Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e037504b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e037504b
编写于
2月 23, 2022
作者:
P
phlrain
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
move embeding to phi;
上级
2bb5aae8
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
1118 addition
and
213 deletion
+1118
-213
paddle/phi/kernels/cpu/embedding_grad_kernel.cc
paddle/phi/kernels/cpu/embedding_grad_kernel.cc
+125
-0
paddle/phi/kernels/cpu/embedding_kernel.cc
paddle/phi/kernels/cpu/embedding_kernel.cc
+108
-0
paddle/phi/kernels/cpu/sparse_weight_embedding_grad_kernel.cc
...le/phi/kernels/cpu/sparse_weight_embedding_grad_kernel.cc
+125
-0
paddle/phi/kernels/cpu/sparse_weight_embedding_kernel.cc
paddle/phi/kernels/cpu/sparse_weight_embedding_kernel.cc
+111
-0
paddle/phi/kernels/embedding_grad_kernel.h
paddle/phi/kernels/embedding_grad_kernel.h
+29
-0
paddle/phi/kernels/embedding_kernel.h
paddle/phi/kernels/embedding_kernel.h
+28
-0
paddle/phi/kernels/funcs/embedding_util.h
paddle/phi/kernels/funcs/embedding_util.h
+37
-0
paddle/phi/kernels/gpu/embedding_grad_kernel.cu
paddle/phi/kernels/gpu/embedding_grad_kernel.cu
+131
-0
paddle/phi/kernels/gpu/embedding_kernel.cu
paddle/phi/kernels/gpu/embedding_kernel.cu
+124
-0
paddle/phi/kernels/sparse_weight_embedding_grad_kernel.h
paddle/phi/kernels/sparse_weight_embedding_grad_kernel.h
+30
-0
paddle/phi/kernels/sparse_weight_embedding_kernel.h
paddle/phi/kernels/sparse_weight_embedding_kernel.h
+29
-0
paddle/phi/ops/compat/embedding_sig.cc
paddle/phi/ops/compat/embedding_sig.cc
+38
-0
python/paddle/fluid/tests/unittests/test_lookup_table_v2_op.py
...n/paddle/fluid/tests/unittests/test_lookup_table_v2_op.py
+203
-213
未找到文件。
paddle/phi/kernels/cpu/embedding_grad_kernel.cc
0 → 100644
浏览文件 @
e037504b
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/embedding_grad_kernel.h"
#include "paddle/phi/kernels/funcs/embedding_util.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
struct
LookupTableV2GradCPUFunctor
{
LookupTableV2GradCPUFunctor
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
DenseTensor
&
weight
,
const
DenseTensor
&
out_grad
,
int64_t
padding_idx
,
DenseTensor
*
weight_grad
)
:
dev_ctx_
(
dev_ctx
),
input_
(
input
),
weight_
(
weight
),
out_grad_
(
out_grad
),
weight_grad_
(
weight_grad
),
padding_idx_
(
padding_idx
)
{}
template
<
typename
IdT
>
void
apply
()
{
DDim
table_dim
=
weight_
.
dims
();
auto
ids
=
CopyIdsToVector
<
IdT
,
int64_t
>
(
input_
);
auto
ids_num
=
static_cast
<
int64_t
>
(
ids
.
size
());
// Since paddings are not trainable and fixed in forward, the gradient of
// paddings makes no sense and we don't deal with it in backward.
{
auto
*
d_output
=
&
out_grad_
;
// auto d_table = weight_grad_;
auto
*
ids_data
=
ids
.
data
();
int64_t
N
=
table_dim
[
0
];
int64_t
D
=
table_dim
[
1
];
auto
*
d_output_data
=
d_output
->
template
data
<
T
>();
dev_ctx_
.
template
Alloc
<
T
>(
weight_grad_
);
auto
*
d_table_data
=
weight_grad_
->
data
<
T
>
();
memset
(
d_table_data
,
0
,
weight_grad_
->
numel
()
*
sizeof
(
T
));
for
(
int64_t
i
=
0
;
i
<
ids_num
;
++
i
)
{
if
(
padding_idx_
!=
kNoPadding
&&
ids_data
[
i
]
==
padding_idx_
)
{
// the gradient of padding_idx should be 0, already done by memset, so
// do nothing.
}
else
{
PADDLE_ENFORCE_LT
(
ids_data
[
i
],
N
,
phi
::
errors
::
InvalidArgument
(
"Variable value (input) of OP(fluid.layers.embedding) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value."
,
N
,
ids_data
[
i
]));
PADDLE_ENFORCE_GE
(
ids_data
[
i
],
0
,
phi
::
errors
::
InvalidArgument
(
"Variable value (input) of OP(fluid.layers.embedding) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value."
,
N
,
ids_data
[
i
]));
for
(
int
j
=
0
;
j
<
D
;
++
j
)
{
d_table_data
[
ids_data
[
i
]
*
D
+
j
]
+=
d_output_data
[
i
*
D
+
j
];
}
}
}
}
}
private:
const
Context
&
dev_ctx_
;
const
DenseTensor
&
input_
;
const
DenseTensor
&
weight_
;
const
DenseTensor
&
out_grad_
;
DenseTensor
*
weight_grad_
;
int64_t
padding_idx_
;
};
template
<
typename
T
,
typename
Context
>
void
EmbeddingGradKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
DenseTensor
&
weight
,
const
DenseTensor
&
out_grad
,
int64_t
padding_idx
,
DenseTensor
*
weight_grad
)
{
LookupTableV2GradCPUFunctor
<
T
,
Context
>
functor
(
ctx
,
input
,
weight
,
out_grad
,
padding_idx
,
weight_grad
);
paddle
::
framework
::
VisitIntDataType
(
paddle
::
framework
::
TransToProtoVarType
(
input
.
