Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e041ffca
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
e041ffca
编写于
4月 11, 2023
作者:
J
jjyaoao
提交者:
GitHub
4月 11, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove paddle/infrt/ (#52719)
* remove paddle/infrt/ * delete .lit_test_times.txt
上级
0cb0f70a
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
0 addition
and
425 deletion
+0
-425
.gitignore
.gitignore
+0
-1
paddle/infrt/tests/models/efficientnet-b4/net/utils.py
paddle/infrt/tests/models/efficientnet-b4/net/utils.py
+0
-424
未找到文件。
.gitignore
浏览文件 @
e041ffca
...
@@ -73,7 +73,6 @@ tools/nvcc_lazy
...
@@ -73,7 +73,6 @@ tools/nvcc_lazy
# This file is automatically generated.
# This file is automatically generated.
# TODO(zhiqiang) Move this file to build directory.
# TODO(zhiqiang) Move this file to build directory.
.lit_test_times.txt
paddle/fluid/pybind/eager_op_function.cc
paddle/fluid/pybind/eager_op_function.cc
tools/nvcc_lazy
tools/nvcc_lazy
...
...
paddle/infrt/tests/models/efficientnet-b4/net/utils.py
已删除
100644 → 0
浏览文件 @
0cb0f70a
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
collections
import
math
import
re
from
functools
import
partial
import
paddle
import
paddle.nn.functional
as
F
from
paddle
import
nn
# Parameters for the entire model (stem, all blocks, and head)
GlobalParams
=
collections
.
namedtuple
(
'GlobalParams'
,
[
'batch_norm_momentum'
,
'batch_norm_epsilon'
,
'dropout_rate'
,
'num_classes'
,
'width_coefficient'
,
'depth_coefficient'
,
'depth_divisor'
,
'min_depth'
,
'drop_connect_rate'
,
'image_size'
,
],
)
# Parameters for an individual model block
BlockArgs
=
collections
.
namedtuple
(
'BlockArgs'
,
[
'kernel_size'
,
'num_repeat'
,
'input_filters'
,
'output_filters'
,
'expand_ratio'
,
'id_skip'
,
'stride'
,
'se_ratio'
,
],
)
# Change namedtuple defaults
GlobalParams
.
__new__
.
__defaults__
=
(
None
,)
*
len
(
GlobalParams
.
_fields
)
BlockArgs
.
__new__
.
__defaults__
=
(
None
,)
*
len
(
BlockArgs
.
_fields
)
def
round_filters
(
filters
,
global_params
):
"""Calculate and round number of filters based on depth multiplier."""
multiplier
=
global_params
.
width_coefficient
if
not
multiplier
:
return
filters
divisor
=
global_params
.
depth_divisor
min_depth
=
global_params
.
min_depth
filters
*=
multiplier
min_depth
=
min_depth
or
divisor
new_filters
=
max
(
min_depth
,
int
(
filters
+
divisor
/
2
)
//
divisor
*
divisor
)
if
new_filters
<
0.9
*
filters
:
# prevent rounding by more than 10%
new_filters
+=
divisor
return
int
(
new_filters
)
def
round_repeats
(
repeats
,
global_params
):
"""Round number of filters based on depth multiplier."""
multiplier
=
global_params
.
depth_coefficient
if
not
multiplier
:
return
repeats
return
int
(
math
.
ceil
(
multiplier
*
repeats
))
def
drop_connect
(
inputs
,
prob
,
training
):
"""Drop input connection"""
if
not
training
:
return
inputs
keep_prob
=
1.0
-
prob
inputs_shape
=
paddle
.
shape
(
inputs
)
random_tensor
=
keep_prob
+
paddle
.
rand
(
shape
=
[
inputs_shape
[
0
],
1
,
1
,
1
])
binary_tensor
=
paddle
.
floor
(
random_tensor
)
output
=
inputs
/
keep_prob
*
binary_tensor
return
output
def
get_same_padding_conv2d
(
image_size
=
None
):
"""Chooses static padding if you have specified an image size, and dynamic padding otherwise.
Static padding is necessary for ONNX exporting of models."""
if
image_size
is
None
:
return
Conv2dDynamicSamePadding
else
:
return
partial
(
Conv2dStaticSamePadding
,
image_size
=
image_size
)
class
Conv2dDynamicSamePadding
(
nn
.
Conv2D
):
"""2D Convolutions like TensorFlow, for a dynamic image size"""
def
__init__
(
self
,
in_channels
,
out_channels
,
kernel_size
,
stride
=
1
,
dilation
=
1
,
groups
=
1
,
bias_attr
=
None
,
):
super
().
