Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e0c3c56b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e0c3c56b
编写于
12月 18, 2018
作者:
T
tangwei12
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add nce remote ut, test=develop
上级
aed3872c
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
60 addition
and
8 deletion
+60
-8
python/paddle/fluid/tests/unittests/test_nce_remote_table_op.py
.../paddle/fluid/tests/unittests/test_nce_remote_table_op.py
+60
-8
未找到文件。
python/paddle/fluid/tests/unittests/test_nce_remote_table_op.py
浏览文件 @
e0c3c56b
...
@@ -27,6 +27,45 @@ from paddle.fluid.op import Operator
...
@@ -27,6 +27,45 @@ from paddle.fluid.op import Operator
from
paddle.fluid.framework
import
Program
,
program_guard
from
paddle.fluid.framework
import
Program
,
program_guard
def
nce
(
input
,
weight
,
bias
,
sample_weight
,
labels
,
num_classes
,
num_sample_class
):
samples
=
[]
sample_labels
=
[]
batch_size
=
input
.
shape
[
0
]
num_true_class
=
labels
.
shape
[
1
]
for
i
in
range
(
batch_size
):
w
=
1
if
sample_weight
is
None
else
sample_weight
[
i
]
for
label
in
labels
[
i
]:
samples
.
append
((
i
,
label
,
True
,
w
))
sample_labels
.
append
(
label
)
for
num
in
range
(
num_sample_class
):
samples
.
append
((
i
,
num
,
False
,
w
))
sample_labels
.
append
(
num
)
# forward bias
sample_out
=
np
.
zeros
(
len
(
samples
)).
astype
(
np
.
float32
)
if
bias
is
not
None
:
for
i
in
range
(
len
(
samples
)):
sample_out
[
i
]
=
bias
[
samples
[
i
][
1
]]
# forward weight
for
i
in
range
(
len
(
samples
)):
sample_out
[
i
]
+=
np
.
dot
(
input
[
samples
[
i
][
0
]],
weight
[
samples
[
i
][
1
]])
# forward activation
sample_out
=
1.0
/
(
1.0
+
np
.
exp
(
-
sample_out
))
# forward cost
out
=
np
.
zeros
(
batch_size
).
astype
(
np
.
float32
)
b
=
1.0
/
num_classes
*
num_sample_class
for
i
in
range
(
len
(
samples
)):
o
=
sample_out
[
i
]
cost
=
-
np
.
log
(
o
/
(
o
+
b
))
if
samples
[
i
][
2
]
else
-
np
.
log
(
b
/
(
o
+
b
))
out
[
samples
[
i
][
0
]]
+=
cost
*
samples
[
i
][
3
]
return
(
out
[:,
np
.
newaxis
],
np
.
array
(
sample_out
).
reshape
(
batch_size
,
num_sample_class
+
num_true_class
),
np
.
array
(
sample_labels
).
reshape
(
batch_size
,
num_sample_class
+
num_true_class
))
def
run_pserver
(
pserver_id
,
use_cuda
,
sync_mode
):
def
run_pserver
(
pserver_id
,
use_cuda
,
sync_mode
):
scope
=
fluid
.
core
.
Scope
()
scope
=
fluid
.
core
.
Scope
()
program
=
Program
()
program
=
Program
()
...
@@ -94,11 +133,11 @@ class TestListenAndServOp(unittest.TestCase):
...
@@ -94,11 +133,11 @@ class TestListenAndServOp(unittest.TestCase):
with
fluid
.
scope_guard
(
scope
):
with
fluid
.
scope_guard
(
scope
):
with
program_guard
(
program
,
startup_program
=
Program
()):
with
program_guard
(
program
,
startup_program
=
Program
()):
x
=
scope
.
var
(
'Input'
).
get_tensor
()
x
=
scope
.
var
(
'Input'
).
get_tensor
()
x_array
=
np
.
random
.
random
((
4
,
8
)).
astype
(
"float32"
)
*
2
x_array
=
np
.
random
.
random
((
4
,
8
)).
astype
(
"float32"
)
x
.
set
(
x_array
,
place
)
x
.
set
(
x_array
,
place
)
# create and initialize Param Variable
# create and initialize Param Variable
param
=
scope
.
var
(
'Weight'
).
get_tensor
()
param
=
scope
.
var
(
'Weight'
).
get_tensor
()
param_array
=
np
.
zeros
((
5
,
8
)).
astype
(
"float32"
)
*
2
param_array
=
np
.
zeros
((
5
,
8
)).
astype
(
"float32"
)
param
.
set
(
param_array
,
place
)
param
.
set
(
param_array
,
place
)
bias
=
scope
.
var
(
'Bias'
).
get_tensor
()
bias
=
scope
.
var
(
'Bias'
).
get_tensor
()
...
@@ -110,7 +149,7 @@ class TestListenAndServOp(unittest.TestCase):
...