dtype
()),
functor
);
}
}
// namespace phi
PT_REGISTER_KERNEL
(
embedding_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
EmbeddingGradKernel
,
float
,
double
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/cpu/embedding_kernel.cc
0 → 100644
浏览文件 @
e037504b
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/embedding_kernel.h"
#include "paddle/phi/kernels/funcs/embedding_util.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
struct
LookupTableV2CPUFunctor
{
LookupTableV2CPUFunctor
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
DenseTensor
&
weight
,
int64_t
padding_idx
,
DenseTensor
*
out
)
:
dev_ctx_
(
dev_ctx
),
input_
(
input
),
weight_
(
weight
),
out_
(
out
),
padding_idx_
(
padding_idx
)
{}
template
<
typename
IdT
>
void
apply
()
{
auto
ids
=
CopyIdsToVector
<
IdT
,
int64_t
>
(
input_
);
auto
ids_numel
=
static_cast
<
int64_t
>
(
ids
.
size
());
int64_t
row_number
=
weight_
.
dims
()[
0
];
int64_t
row_width
=
weight_
.
dims
()[
1
];
auto
*
table
=
weight_
.
data
<
T
>
();
dev_ctx_
.
template
Alloc
<
T
>(
out_
);
auto
*
output
=
out_
->
data
<
T
>
();
for
(
int64_t
i
=
0
;
i
<
ids_numel
;
++
i
)
{
if
(
padding_idx_
!=
kNoPadding
&&
ids
[
i
]
==
padding_idx_
)
{
memset
(
output
+
i
*
row_width
,
0
,
row_width
*
sizeof
(
T
));
}
else
{
PADDLE_ENFORCE_LT
(
ids
[
i
],
row_number
,
phi
::
errors
::
InvalidArgument
(
"Variable value (input) of OP(fluid.layers.embedding) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value."
,
row_number
,
ids
[
i
]));
PADDLE_ENFORCE_GE
(
ids
[
i
],
0
,
phi
::
errors
::
InvalidArgument
(
"Variable value (input) of OP(fluid.layers.embedding) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value."
,
row_number
,
ids
[
i
]));
memcpy
(
output
+
i
*
row_width
,
table
+
ids
[
i
]
*
row_width
,
row_width
*
sizeof
(
T
));
}
}
}
private:
const
Context
&
dev_ctx_
;
const
DenseTensor
&
input_
;
const
DenseTensor
&
weight_
;
DenseTensor
*
out_
;
int64_t
padding_idx_
;
};
template
<
typename
T
,
typename
Context
>
void
EmbeddingKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
DenseTensor
&
weight
,
int64_t
padding_idx
,
DenseTensor
*
out
)
{
LookupTableV2CPUFunctor
<
T
,
Context
>
functor
(
ctx
,
input
,
weight
,
padding_idx
,
out
);
paddle
::
framework
::
VisitIntDataType
(
paddle
::
framework
::
TransToProtoVarType
(
input
.
dtype
()),
functor
);
}
}
// namespace phi
PT_REGISTER_KERNEL
(
embedding
,
CPU
,
ALL_LAYOUT
,
phi
::
EmbeddingKernel
,
float
,
double
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/cpu/sparse_weight_embedding_grad_kernel.cc
0 → 100644
浏览文件 @
e037504b
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/embedding_grad_kernel.h"
#include "paddle/phi/kernels/funcs/embedding_util.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
struct
LookupTableV2GradCPUFunctor
{
LookupTableV2GradCPUFunctor
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
SelectedRows
&
weight
,
const
DenseTensor
&
out_grad
,
int64_t
padding_idx
,
DenseTensor
*
weight_grad
)
:
dev_ctx_
(
dev_ctx
),
input_
(
input
),
weight_
(
weight
),
out_grad_
(
out_grad
),
weight_grad_
(
weight_grad
),
padding_idx_
(
padding_idx
)
{}
template
<
typename
IdT
>
void
apply
()
{
DDim
table_dim
=
weight_
.
dims
();
auto
ids
=
CopyIdsToVector
<
IdT
,
int64_t
>
(
input_
);
auto
ids_num
=
static_cast
<
int64_t
>
(
ids
.
size
());
// Since paddings are not trainable and fixed in forward, the gradient of
// paddings makes no sense and we don't deal with it in backward.
{
auto
*
d_output
=
&
out_grad_
;
// auto d_table = weight_grad_;
auto
*
ids_data
=
ids
.
data
();
int64_t
N
=
table_dim
[
0
];
int64_t
D
=
table_dim
[
1
];
auto
*
d_output_data
=
d_output
->
template
data
<
T
>();
dev_ctx_
.
template
Alloc
<
T
>(
weight_grad_
);
auto
*
d_table_data
=
weight_grad_
->
data
<
T
>
();
memset
(
d_table_data
,
0
,
weight_grad_
->
numel
()
*
sizeof
(
T
));
for
(
int64_t
i
=
0
;
i
<
ids_num
;
++
i
)
{
if
(
padding_idx_
!=
kNoPadding
&&
ids_data
[
i
]
==
padding_idx_
)
{
// the gradient of padding_idx should be 0, already done by memset, so
// do nothing.
}
else
{
PADDLE_ENFORCE_LT
(
ids_data
[
i
],
N
,
phi
::
errors
::
InvalidArgument
(
"Variable value (input) of OP(fluid.layers.embedding) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value."
,
N
,
ids_data
[
i
]));
PADDLE_ENFORCE_GE
(
ids_data
[
i
],
0
,
phi
::
errors
::
InvalidArgument
(
"Variable value (input) of OP(fluid.layers.embedding) "
"expected >= 0 and < %ld, but got %ld. Please check input "
"value."
