
get_tensor
()
param_array
=
np
.
zeros
((
5
,
8
)).
astype
(
"float32"
)
param
.
set
(
param_array
,
place
)
bias
=
scope
.
var
(
'Bias'
).
get_tensor
()
bias_array
=
np
.
random
.
random
((
5
,
1
)).
astype
(
"float32"
)
bias
.
set
(
bias_array
,
place
)
sample_w
=
scope
.
var
(
'SampleWeight'
).
get_tensor
()
sample_weight
=
np
.
random
.
random
((
4
,
1
)).
astype
(
"float32"
)
sample_w
.
set
(
sample_weight
,
place
)
label
=
scope
.
var
(
'Label'
).
get_tensor
()
label_array
=
np
.
array
([[
0
],
[
1
],
[
4
],
[
3
]])
label
.
set
(
label_array
,
place
)
cost
=
scope
.
var
(
'Cost'
).
get_tensor
()
cost_w
=
np
.
zeros
((
4
,
1
)).
astype
(
"float32"
)
cost
.
set
(
cost_w
,
place
)
sample_l
=
scope
.
var
(
'SampleLogits'
).
get_tensor
()
sample_l_w
=
np
.
zeros
((
4
,
3
)).
astype
(
"float32"
)
sample_l
.
set
(
sample_l_w
,
place
)
sample_la
=
scope
.
var
(
'SampleLabels'
).
get_tensor
()
sample_la_w
=
np
.
zeros
((
4
,
3
)).
astype
(
"int"
)
sample_la
.
set
(
sample_la_w
,
place
)
emaps
=
[
'127.0.0.1:'
+
str
(
port0
),
'127.0.0.1:'
+
str
(
port1
)]
table_names
=
[
'table'
,
'table'
]
height_sections
=
[
2
,
3
]
# create and run nce operator
nce_op
=
Operator
(
"nce"
,
Input
=
'Input'
,
Weight
=
'Weight'
,
Label
=
'Label'
,
Bias
=
'Bias'
,
Cost
=
'Cost'
,
SampleLogits
=
'SampleLogits'
,
SampleLabels
=
'SampleLabels'
,
SampleWeight
=
'SampleWeight'
,
num_total_classes
=
5
,
num_neg_samples
=
2
,
custom_neg_classes
=
list
(
range
(
2
)),
sampler
=
0
,
seed
=
0
,
is_sparse
=
True
,
remote_prefetch
=
True
,
epmap
=
emaps
,
table_names
=
table_names
,
height_sections
=
height_sections
)
nce_op
.
run
(
scope
,
place
)
# get and compare result
o_cost
=
np
.
array
(
scope
.
var
(
'Cost'
).
get_tensor
())
o_logits
=
np
.
array
(
scope
.
var
(
'SampleLogits'
).
get_tensor
())
o_labels
=
np
.
array
(
scope
.
var
(
'SampleLabels'
).
get_tensor
())
param_array
=
np
.
ones
((
5
,
8
)).
astype
(
"float32"
)
for
i
in
range
(
2
):
param_array
[
i
]
*=
param_array
[
i
]
*
i
+
0
*
10
+
1
for
i
in
range
(
2
,
5
):
param_array
[
i
]
*=
param_array
[
i
]
*
i
+
1
*
10
+
1
out
=
nce
(
x_array
,
param_array
,
bias_array
,
sample_weight
,
label_array
,
5
,
2
)
self
.
assertAlmostEqual
(
o_cost
.
all
(),
out
[
0
].
all
(),
delta
=
1e-6
)
self
.
assertAlmostEqual
(
o_logits
.
all
(),
out
[
1
].
all
(),
delta
=
1e-6
)
self
.
assertAlmostEqual
(
o_labels
.
all
(),
out
[
2
].
all
(),
delta
=
1e-6
)
def
test_nce_op_remote
(
self
):
os
.
environ
[
'PADDLE_ENABLE_REMOTE_PREFETCH'
]
=
"1"
# run pserver on CPU in sync mode
p0
=
self
.
_start_pserver
(
0
,
False
,
True
,
run_pserver
)
self
.
_wait_ps_ready
(
p0
.
pid
)
port0
=
self
.
_get_pserver_port
(
p0
.
pid
)
p1
=
self
.
_start_pserver
(
1
,
False
,
True
,
run_pserver
)
self
.
_wait_ps_ready
(
p1
.
pid
)
port1
=
self
.
_get_pserver_port
(
p1
.
pid
)
places
=
[
core
.
CPUPlace
()]
for
place
in
places
:
self
.
_run_nce_op_two_pserver
(
place
,
port0
,
port1
)
# raise SIGTERM to pserver
os
.
kill
(
p0
.
pid
,
signal
.
SIGINT
)
p0
.
join
()
os
.
kill
(
p1
.
pid
,
signal
.
SIGINT
)
p1
.
join
()
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
e1679b88
...
...
@@ -251,11 +251,10 @@ class DistributeTranspiler(object):
def
_get_all_remote_sparse_update_op
(
self
,
main_program
):
sparse_update_ops
=
[]
sparse_update_op_types
=
[
"lookup_table"
]
sparse_update_op_types
=
[
"lookup_table"
,
"nce"
,
"hierarchical_sigmoid"
]
for
op
in
main_program
.
global_block
().
ops
:
if
op
.
type
in
sparse_update_op_types
and
op
.
attr
(
'remote_prefetch'
)
is
True
and
not
op
.
attr
(
'is_distributed'
):
'remote_prefetch'
)
is
True
:
sparse_update_ops
.
append
(
op
)
return
sparse_update_ops
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录