@@ -110,7 +149,7 @@ class TestListenAndServOp(unittest.TestCase):
sample_w
.
set
(
sample_weight
,
place
)
sample_w
.
set
(
sample_weight
,
place
)
label
=
scope
.
var
(
'Label'
).
get_tensor
()
label
=
scope
.
var
(
'Label'
).
get_tensor
()
label_array
=
np
.
array
([
0
,
1
,
4
,
5
])
label_array
=
np
.
array
([
[
0
],
[
1
],
[
4
],
[
3
]
])
label
.
set
(
label_array
,
place
)
label
.
set
(
label_array
,
place
)
cost
=
scope
.
var
(
'Cost'
).
get_tensor
()
cost
=
scope
.
var
(
'Cost'
).
get_tensor
()
...
@@ -122,7 +161,7 @@ class TestListenAndServOp(unittest.TestCase):
...
@@ -122,7 +161,7 @@ class TestListenAndServOp(unittest.TestCase):
sample_l
.
set
(
sample_l_w
,
place
)
sample_l
.
set
(
sample_l_w
,
place
)
sample_la
=
scope
.
var
(
'SampleLabels'
).
get_tensor
()
sample_la
=
scope
.
var
(
'SampleLabels'
).
get_tensor
()
sample_la_w
=
np
.
zeros
((
4
,
3
)).
astype
(
"
float32
"
)
sample_la_w
=
np
.
zeros
((
4
,
3
)).
astype
(
"
int
"
)
sample_la
.
set
(
sample_la_w
,
place
)
sample_la
.
set
(
sample_la_w
,
place
)
emaps
=
[
'127.0.0.1:'
+
str
(
port0
),
'127.0.0.1:'
+
str
(
port1
)]
emaps
=
[
'127.0.0.1:'
+
str
(
port0
),
'127.0.0.1:'
+
str
(
port1
)]
...
@@ -139,11 +178,12 @@ class TestListenAndServOp(unittest.TestCase):
...
@@ -139,11 +178,12 @@ class TestListenAndServOp(unittest.TestCase):
Cost
=
'Cost'
,
Cost
=
'Cost'
,
SampleLogits
=
'SampleLogits'
,
SampleLogits
=
'SampleLogits'
,
SampleLabels
=
'SampleLabels'
,
SampleLabels
=
'SampleLabels'
,
SampleWeight
=
'SampleWeight'
,
num_total_classes
=
5
,
num_total_classes
=
5
,
num_neg_samples
=
2
,
num_neg_samples
=
2
,
custom_neg_classes
=
list
(
range
(
2
)),
custom_neg_classes
=
list
(
range
(
2
)),
sampler
=
0
,
sampler
=
0
,
seed
=
1
,
seed
=
0
,
is_sparse
=
True
,
is_sparse
=
True
,
remote_prefetch
=
True
,
remote_prefetch
=
True
,
epmap
=
emaps
,
epmap
=
emaps
,
...
@@ -153,9 +193,21 @@ class TestListenAndServOp(unittest.TestCase):
...
@@ -153,9 +193,21 @@ class TestListenAndServOp(unittest.TestCase):
nce_op
.
run
(
scope
,
place
)
nce_op
.
run
(
scope
,
place
)
# get and compare result
# get and compare result
o_cost
=
np
.
array
(
cost_w
)
o_cost
=
np
.
array
(
scope
.
var
(
'Cost'
).
get_tensor
())
o_logits
=
np
.
array
(
sample_l
)
o_logits
=
np
.
array
(
scope
.
var
(
'SampleLogits'
).
get_tensor
())
o_labels
=
np
.
array
(
sample_la
)
o_labels
=
np
.
array
(
scope
.
var
(
'SampleLabels'
).
get_tensor
())
param_array
=
np
.
ones
((
5
,
8
)).
astype
(
"float32"
)
for
i
in
range
(
2
):
param_array
[
i
]
*=
param_array
[
i
]
*
i
+
0
*
10
+
1
for
i
in
range
(
2
,
5
):
param_array
[
i
]
*=
param_array
[
i
]
*
i
+
1
*
10
+
1
out
=
nce
(
x_array
,
param_array
,
bias_array
,
sample_weight
,
label_array
,
5
,
2
)
self
.
assertAlmostEqual
(
o_cost
.
all
(),
out
[
0
].
all
(),
delta
=
1e-6
)
self
.
assertAlmostEqual
(
o_logits
.
all
(),
out
[
1
].
all
(),
delta
=
1e-6
)
self
.
assertAlmostEqual
(
o_labels
.
all
(),
out
[
2
].
all
(),
delta
=
1e-6
)
def
test_nce_op_remote
(
self
):
def
test_nce_op_remote
(
self
):
os
.
environ
[
'PADDLE_ENABLE_REMOTE_PREFETCH'
]
=
"1"
os
.
environ
[
'PADDLE_ENABLE_REMOTE_PREFETCH'
]
=
"1"
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录