,
N
,
ids_data
[
i
]));
for
(
int
j
=
0
;
j
<
D
;
++
j
)
{
d_table_data
[
ids_data
[
i
]
*
D
+
j
]
+=
d_output_data
[
i
*
D
+
j
];
}
}
}
}
}
private:
const
Context
&
dev_ctx_
;
const
DenseTensor
&
input_
;
const
SelectedRows
&
weight_
;
const
DenseTensor
&
out_grad_
;
DenseTensor
*
weight_grad_
;
int64_t
padding_idx_
;
};
template
<
typename
T
,
typename
Context
>
void
SparseWeightEmbeddingGradKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
SelectedRows
&
weight
,
const
DenseTensor
&
out_grad
,
int64_t
padding_idx
,
DenseTensor
*
weight_grad
)
{
LookupTableV2GradCPUFunctor
<
T
,
Context
>
functor
(
ctx
,
input
,
weight
,
out_grad
,
padding_idx
,
weight_grad
);
paddle
::
framework
::
VisitIntDataType
(
paddle
::
framework
::
TransToProtoVarType
(
input
.
dtype
()),
functor
);
}
}
// namespace phi
PT_REGISTER_KERNEL
(
sparse_weight_embedding_grad
,
CPU
,
ALL_LAYOUT
,
phi
::
SparseWeightEmbeddingGradKernel
,
float
,
double
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/cpu/sparse_weight_embedding_kernel.cc
0 → 100644
浏览文件 @
e037504b
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/embedding_kernel.h"
#include "paddle/phi/kernels/funcs/embedding_util.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
struct
LookupTableV2CPUFunctor
{
LookupTableV2CPUFunctor
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
SelectedRows
&
weight
,
int64_t
padding_idx
,
DenseTensor
*
out
)
:
dev_ctx_
(
dev_ctx
),
input_
(
input
),
weight_
(
weight
),
out_
(
out
),
padding_idx_
(
padding_idx
)
{}
template
<
typename
IdT
>
void
apply
()
{
auto
ids
=
CopyIdsToVector
<
IdT
,
int64_t
>
(
input_
);
auto
ids_numel
=
static_cast
<
int64_t
>
(
ids
.
size
());
const
auto
&
table_t
=
weight_
;
auto
output_t
=
out_
;
int64_t
row_width
=
table_t
.
value
().
dims
()[
1
];
const
auto
*
table
=
table_t
.
value
().
template
data
<
T
>();
auto
*
output
=
output_t
->
template
mutable_data
<
T
>(
dev_ctx_
.
GetPlace
());
auto
input_data_type
=
paddle
::
framework
::
TransToProtoVarType
(
table_t
.
value
().
dtype
());
for
(
int64_t
i
=
0
;
i
<
ids_numel
;
++
i
)
{
if
(
padding_idx_
!=
kNoPadding
&&
ids
[
i
]
==
padding_idx_
)
{
memset
(
output
+
i
*
row_width
,
0
,
row_width
*
sizeof
(
T
));
}
else
{
PADDLE_ENFORCE_GE
(
ids
[
i
],
0
,
phi
::
errors
::
InvalidArgument
(
"Variable value (input) of OP(fluid.layers.embedding) "
"expected >= 0. But received %ld"
,
ids
[
i
]));
auto
id_index
=
table_t
.
Index
(
ids
[
i
]);
PADDLE_ENFORCE_GE
(
id_index
,
0
,
phi
::
errors
::
InvalidArgument
(
"the input key should be exists. But received %d."
,
id_index
));
if
(
input_data_type
==
paddle
::
framework
::
proto
::
VarType
::
BF16
)
{
memcpy
(
output
+
i
*
row_width
,
table
+
id_index
*
row_width
,
row_width
*
sizeof
(
T
));
}
else
{
auto
blas
=
phi
::
funcs
::
GetBlas
<
phi
::
CPUContext
,
T
>
(
dev_ctx_
);
blas
.
VCOPY
(
row_width
,
table
+
id_index
*
row_width
,
output
+
i
*
row_width
);
}
}
}
}
private:
const
Context
&
dev_ctx_
;
const
DenseTensor
&
input_
;
const
SelectedRows
&
weight_
;
DenseTensor
*
out_
;
int64_t
padding_idx_
;
};
template
<
typename
T
,
typename
Context
>
void
SparseWeightEmbeddingKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
SelectedRows
&
weight
,
int64_t
padding_idx
,
DenseTensor
*
out
)
{
LookupTableV2CPUFunctor
<
T
,
Context
>
functor
(
ctx
,
input
,
weight
,
padding_idx
,
out
);
paddle
::
framework
::
VisitIntDataType
(
paddle
::
framework
::
TransToProtoVarType
(
input
.
dtype
()),
functor
);
}
}
// namespace phi
PT_REGISTER_KERNEL
(
sparse_weight_embedding
,
CPU
,
ALL_LAYOUT
,
phi
::
SparseWeightEmbeddingKernel
,
float
,
double
,
phi
::
dtype
::
bfloat16
)
{}
paddle/phi/kernels/embedding_grad_kernel.h
0 → 100644
浏览文件 @
e037504b
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
EmbeddingGradKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
DenseTensor
&
weight
,
const
DenseTensor
&
out_grad
,
int64_t
padding_idx
,
DenseTensor
*
weight_grad
);
}
// namespace phi
paddle/phi/kernels/embedding_kernel.h
0 → 100644
浏览文件 @
e037504b
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
EmbeddingKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
inputx
,
const
DenseTensor
&
weight
,
int64_t
padding_idx
,
DenseTensor
*
out
);
}
// namespace phi
paddle/phi/kernels/funcs/embedding_util.h
0 → 100644
浏览文件 @
e037504b
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
constexpr
int64_t
kNoPadding
=
-
1
;
template
<
typename
InT
,
typename
OutT
>
static
std
::
vector
<
OutT
>
CopyIdsToVector
(
const
DenseTensor
&
ids
)
{
auto
numel
=
ids
.
numel
();
const
auto
*
src
=
ids
.
data
<
InT
>
();
std
::
vector
<
OutT
>
ret
(
numel
);
if
(
std
::
is_same
<
InT
,
OutT
>::
value
)
{
std
::
memcpy
(
ret
.