__init__
(
in_channels
,
out_channels
,
kernel_size
,
stride
,
0
,
dilation
,
groups
,
bias_attr
=
bias_attr
,
)
self
.
stride
=
(
self
.
_stride
if
len
(
self
.
_stride
)
==
2
else
[
self
.
_stride
[
0
]]
*
2
)
def
forward
(
self
,
x
):
ih
,
iw
=
x
.
shape
[
-
2
:]
kh
,
kw
=
self
.
weight
.
shape
[
-
2
:]
sh
,
sw
=
self
.
stride
oh
,
ow
=
math
.
ceil
(
ih
/
sh
),
math
.
ceil
(
iw
/
sw
)
pad_h
=
max
(
(
oh
-
1
)
*
self
.
stride
[
0
]
+
(
kh
-
1
)
*
self
.
_dilation
[
0
]
+
1
-
ih
,
0
)
pad_w
=
max
(
(
ow
-
1
)
*
self
.
stride
[
1
]
+
(
kw
-
1
)
*
self
.
_dilation
[
1
]
+
1
-
iw
,
0
)
if
pad_h
>
0
or
pad_w
>
0
:
x
=
F
.
pad
(
x
,
[
pad_w
//
2
,
pad_w
-
pad_w
//
2
,
pad_h
//
2
,
pad_h
-
pad_h
//
2
,
],
)
return
F
.
conv2d
(
x
,
self
.
weight
,
self
.
bias
,
self
.
stride
,
self
.
_padding
,
self
.
_dilation
,
self
.
_groups
,
)
class
Conv2dStaticSamePadding
(
nn
.
Conv2D
):
"""2D Convolutions like TensorFlow, for a fixed image size"""
def
__init__
(
self
,
in_channels
,
out_channels
,
kernel_size
,
image_size
=
None
,
**
kwargs
):
if
'stride'
in
kwargs
and
isinstance
(
kwargs
[
'stride'
],
list
):
kwargs
[
'stride'
]
=
kwargs
[
'stride'
][
0
]
super
().
__init__
(
in_channels
,
out_channels
,
kernel_size
,
**
kwargs
)
self
.
stride
=
(
self
.
_stride
if
len
(
self
.
_stride
)
==
2
else
[
self
.
_stride
[
0
]]
*
2
)
# Calculate padding based on image size and save it
assert
image_size
is
not
None
ih
,
iw
=
(
image_size
if
type
(
image_size
)
==
list
else
[
image_size
,
image_size
]
)
kh
,
kw
=
self
.
weight
.
shape
[
-
2
:]
sh
,
sw
=
self
.
stride
oh
,
ow
=
math
.
ceil
(
ih
/
sh
),
math
.
ceil
(
iw
/
sw
)
pad_h
=
max
(
(
oh
-
1
)
*
self
.
stride
[
0
]
+
(
kh
-
1
)
*
self
.
_dilation
[
0
]
+
1
-
ih
,
0
)
pad_w
=
max
(
(
ow
-
1
)
*
self
.
stride
[
1
]
+
(
kw
-
1
)
*
self
.
_dilation
[
1
]
+
1
-
iw
,
0
)
if
pad_h
>
0
or
pad_w
>
0
:
self
.
static_padding
=
nn
.
Pad2D
(
[
pad_w
//
2
,
pad_w
-
pad_w
//
2
,
pad_h
//
2
,
pad_h
-
pad_h
//
2
]
)
else
:
self
.
static_padding
=
Identity
()
def
forward
(
self
,
x
):
x
=
self
.
static_padding
(
x
)
x
=
F
.
conv2d
(
x
,
self
.
weight
,
self
.
bias
,
self
.
stride
,
self
.
_padding
,
self
.
_dilation
,
self
.
_groups
,
)
return
x
class
Identity
(
nn
.
Layer
):
def
__init__
(
self
,
):
super
().
