Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e13d9c74
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e13d9c74
编写于
2月 13, 2017
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Expose Parameter to train event handler
* User can get/set parameter in event now. * Add update equation
上级
176d44ef
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
144 addition
and
18 deletion
+144
-18
demo/mnist/api_train_v2.py
demo/mnist/api_train_v2.py
+18
-5
python/paddle/v2/trainer.py
python/paddle/v2/trainer.py
+126
-13
未找到文件。
demo/mnist/api_train_v2.py
浏览文件 @
e13d9c74
...
...
@@ -39,11 +39,24 @@ def main():
array
=
pool
.
get_parameter
(
param_name
)
array
[:]
=
numpy
.
random
.
uniform
(
low
=-
1.0
,
high
=
1.0
,
size
=
array
.
shape
)
trainer
=
paddle_v2
.
trainer
.
SGDTrainer
(
update_equation
=
paddle_v2
.
optimizer
.
Adam
(
learning_rate
=
1e-4
,
model_average
=
ModelAverage
(
average_window
=
0.5
),
regularization
=
L2Regularization
(
rate
=
0.5
)))
def
nag
(
v
,
g
,
vel_t_1
):
"""
NAG Optimizer. A optimizer which Paddle CPP is not implemented.
https://arxiv.org/pdf/1212.0901v2.pdf eq.6 eq.7
:param v: parameter value
:param g: parameter gradient
:param vel_t_1: t-1 velocity
:return:
"""
mu
=
0.09
e
=
0.0001
vel_t
=
mu
*
vel_t_1
-
e
*
g
v
[:]
=
v
+
(
mu
**
2
)
*
vel_t
-
(
1
+
mu
)
*
e
*
g
vel_t_1
[:]
=
vel_t
trainer
=
paddle_v2
.
trainer
.
SGDTrainer
(
update_equation
=
nag
)
trainer
.
train
(
train_data_reader
=
train_reader
,
topology
=
model_config
,
...
...
python/paddle/v2/trainer.py
浏览文件 @
e13d9c74
import
collections
from
paddle.proto.ModelConfig_pb2
import
ModelConfig
import
paddle.v2.parameters
import
paddle.v2.optimizer
from
paddle.proto.ParameterConfig_pb2
import
ParameterConfig
from
.
import
parameters
as
v2_parameters
import
numpy
import
py_paddle.swig_paddle
as
api
from
py_paddle
import
DataProviderConverter
...
...
@@ -20,10 +21,11 @@ class CompleteTrainOneBatch(BaseEvent):
Event On One Batch Training Complete.
"""
def
__init__
(
self
,
pass_id
,
batch_id
,
cost
):
def
__init__
(
self
,
pass_id
,
batch_id
,
cost
,
parameters
):
self
.
pass_id
=
pass_id
self
.
batch_id
=
batch_id
self
.
cost
=
cost
self
.
paramters
=
parameters
def
default_event_handler
(
event
):
...
...
@@ -40,6 +42,102 @@ class ITrainer(object):
raise
NotImplementedError
()
class
LazyParameterPool
(
v2_parameters
.
IParameterPool
):
"""
:type __gradient_machine__: api.GradientMachine
"""
def
get_parameter
(
self
,
name
,
flag
=
v2_parameters
.
ParameterFlag
.
READ_WRITE
):
param
=
filter
(
lambda
x
:
x
.
getName
()
==
name
,
self
.
__gradient_machine__
.
getParameters
())
if
len
(
param
)
==
0
:
raise
ValueError
(
"Cannot found parameter with name %s"
%
name
)
elif
len
(
param
)
>
1
:
raise
RuntimeError
(
"Unexpected branch"
)
else
:
conf
=
param
[
0
].
getConfig
().
toProto
()
param
=
param
[
0
].
getBuf
(
api
.
PARAMETER_VALUE
)
assert
isinstance
(
param
,
api
.
Vector
)
assert
isinstance
(
conf
,
ParameterConfig
)
shape
=
map
(
int
,
conf
.
dims
)
if
api
.
isUsingGpu
():
arr
=
param
.
copyToNumpyArray
().
reshape
(
shape
)
if
flag
&
v2_parameters
.
ParameterFlag
.
WRITE_ONLY
:
self
.
need_copy
=
True
self
.
arrays
[
name
]
=
arr
else
:
arr
=
param
.
toNumpyArrayInplace
().
reshape
(
shape
)
return
arr
def
get_names
(
self
):
return
[
param
.
getName
()
for
param
in
self
.
__gradient_machine__
.
getParameters
()
]
def
__init__
(
self
,
gradient_machine
):
self
.
__gradient_machine__
=
gradient_machine
self
.
need_copy
=
False
self
.
arrays
=
dict
()
class
CustomizeUpdateEquation
(
object
):
def
__init__
(
self
,
callback
):
self
.
__callback__
=
callback
if
self
.
__callback__
.
func_code
.
co_argcount
<
2
:
raise
ValueError
(
"The update equation at least should contain 2 arguments, "
"first is value, second is gradient"
)
self
.
local_params_count
=
self
.
__callback__
.
func_code
.
co_argcount
-
2
self
.
local_params
=
dict
()
def
enable_types
(
self
):
return
[
api
.
PARAMETER_VALUE
,
api
.
PARAMETER_GRADIENT
]
def
init
(
self
,
gradient_machine
):
assert
isinstance
(
gradient_machine
,
api
.