data
(),
src
,
numel
*
sizeof
(
InT
));
}
else
{
for
(
decltype
(
numel
)
i
=
0
;
i
<
numel
;
++
i
)
{
ret
[
i
]
=
src
[
i
];
}
}
return
ret
;
}
}
// namespace phi
paddle/phi/kernels/gpu/embedding_grad_kernel.cu
0 → 100644
浏览文件 @
e037504b
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/embedding_grad_kernel.h"
#include "paddle/phi/kernels/funcs/embedding_util.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
namespace
phi
{
template
<
typename
InT
,
typename
OutT
>
__global__
void
InputTypeConvert
(
const
InT
*
in_ids
,
const
int64_t
K
,
OutT
*
out_ids
)
{
for
(
int
i
=
0
;
i
<
K
;
i
++
)
{
out_ids
[
i
]
=
static_cast
<
OutT
>
(
in_ids
[
i
]);
}
}
template
<
typename
T
,
typename
IdT
,
int
BlockDimX
,
int
BlockDimY
,
int
GridDimX
>
__global__
void
LookupTableV2Grad
(
T
*
table
,
const
T
*
output
,
const
IdT
*
ids
,
const
int64_t
N
,
const
int64_t
K
,
const
int64_t
D
)
{
int
idx
=
threadIdx
.
x
;
int
idy
=
blockIdx
.
x
+
threadIdx
.
y
*
GridDimX
;
while
(
idy
<
K
)
{
auto
id
=
static_cast
<
int64_t
>
(
ids
[
idy
]);
const
T
*
out
=
output
+
idy
*
D
;
T
*
tab
=
table
+
id
*
D
;
for
(
int
i
=
idx
;
i
<
D
;
i
+=
BlockDimX
)
{
paddle
::
platform
::
CudaAtomicAdd
(
&
tab
[
i
],
out
[
i
]);
}
idy
+=
BlockDimY
*
GridDimX
;
}
}
template
<
typename
T
,
typename
Context
>
struct
LookupTableV2GradCUDAFunctor
{
LookupTableV2GradCUDAFunctor
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
DenseTensor
&
weight
,
const
DenseTensor
&
out_grad
,
int64_t
padding_idx
,
DenseTensor
*
weight_grad
)
:
dev_ctx_
(
dev_ctx
),
input_
(
input
),
weight_
(
weight
),
out_grad_
(
out_grad
),
padding_idx_
(
padding_idx
),
weight_grad_
(
weight_grad
)
{}
template
<
typename
IdT
>
void
apply
()
{
// Since paddings are not trainable and fixed in forward, the gradient of
// paddings makes no sense and we don't deal with it in backward.
{
auto
d_output_t
=
out_grad_
;
auto
d_table_t
=
weight_grad_
;
int
N
=
weight_grad_
->
dims
()[
0
];
int
D
=
weight_grad_
->
dims
()[
1
];
int
K
=
input_
.
numel
();
dim3
threads
(
128
,
8
);
dim3
grids
(
8
,
1
);
const
T
*
d_output
=
d_output_t
.
template
data
<
T
>();
const
auto
*
ids
=
input_
.
template
data
<
IdT
>();
T
*
d_table
=
d_table_t
->
mutable_data
<
T
>
(
dev_ctx_
.
GetPlace
());
auto
t
=
EigenVector
<
T
>::
Flatten
(
*
d_table_t
);
t
.
device
(
*
dev_ctx_
.
eigen_device
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
LookupTableV2Grad
<
T
,
IdT
,
128
,
8
,
8
><<<
grids
,
threads
,
0
,
dev_ctx_
.
stream
()
>>>
(
d_table
,
d_output
,
ids
,
N
,
K
,
D
);
}
}
private:
const
phi
::
GPUContext
&
dev_ctx_
;
const
DenseTensor
&
input_
;
const
DenseTensor
&
weight_
;
const
DenseTensor
&
out_grad_
;
int64_t
padding_idx_
;
DenseTensor
*
weight_grad_
;
};
template
<
typename
T
,
typename
Context
>
void
EmbeddingGradKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
DenseTensor
&
weight
,
const
DenseTensor
&
out_grad
,
int64_t
padding_idx
,
DenseTensor
*
weight_grad
)
{
LookupTableV2GradCUDAFunctor
<
T
,
Context
>
functor
(
ctx
,
input
,
weight
,
out_grad
,
padding_idx
,
weight_grad
);
paddle
::
framework
::
VisitIntDataType
(
paddle
::
framework
::
TransToProtoVarType
(
input
.
dtype
()),
functor
);
}
}
// namespace phi
PT_REGISTER_KERNEL
(
embedding_grad
,
GPU
,
ALL_LAYOUT
,
phi
::
EmbeddingGradKernel
,
float
,
double
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/gpu/embedding_kernel.cu
0 → 100644
浏览文件 @
e037504b
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/embedding_kernel.h"
#include "paddle/phi/kernels/funcs/embedding_util.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
namespace
phi
{
template
<
typename
T
,
typename
IdT
,
int
BlockDimX
,
int
BlockDimY
,
int
GridDimX
,
bool
PaddingFlag
>
__global__
void
LookupTableV2
(
T
*
output
,
const
T
*
table
,
const
IdT
*
ids
,
const
int64_t
N
,
const
int64_t
K
,
const
int64_t
D
,
const
int64_t
padding_idx
)
{
int
idx
=
threadIdx
.
x
;
int
idy
=
blockIdx
.
x
+
threadIdx
.
y
*
GridDimX
;
while
(
idy
<
K
)
{
auto
id
=
static_cast
<
int64_t
>
(
ids
[
idy
]);
T
*
out
=
output
+
idy
*
D
;
const
T
*
tab
=
table
+
id
*
D
;
for
(
int
i
=
idx
;
i
<
D
;
i
+=
BlockDimX
)
{
if
(
PaddingFlag
)
{
if
(
id
==
padding_idx
)
out
[
i
]
=
static_cast
<
T
>
(
0
);
else
out
[
i
]
=
tab
[
i
];
}
else
{
out
[
i
]
=
tab
[
i
];
}
}
idy
+=
BlockDimY
*
GridDimX
;
}
}
template
<
typename
T
,
typename
Context
>
struct
LookupTableV2CUDAFunctor
{
LookupTableV2CUDAFunctor
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
input
,
const
DenseTensor
&
weight
,
int64_t
padding_idx
,
DenseTensor
*
out
)
:
dev_ctx_
(
dev_ctx
),
input_
(
input
),
weight_
(
weight
),
out_
(
out
),
padding_idx_
(
padding_idx
)
{}
template
<
typename
IdT
>
void
apply
()
{
size_t
N
=
weight_
.
dims
()[
0
];
size_t
D
=
weight_
.
dims
()[
1
];
size_t
K
=
input_
.
numel
();
dim3
threads
(
256
,
4
);
dim3
grids
(
80
,
1
);
const
auto
*
table
=
weight_
.
template
data
<
T
>();
const
auto
*
ids
=
input_
.
template
data
<
IdT
>();
auto
*
output
=
out_
->
template
mutable_data
<
T
>(
dev_ctx_
.