__init__
()
def
forward
(
self
,
x
):
return
x
def
efficientnet_params
(
model_name
):
"""Map EfficientNet model name to parameter coefficients."""
params_dict
=
{
# Coefficients: width,depth,resolution,dropout
'efficientnet-b0'
:
(
1.0
,
1.0
,
224
,
0.2
),
'efficientnet-b1'
:
(
1.0
,
1.1
,
240
,
0.2
),
'efficientnet-b2'
:
(
1.1
,
1.2
,
260
,
0.3
),
'efficientnet-b3'
:
(
1.2
,
1.4
,
300
,
0.3
),
'efficientnet-b4'
:
(
1.4
,
1.8
,
380
,
0.4
),
'efficientnet-b5'
:
(
1.6
,
2.2
,
456
,
0.4
),
'efficientnet-b6'
:
(
1.8
,
2.6
,
528
,
0.5
),
'efficientnet-b7'
:
(
2.0
,
3.1
,
600
,
0.5
),
'efficientnet-b8'
:
(
2.2
,
3.6
,
672
,
0.5
),
'efficientnet-l2'
:
(
4.3
,
5.3
,
800
,
0.5
),
}
return
params_dict
[
model_name
]
class
BlockDecoder
:
"""Block Decoder for readability, straight from the official TensorFlow repository"""
@
staticmethod
def
_decode_block_string
(
block_string
):
"""Gets a block through a string notation of arguments."""
assert
isinstance
(
block_string
,
str
)
ops
=
block_string
.
split
(
'_'
)
options
=
{}
for
op
in
ops
:
splits
=
re
.
split
(
r
'(\d.*)'
,
op
)
if
len
(
splits
)
>=
2
:
key
,
value
=
splits
[:
2
]
options
[
key
]
=
value
# Check stride
assert
(
's'
in
options
and
len
(
options
[
's'
])
==
1
)
or
(
len
(
options
[
's'
])
==
2
and
options
[
's'
][
0
]
==
options
[
's'
][
1
]
)
return
BlockArgs
(
kernel_size
=
int
(
options
[
'k'
]),
num_repeat
=
int
(
options
[
'r'
]),
input_filters
=
int
(
options
[
'i'
]),
output_filters
=
int
(
options
[
'o'
]),
expand_ratio
=
int
(
options
[
'e'
]),
id_skip
=
(
'noskip'
not
in
block_string
),
se_ratio
=
float
(
options
[
'se'
])
if
'se'
in
options
else
None
,
stride
=
[
int
(
options
[
's'
][
0
])],
)
@
staticmethod
def
_encode_block_string
(
block
):
"""Encodes a block to a string."""
args
=
[
'r%d'
%
block
.
num_repeat
,
'k%d'
%
block
.
kernel_size
,
's%d%d'
%
(
block
.
strides
[
0
],
block
.
strides
[
1
]),
'e%s'
%
block
.
expand_ratio
,
'i%d'
%
block
.
input_filters
,
'o%d'
%
block
.
output_filters
,
]
if
0
<
block
.
se_ratio
<=
1
:
args
.
append
(
'se%s'
%
block
.
se_ratio
)
if
block
.
id_skip
is
False
:
args
.
append
(
'noskip'
)
return
'_'
.
join
(
args
)
@
staticmethod
def
decode
(
string_list
):
"""
Decodes a list of string notations to specify blocks inside the network.
:param string_list: a list of strings, each string is a notation of block
:return: a list of BlockArgs namedtuples of block args
"""
assert
isinstance
(
string_list
,
list
)
blocks_args
=
[]
for
block_string
in
string_list
:
blocks_args
.
append
(
BlockDecoder
.
_decode_block_string
(
block_string
))
return
blocks_args
@
staticmethod
def
encode
(
blocks_args
):
"""
Encodes a list of BlockArgs to a list of strings.
:param blocks_args: a list of BlockArgs namedtuples of block args
:return: a list of strings, each string is a notation of block
"""
block_strings
=
[]
for
block
in
blocks_args
:
block_strings
.
append
(
BlockDecoder
.
_encode_block_string
(
block
))
return
block_strings
def
efficientnet
(
width_coefficient
=
None
,
depth_coefficient
=
None
,
dropout_rate
=
0.2
,
drop_connect_rate
=
0.2
,
image_size
=
None
,
num_classes
=
1000
,
):
"""Get block arguments according to parameter and coefficients."""
blocks_args
=
[
'r1_k3_s11_e1_i32_o16_se0.25'
,
'r2_k3_s22_e6_i16_o24_se0.25'
,
'r2_k5_s22_e6_i24_o40_se0.25'
,
'r3_k3_s22_e6_i40_o80_se0.25'
,
'r3_k5_s11_e6_i80_o112_se0.25'
,
'r4_k5_s22_e6_i112_o192_se0.25'
,
'r1_k3_s11_e6_i192_o320_se0.25'
,
]
blocks_args
=
BlockDecoder
.