GradientMachine
)
for
param
in
gradient_machine
.
getParameters
():
conf
=
param
.
getConfig
().
toProto
()
shape
=
map
(
int
,
conf
.
dims
)
self
.
local_params
[
conf
.
name
]
=
[]
for
_
in
xrange
(
self
.
local_params_count
):
self
.
local_params
[
conf
.
name
].
append
(
numpy
.
zeros
(
shape
=
shape
,
dtype
=
'float32'
))
def
create_local_updater
(
self
):
return
self
def
startPass
(
self
):
pass
def
finishPass
(
self
):
pass
def
startBatch
(
self
,
batch_size
):
return
api
.
PASS_TRAIN
def
finishBatch
(
self
,
cost
):
pass
def
update
(
self
,
param
):
conf
=
param
.
getConfig
().
toProto
()
shape
=
map
(
int
,
conf
.
dims
)
if
not
api
.
isUsingGpu
():
v
=
param
.
getBuf
(
api
.
PARAMETER_VALUE
).
toNumpyArrayInplace
().
reshape
(
shape
)
g
=
param
.
getBuf
(
api
.
PARAMETER_GRADIENT
).
toNumpyArrayInplace
(
).
reshape
(
shape
)
args
=
[
v
,
g
]
for
arg
in
self
.
local_params
[
conf
.
name
]:
args
.
append
(
arg
)
self
.
__callback__
(
*
args
)
else
:
raise
NotImplementedError
()
class
SGDTrainer
(
ITrainer
):
def
__init__
(
self
,
update_equation
):
"""
...
...
@@ -47,8 +145,8 @@ class SGDTrainer(ITrainer):
:param update_equation: Maybe we should give a DSL for update equation?
"""
if
not
isinstance
(
update_equation
,
paddle
.
v2
.
optimizer
.
Optimizer
):
raise
ValueError
(
)
if
callable
(
update_equation
):
update_equation
=
CustomizeUpdateEquation
(
update_equation
)
self
.
__optimizer__
=
update_equation
...
...
@@ -87,7 +185,6 @@ class SGDTrainer(ITrainer):
__copy_parameter_from_pool__
(
gm
,
parameters
)
updater
=
self
.
__optimizer__
.
create_local_updater
()
assert
isinstance
(
updater
,
api
.
ParameterUpdater
)
updater
.
init
(
gm
)
gm
.
start
()
...
...
@@ -115,10 +212,16 @@ class SGDTrainer(ITrainer):
cost_vec
=
cost_vec
.
copyToNumpyMat
()
cost
=
cost_vec
.
sum
()
/
len
(
data_batch
)
updater
.
finishBatch
(
cost
)
pool
=
LazyParameterPool
(
gradient_machine
=
gm
)
event_handler
(
CompleteTrainOneBatch
(
pass_id
=
pass_id
,
batch_id
=
batch_id
,
cost
=
cost
))
pass_id
=
pass_id
,
batch_id
=
batch_id
,
cost
=
cost
,
parameters
=
pool
))
if
pool
.
need_copy
:
__copy_parameter_from_lazy_pool__
(
gm
,
pool
)
updater
.
finishPass
()
gm
.
finish
()
...
...
@@ -153,20 +256,30 @@ def __generator_to_batch__(generator, batch_size):
yield
ret_val
def
__copy_parameter_from_lazy_pool__
(
gm
,
pool
):
assert
isinstance
(
pool
,
LazyParameterPool
)
for
each_param_name
in
pool
.
arrays
.
keys
():
param
=
filter
(
lambda
x
:
x
.
getName
()
==
each_param_name
,
gm
.
getParameters
())
assert
len
(
param
)
==
1
param
=
param
[
0
]
param
.
getBuf
(
api
.
PARAMETER_VALUE
).
copyFromNumpyArray
(
pool
.
arrays
[
each_param_name
].
flatten
().
astype
(
'float32'
))
def
__copy_parameter_from_pool__
(
gm
,
pool
):
"""
:param gm:
:type gm: api.GradientMachine
:param pool:
:type pool:
paddle.v2.
parameters.IParameterPool
:type pool:
v2_
parameters.IParameterPool
:return:
"""
assert
isinstance
(
pool
,
paddle
.
v2
.
parameters
.
IParameterPool
)
assert
isinstance
(
pool
,
v2_
parameters
.
IParameterPool
)
for
each_param
in
gm
.
getParameters
():
name
=
each_param
.
getName
()
param
=
pool
.
get_parameter
(
name
,
paddle
.
v2
.
parameters
.
ParameterFlag
.
READ_ONLY
)
param
=
pool
.
get_parameter
(
name
,
v2_parameters
.
ParameterFlag
.
READ_ONLY
)
each_param
.
getBuf
(
api
.
PARAMETER_VALUE
).
copyFromNumpyArray
(
param
.
flatten
(
).
astype
(
'float32'
))
...
...
@@ -190,7 +303,7 @@ def __check_train_args__(train_data_reader, topology, parameters,
if
not
isinstance
(
topology
,
ModelConfig
):
raise
ValueError
(
'topology should be a model config'
)
if
not
isinstance
(
parameters
,
paddle
.
v2
.
parameters
.
IParameterPool
):
if
not
isinstance
(
parameters
,
v2_
parameters
.
IParameterPool
):
raise
ValueError
(
'parameters should be a parameter pool'
)
if
not
callable
(
event_handler
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录