GetPlace
());
auto
stream
=
dev_ctx_
.
stream
();
if
(
padding_idx_
==
-
1
)
{
LookupTableV2
<
T
,
IdT
,
256
,
4
,
80
,
false
><<<
grids
,
threads
,
0
,
stream
>>>
(
output
,
table
,
ids
,
N
,
K
,
D
,
padding_idx_
);
}
else
{
LookupTableV2
<
T
,
IdT
,
256
,
4
,
80
,
true
><<<
grids
,
threads
,
0
,
stream
>>>
(
output
,
table
,
ids
,
N
,
K
,
D
,
padding_idx_
);
}
}
private:
const
phi
::
GPUContext
&
dev_ctx_
;
const
DenseTensor
&
input_
;
const
DenseTensor
&
weight_
;
DenseTensor
*
out_
;
int64_t
padding_idx_
;
};
template
<
typename
T
,
typename
Context
>
void
EmbeddingKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
DenseTensor
&
weight
,
int64_t
padding_idx
,
DenseTensor
*
out
)
{
LookupTableV2CUDAFunctor
<
T
,
Context
>
functor
(
ctx
,
input
,
weight
,
padding_idx
,
out
);
paddle
::
framework
::
VisitIntDataType
(
paddle
::
framework
::
TransToProtoVarType
(
input
.
dtype
()),
functor
);
}
}
// namespace phi
PT_REGISTER_KERNEL
(
embedding
,
GPU
,
ALL_LAYOUT
,
phi
::
EmbeddingKernel
,
float
,
double
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/sparse_weight_embedding_grad_kernel.h
0 → 100644
浏览文件 @
e037504b
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/selected_rows.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
SparseWeightEmbeddingGradKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
input
,
const
SelectedRows
&
weight
,
const
DenseTensor
&
out_grad
,
int64_t
padding_idx
,
DenseTensor
*
weight_grad
);
}
// namespace phi
paddle/phi/kernels/sparse_weight_embedding_kernel.h
0 → 100644
浏览文件 @
e037504b
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/selected_rows.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
SparseWeightEmbeddingKernel
(
const
Context
&
ctx
,
const
DenseTensor
&
inputx
,
const
SelectedRows
&
weight
,
int64_t
padding_idx
,
DenseTensor
*
out
);
}
// namespace phi
paddle/phi/ops/compat/embedding_sig.cc
0 → 100644
浏览文件 @
e037504b
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace
phi
{
KernelSignature
EmbeddingOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"embedding"
,
{
"Ids"
,
"W"
},
{
"padding_idx"
},
{
"Out"
});
}
KernelSignature
EmbeddingGradOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
return
KernelSignature
(
"embedding_grad"
,
{
"Ids"
,
"W"
,
GradVarName
(
"Out"
)},
{
"padding_idx"
},
{
GradVarName
(
"W"
)});
}
}
// namespace phi
PT_REGISTER_BASE_KERNEL_NAME
(
lookup_table_v2
,
embedding
);
PT_REGISTER_BASE_KERNEL_NAME
(
lookup_table_v2_grad
,
embedding_grad
);
PT_REGISTER_ARG_MAPPING_FN
(
lookup_table_v2
,
phi
::
EmbeddingOpArgumentMapping
);
PT_REGISTER_ARG_MAPPING_FN
(
lookup_table_v2_grad
,
phi
::
EmbeddingGradOpArgumentMapping
);
python/paddle/fluid/tests/unittests/test_lookup_table_v2_op.py
浏览文件 @
e037504b
...
@@ -25,24 +25,23 @@ import paddle.compat as cpt
...
@@ -25,24 +25,23 @@ import paddle.compat as cpt
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid
import
Program
,
program_guard
from
paddle.fluid
import
Program
,
program_guard
# class TestStaticGraphSupportMultipleInt(unittest.TestCase):
class
TestStaticGraphSupportMultipleInt
(
unittest
.
TestCase
):
# def test_main(self):
def
test_main
(
self
):
# dtypes = ['uint8', 'int8', 'int16', 'int32', 'int64']
dtypes
=
[
'uint8'
,
'int8'
,
'int16'
,
'int32'
,
'int64'
]
# if paddle.in_dynamic_mode():
if
paddle
.
in_dynamic_mode
():
# paddle.enable_static()
paddle
.
enable_static
()
# disable_static = True
disable_static
=
True
# else:
else
:
# disable_static = False
disable_static
=
False
# for i, dtype in enumerate(dtypes):
for
i
,
dtype
in
enumerate
(
dtypes
):
# with paddle.static.program_guard(paddle.static.Program(),
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
(),
# paddle.static.Program()):
paddle
.
static
.
Program
()):
# x = paddle.static.data(name='x', shape=[-1, 7, 30], dtype=dtype)
x
=
paddle
.
static
.
data
(
name
=
'x'
,
shape
=
[
-
1
,
7
,
30
],
dtype
=
dtype
)
# emb = paddle.nn.Embedding(10, 20)
emb
=
paddle
.
nn
.