decode
(
blocks_args
)
global_params
=
GlobalParams
(
batch_norm_momentum
=
0.99
,
batch_norm_epsilon
=
1e-3
,
dropout_rate
=
dropout_rate
,
drop_connect_rate
=
drop_connect_rate
,
num_classes
=
num_classes
,
width_coefficient
=
width_coefficient
,
depth_coefficient
=
depth_coefficient
,
depth_divisor
=
8
,
min_depth
=
None
,
image_size
=
image_size
,
)
return
blocks_args
,
global_params
def
get_model_params
(
model_name
,
override_params
):
"""Get the block args and global params for a given model"""
if
model_name
.
startswith
(
'efficientnet'
):
w
,
d
,
s
,
p
=
efficientnet_params
(
model_name
)
blocks_args
,
global_params
=
efficientnet
(
width_coefficient
=
w
,
depth_coefficient
=
d
,
dropout_rate
=
p
,
image_size
=
s
,
)
else
:
raise
NotImplementedError
(
'model name is not pre-defined: %s'
%
model_name
)
if
override_params
:
global_params
=
global_params
.
_replace
(
**
override_params
)
return
blocks_args
,
global_params
url_map
=
{
'efficientnet-b0'
:
'/home/aistudio/data/weights/efficientnet-b0-355c32eb.pdparams'
,
'efficientnet-b1'
:
'/home/aistudio/data/weights/efficientnet-b1-f1951068.pdparams'
,
'efficientnet-b2'
:
'/home/aistudio/data/weights/efficientnet-b2-8bb594d6.pdparams'
,
'efficientnet-b3'
:
'/home/aistudio/data/weights/efficientnet-b3-5fb5a3c3.pdparams'
,
'efficientnet-b4'
:
'/home/aistudio/data/weights/efficientnet-b4-6ed6700e.pdparams'
,
'efficientnet-b5'
:
'/home/aistudio/data/weights/efficientnet-b5-b6417697.pdparams'
,
'efficientnet-b6'
:
'/home/aistudio/data/weights/efficientnet-b6-c76e70fd.pdparams'
,
'efficientnet-b7'
:
'/home/aistudio/data/weights/efficientnet-b7-dcc49843.pdparams'
,
}
url_map_advprop
=
{
'efficientnet-b0'
:
'/home/aistudio/data/weights/adv-efficientnet-b0-b64d5a18.pdparams'
,
'efficientnet-b1'
:
'/home/aistudio/data/weights/adv-efficientnet-b1-0f3ce85a.pdparams'
,
'efficientnet-b2'
:
'/home/aistudio/data/weights/adv-efficientnet-b2-6e9d97e5.pdparams'
,
'efficientnet-b3'
:
'/home/aistudio/data/weights/adv-efficientnet-b3-cdd7c0f4.pdparams'
,
'efficientnet-b4'
:
'/home/aistudio/data/weights/adv-efficientnet-b4-44fb3a87.pdparams'
,
'efficientnet-b5'
:
'/home/aistudio/data/weights/adv-efficientnet-b5-86493f6b.pdparams'
,
'efficientnet-b6'
:
'/home/aistudio/data/weights/adv-efficientnet-b6-ac80338e.pdparams'
,
'efficientnet-b7'
:
'/home/aistudio/data/weights/adv-efficientnet-b7-4652b6dd.pdparams'
,
'efficientnet-b8'
:
'/home/aistudio/data/weights/adv-efficientnet-b8-22a8fe65.pdparams'
,
}
def
load_pretrained_weights
(
model
,
model_name
,
weights_path
=
None
,
load_fc
=
True
,
advprop
=
False
):
"""Loads pretrained weights from weights path or download using url.
Args:
model (Module): The whole model of efficientnet.
model_name (str): Model name of efficientnet.
weights_path (None or str):
str: path to pretrained weights file on the local disk.
None: use pretrained weights downloaded from the Internet.
load_fc (bool): Whether to load pretrained weights for fc layer at the end of the model.
advprop (bool): Whether to load pretrained weights
trained with advprop (valid when weights_path is None).
"""
# AutoAugment or Advprop (different preprocessing)
url_map_
=
url_map_advprop
if
advprop
else
url_map
state_dict
=
paddle
.
load
(
url_map_
[
model_name
])
if
load_fc
:
model
.
set_state_dict
(
state_dict
)
else
:
state_dict
.
pop
(
'_fc.weight'
)
state_dict
.
pop
(
'_fc.bias'
)
model
.
set_state_dict
(
state_dict
)
print
(
f
'Loaded pretrained weights for
{
model_name
}
'
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录