Embedding
(
10
,
20
)
# y = emb(x)
y
=
emb
(
x
)
# if disable_static:
if
disable_static
:
# paddle.disable_static()
paddle
.
disable_static
()
class
TestLookupTableOp
(
OpTest
):
class
TestLookupTableOp
(
OpTest
):
...
@@ -63,19 +62,17 @@ class TestLookupTableOp(OpTest):
...
@@ -63,19 +62,17 @@ class TestLookupTableOp(OpTest):
self
.
check_grad
([
'W'
],
'Out'
,
no_grad_set
=
set
(
'Ids'
))
self
.
check_grad
([
'W'
],
'Out'
,
no_grad_set
=
set
(
'Ids'
))
class
TestLookupTableOpInt16
(
OpTest
):
#
class TestLookupTableOpInt16(OpTest):
def
id_dtype
(
self
):
#
def id_dtype(self):
return
"int16"
#
return "int16"
# class TestLookupTableOpInt8(OpTest):
# def id_dtype(self):
# return "int8"
class
TestLookupTableOpInt8
(
OpTest
):
# class TestLookupTableOpUInt8(OpTest):
def
id_dtype
(
self
):
# def id_dtype(self):
return
"int8"
# return "uint8"
class
TestLookupTableOpUInt8
(
OpTest
):
def
id_dtype
(
self
):
return
"uint8"
class
TestLookupTableOpWithTensorIds
(
OpTest
):
class
TestLookupTableOpWithTensorIds
(
OpTest
):
...
@@ -93,190 +90,183 @@ class TestLookupTableOpWithTensorIds(OpTest):
...
@@ -93,190 +90,183 @@ class TestLookupTableOpWithTensorIds(OpTest):
self
.
check_grad
([
'W'
],
'Out'
,
no_grad_set
=
set
(
'Ids'
))
self
.
check_grad
([
'W'
],
'Out'
,
no_grad_set
=
set
(
'Ids'
))
@
skip_check_grad_ci
(
# @skip_check_grad_ci(
reason
=
"Since paddings are not trainable and fixed in forward,"
# reason="Since paddings are not trainable and fixed in forward,"
"the gradient of paddings makes no sense and we don't "
# "the gradient of paddings makes no sense and we don't "
"test the gradient here."
)
# "test the gradient here.")
class
TestLookupTableOpWithPadding
(
TestLookupTableOp
):
# class TestLookupTableOpWithPadding(TestLookupTableOp):
def
test_check_output
(
self
):
# def test_check_output(self):
ids
=
np
.
squeeze
(
self
.
inputs
[
'Ids'
])
# ids = np.squeeze(self.inputs['Ids'])
padding_idx
=
np
.
random
.
choice
(
ids
,
1
)[
0
]
# padding_idx = np.random.choice(ids, 1)[0]
self
.
outputs
[
'Out'
][
ids
==
padding_idx
]
=
np
.
zeros
(
31
)
# self.outputs['Out'][ids == padding_idx] = np.zeros(31)
self
.
attrs
=
{
'padding_idx'
:
int
(
padding_idx
)}
# self.attrs = {'padding_idx': int(padding_idx)}
self
.
check_output
()
# self.check_output()
# @skip_check_grad_ci(
@
skip_check_grad_ci
(
# reason="Since paddings are not trainable and fixed in forward,"
reason
=
"Since paddings are not trainable and fixed in forward,"
# "the gradient of paddings makes no sense and we don't "
"the gradient of paddings makes no sense and we don't "
# "test the gradient here.")
"test the gradient here."
)
# class TestLookupTableOpWithTensorIdsAndPadding(TestLookupTableOpWithTensorIds):
class
TestLookupTableOpWithTensorIdsAndPadding
(
TestLookupTableOpWithTensorIds
):
# def test_check_output(self):
def
test_check_output
(
self
):
# ids = self.inputs['Ids']
ids
=
self
.
inputs
[
'Ids'
]
# flatten_idx = ids.flatten()
flatten_idx
=
ids
.
flatten
()
# padding_idx = np.random.choice(flatten_idx, 1)[0]
padding_idx
=
np
.
random
.
choice
(
flatten_idx
,
1
)[
0
]
# self.outputs['Out'][np.squeeze(ids == padding_idx)] = np.zeros(31)
self
.
outputs
[
'Out'
][
np
.
squeeze
(
ids
==
padding_idx
)]
=
np
.
zeros
(
31
)
# self.attrs = {'padding_idx': cpt.long_type(padding_idx)}
self
.
attrs
=
{
'padding_idx'
:
cpt
.
long_type
(
padding_idx
)}
# self.check_output()
self
.
check_output
()
# class TestLookupTableWIsSelectedRows(unittest.TestCase):
# def prepare_ids(self, scope, place):
class
TestLookupTableWIsSelectedRows
(
unittest
.
TestCase
):
# ids_tensor = scope.var('Ids').get_tensor()
def
prepare_ids
(
self
,
scope
,
place
):
# ids_array = np.array([0, 4, 3, 5]).astype("int32")
ids_tensor
=
scope
.
var
(
'Ids'
).
get_tensor
()
# ids_tensor.set(ids_array, place)
ids_array
=
np
.
array
([
0
,
4
,
3
,
5
]).
astype
(
"int32"
)
# return ids_array
ids_tensor
.
set
(
ids_array
,
place
)
return
ids_array
# def prepare_w(self, scope, place):
# rows = [0, 1, 2, 3, 4, 5, 6]
def
prepare_w
(
self
,
scope
,
place
):
# row_numel = 12
rows
=
[
0
,
1
,
2
,
3
,
4
,
5
,
6
]
row_numel
=
12
# w_selected_rows = scope.var('W').get_selected_rows()
# w_selected_rows.set_height(len(rows))
w_selected_rows
=
scope
.
var
(
'W'
).
get_selected_rows
()
# w_selected_rows.set_rows(rows)
w_selected_rows
.
set_height
(
len
(
rows
))
# w_array = np.ones((len(rows), row_numel)).astype("float32")
w_selected_rows
.
set_rows
(
rows
)
# for i in range(len(rows)):
w_array
=
np
.
ones
((
len
(
rows
),
row_numel
)).
astype
(
"float32"
)
# w_array[i] *= i
for
i
in
range
(
len
(
rows
)):
# w_tensor = w_selected_rows.get_tensor()
w_array
[
i
]
*=
i
# w_tensor.set(w_array, place)
w_tensor
=
w_selected_rows
.
get_tensor
()
w_tensor
.
set
(
w_array
,
place
)
# def create_out_tensor(self, scope, place):
# return scope.var('Out').get_tensor()
def
create_out_tensor
(
self
,
scope
,
place
):
return
scope
.
var
(
'Out'
).
get_tensor
()
# def check_result(self, ids_array, result_array):
# # all(): return True if all elements of the iterable are true (or if the iterable is empty)
def
check_result
(
self
,
ids_array
,
result_array
):
# for idx, row in enumerate(ids_array):
# all(): return True if all elements of the iterable are true (or if the iterable is empty)
# assert (row == result_array[idx]).all()
for
idx
,
row
in
enumerate
(
ids_array
):
assert
(
row
==
result_array
[
idx
]).
all
()
# def check_with_place(self, place):
# scope = core.Scope()
def
check_with_place
(
self
,
place
):
scope
=
core
.
Scope
()
# ids_array = self.prepare_ids(scope, place)
ids_array
=
self
.
prepare_ids
(
scope
,
place
)
# self.prepare_w(scope, place)
self
.
prepare_w
(
scope
,
place
)
# out_tensor = self.create_out_tensor(scope, place)
out_tensor
=
self
.
create_out_tensor
(
scope
,
place
)
# # create and run lookup_table operator
# lookup_table = Operator("lookup_table_v2", W='W', Ids='Ids', Out='Out')
# create and run lookup_table operator
# lookup_table.run(scope, place)
lookup_table
=
Operator
(
"lookup_table_v2"
,
W
=
'W'
,
Ids
=
'Ids'
,
Out
=
'Out'
)
lookup_table
.
run
(
scope
,
place
)
# # get result from Out
# result_array = np.array(out_tensor)
# get result from Out
result_array
=
np
.
array
(
out_tensor
)
# self.check_result(ids_array, result_array)
self
.
check_result
(
ids_array
,
result_array
)
# def test_w_is_selected_rows(self):
# places = [core.CPUPlace()]
def
test_w_is_selected_rows
(
self
):
# # currently only support CPU
places
=
[
core
.
CPUPlace
()]
# for place in places:
# currently only support CPU
# self.check_with_place(place)
for
place
in
places
:
self
.
check_with_place
(
place
)
# class TestLookupTableWithTensorIdsWIsSelectedRows(
# TestLookupTableWIsSelectedRows):
# def prepare_ids(self, scope, place):
class
TestLookupTableWithTensorIdsWIsSelectedRows
(
# ids_tensor = scope.var('Ids').get_tensor()
TestLookupTableWIsSelectedRows
):
# ids_array = np.random.randint(
def
prepare_ids
(
self
,
scope
,
place
):
# low=0, high=6, size=(2, 4, 3)).astype("int64")
ids_tensor
=
scope
.
var
(
'Ids'
).
get_tensor
()
# ids_tensor.set(ids_array, place)
ids_array
=
np
.
random
.
randint
(
# return ids_array
low
=
0
,
high
=
6
,
size
=
(
2
,
4
,
3
)).
astype
(
"int64"
)
ids_tensor
.
set
(
ids_array
,
place
)
# def check_result(self, ids_array, result_array):
return
ids_array
# for idx, row in np.ndenumerate(ids_array):
# assert (row == result_array[idx]).all()
def
check_result
(
self
,
ids_array
,
result_array
):
for
idx
,
row
in
np
.
ndenumerate
(
ids_array
):
# class TestLookupTableIsSparse(unittest.TestCase):
assert
(
row
==
result_array
[
idx
]).
all
()
# def init_data(self):
# self.x_data = np.array([[1, 3, 0, 4, 7]]).astype("int64")
# self.y_data = np.array([[0.1, 0.3, 0, 0.4, 0.7]]).astype("float32")
class
TestLookupTableIsSparse
(
unittest
.
TestCase
):
def
init_data
(
self
):
# def get_w_grad(self, is_sparse):
self
.
x_data
=
np
.
array
([[
1
,
3
,
0
,
4
,
7
]]).
astype
(
"int64"
)
# self.init_data()
self
.
y_data
=
np
.
array
([[
0.1
,
0.3
,
0
,
0.4
,
0.7
]]).
astype
(
"float32"
)
# main_program = fluid.Program()
# with fluid.program_guard(main_program, fluid.Program()):
def
get_w_grad
(
self
,
is_sparse
):
# x = fluid.layers.data(name='x', shape=[5], dtype='int64')
self
.
init_data
()
# y_ = fluid.layers.data(name='y_', shape=[5], dtype='float32')
main_program
=
fluid
.
Program
()
# emb = fluid.input.embedding(
with
fluid
.
program_guard
(
main_program
,
fluid
.
Program
()):
# input=x,
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
5
],
dtype
=
'int64'
)
# size=[10, 16],
y_
=
fluid
.
layers
.
data
(
name
=
'y_'
,
shape
=
[
5
],
dtype
=
'float32'
)
# param_attr=fluid.ParamAttr(
emb
=
fluid
.
input
.
embedding
(
# name="emb_weight",
input
=
x
,
# learning_rate=10,
size
=
[
10
,
16
],
# initializer=fluid.initializer.NumpyArrayInitializer(
param_attr
=
fluid
.
ParamAttr
(
# self.w_data)),
name
=
"emb_weight"
,
# is_sparse=is_sparse)
learning_rate
=
10
,
# y = fluid.layers.reduce_sum(emb, dim=-1)
initializer
=
fluid
.
initializer
.
NumpyArrayInitializer
(
self
.
w_data
)),
# loss = fluid.layers.square_error_cost(input=y, label=y_)
is_sparse
=
is_sparse
)
# loss = fluid.layers.mean(loss)
y
=
fluid
.
layers
.
reduce_sum
(
emb
,
dim
=-
1
)
# sgd_optimizer = fluid.optimizer.SGD(learning_rate=1e-4)
loss
=
fluid
.
layers
.
square_error_cost
(
input
=
y
,
label
=
y_
)
# sgd_optimizer.minimize(loss)
loss
=
fluid
.
layers
.
mean
(
loss
)
# place = fluid.CPUPlace()
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
1e-4
)
# exe = fluid.Executor(place)
sgd_optimizer
.
minimize
(
loss
)
# exe.run(fluid.default_startup_program())
# ret = exe.run(feed={'x': self.x_data,
place
=
fluid
.
CPUPlace
()
# 'y_': self.y_data},
exe
=
fluid
.
Executor
(
place
)
# fetch_list=['emb_weight'],
exe
.
run
(
fluid
.
default_startup_program
())
# return_numpy=False)
ret
=
exe
.
run
(
feed
=
{
'x'
:
self
.
x_data
,
# return np.array(ret[0])
'y_'
:
self
.
y_data
},
fetch_list
=
[
'emb_weight'
],
# def test_w_grad(self):
return_numpy
=
False
)
# self.w_data = np.random.random(size=(10, 16)).astype("float32")
return
np
.
array
(
ret
[
0
])
# w_grad = self.get_w_grad(False)
# w_grad_with_sparse = self.get_w_grad(True)
def
test_w_grad
(
self
):
# self.check_grad(w_grad, w_grad_with_sparse)
self
.
w_data
=
np
.
random
.
random
(
size
=
(
10
,
16
)).
astype
(
"float32"
)
w_grad
=
self
.
get_w_grad
(
False
)
# def check_grad(self, w_grad1, w_grad2, tolerance=1e-6):
w_grad_with_sparse
=
self
.
get_w_grad
(
True
)
# np.testing.assert_allclose(
self
.
check_grad
(
w_grad
,
w_grad_with_sparse
)
# w_grad1, w_grad2, rtol=tolerance, atol=tolerance)
def
check_grad
(
self
,
w_grad1
,
w_grad2
,
tolerance
=
1e-6
):
# class TestLookupTableApi(unittest.TestCase):
np
.
testing
.
assert_allclose
(
# def test_api(self):
w_grad1
,
w_grad2
,
rtol
=
tolerance
,
atol
=
tolerance
)
# x = fluid.layers.data(name='x', shape=[20], dtype='int64')
# emb = fluid.embedding(input=x, size=[128, 64])
class
TestLookupTableApi
(
unittest
.
TestCase
):
# place = fluid.CPUPlace()
def
test_api
(
self
):
# x_data = np.random.randint(0, 127, [2, 20]).astype("int64")
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
20
],
dtype
=
'int64'
)
emb
=
fluid
.
embedding
(
input
=
x
,
size
=
[
128
,
64
])
# exe = fluid.Executor(place)
# exe.run(fluid.default_startup_program())
place
=
fluid
.
CPUPlace
()
# ret = exe.run(feed={'x': x_data, },
x_data
=
np
.
random
.
randint
(
0
,
127
,
[
2
,
20
]).
astype
(
"int64"
)
# fetch_list=[emb],
# return_numpy=False)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
# class TestEmbedOpError(unittest.TestCase):
ret
=
exe
.
run
(
feed
=
{
'x'
:
x_data
,
},
# def test_errors(self):
fetch_list
=
[
emb
],
# with program_guard(Program(), Program()):
return_numpy
=
False
)
# input_data = np.random.randint(0, 10, (4, 6)).astype("int64")
# def test_Variable():
class
TestEmbedOpError
(
unittest
.
TestCase
):
# # the input type must be Variable
def
test_errors
(
self
):
# fluid.embedding(input=input_data, size=(10, 64))
with
program_guard
(
Program
(),
Program
()):
input_data
=
np
.
random
.
randint
(
0
,
10
,
(
4
,
6
)).
astype
(
"int64"
)
# self.assertRaises(TypeError, test_Variable)
def
test_Variable
():
# def test_input_dtype():
# the input type must be Variable
# # the input dtype must be int64
fluid
.
embedding
(
input
=
input_data
,
size
=
(
10
,
64
))
# input = fluid.data(name='x1', shape=[4, 6], dtype='float32')
# fluid.embedding(input=input, size=(10, 64))
self
.
assertRaises
(
TypeError
,
test_Variable
)
# self.assertRaises(TypeError, test_input_dtype)
def
test_input_dtype
():
# the input dtype must be int64
# def test_param_dtype():
input
=
fluid
.
data
(
name
=
'x1'
,
shape
=
[
4
,
6
],
dtype
=
'float32'
)
# # dtype must be float32 or float64
fluid
.
embedding
(
input
=
input
,
size
=
(
10
,
64
))
# input2 = fluid.data(name='x2', shape=[4, 6], dtype='int64')
# fluid.embedding(input=input2, size=(10, 64), dtype='int64')
self
.
assertRaises
(
TypeError
,
test_input_dtype
)
# self.assertRaises(TypeError, test_param_dtype)
def
test_param_dtype
():
# input3 = fluid.data(name='x3', shape=[4, 6], dtype='int64')
# dtype must be float32 or float64
# fluid.embedding(input=input3, size=(10, 64), dtype='float16')
input2
=
fluid
.
data
(
name
=
'x2'
,
shape
=
[
4
,
6
],
dtype
=
'int64'
)
fluid
.
embedding
(
input
=
input2
,
size
=
(
10
,
64
),
dtype
=
'int64'
)
self
.
assertRaises
(
TypeError
,
test_param_dtype
)
input3
=
fluid
.
data
(
name
=
'x3'
,
shape
=
[
4
,
6
],
dtype
=
'int64'
)
fluid
.
embedding
(
input
=
input3
,
size
=
(
10
,
64
),
dtype
=
'float16'
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
paddle
.
enable_static
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录