Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e0333735
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e0333735
编写于
2月 03, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
unifid GPU and CPU implementation
上级
76e188e5
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
206 addition
and
413 deletion
+206
-413
paddle/operators/layer_norm_op.cc
paddle/operators/layer_norm_op.cc
+0
-187
paddle/operators/layer_norm_op.cu
paddle/operators/layer_norm_op.cu
+4
-224
paddle/operators/layer_norm_op.h
paddle/operators/layer_norm_op.h
+202
-2
未找到文件。
paddle/operators/layer_norm_op.cc
浏览文件 @
e0333735
...
@@ -13,8 +13,6 @@ See the License for the specific language governing permissions and
...
@@ -13,8 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "paddle/operators/layer_norm_op.h"
#include "paddle/operators/layer_norm_op.h"
#include "paddle/operators/elementwise_op_function.h"
#include "paddle/operators/math/math_function.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -23,13 +21,6 @@ using Tensor = framework::Tensor;
...
@@ -23,13 +21,6 @@ using Tensor = framework::Tensor;
using
LoDTensor
=
framework
::
LoDTensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
DataLayout
=
framework
::
DataLayout
;
using
DataLayout
=
framework
::
DataLayout
;
template
<
typename
T
>
using
EigenMatrixMapRowMajor
=
Eigen
::
Map
<
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>>
;
template
<
typename
T
>
using
ConstEigenMatrixMapRowMajor
=
Eigen
::
Map
<
const
Eigen
::
Matrix
<
T
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>>
;
class
LayerNormOp
:
public
framework
::
OperatorWithKernel
{
class
LayerNormOp
:
public
framework
::
OperatorWithKernel
{
public:
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
@@ -118,75 +109,6 @@ https://arxiv.org/abs/1607.06450
...
@@ -118,75 +109,6 @@ https://arxiv.org/abs/1607.06450
}
}
};
};
template
<
typename
T
>
class
LayerNormKernel
<
platform
::
CPUDeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
&
x_dims
=
x
->
dims
();
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
auto
*
output
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
mean
=
ctx
.
Output
<
Tensor
>
(
"Mean"
);
auto
*
var
=
ctx
.
Output
<
Tensor
>
(
"Variance"
);
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
var
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
matrix_dim
=
framework
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
auto
input_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
x
->
data
<
T
>
(),
left
,
right
);
auto
mean_map
=
EigenMatrixMapRowMajor
<
T
>
(
mean
->
data
<
T
>
(),
left
,
1
);
auto
var_map
=
EigenMatrixMapRowMajor
<
T
>
(
var
->
data
<
T
>
(),
left
,
1
);
auto
output_map
=
EigenMatrixMapRowMajor
<
T
>
(
output
->
data
<
T
>
(),
left
,
right
);
auto
squre
=
[](
T
ele
)
{
return
ele
*
ele
;
};
auto
add_epslion
=
[
epsilon
](
T
ele
)
{
return
ele
+
epsilon
;
};
mean_map
=
input_map
.
rowwise
().
mean
();
var_map
=
(
input_map
-
mean_map
.
replicate
(
1
,
right
))
.
unaryExpr
(
squre
)
.
rowwise
()
.
mean
()
.
unaryExpr
(
add_epslion
);
auto
inv_std_func
=
[](
T
ele
)
{
return
std
::
sqrt
(
1
/
ele
);
};
// TODO(zcd): Some thinking about output_map, is it appropriate that
// `output_map` and `input_map` point to the same memory.
auto
inv_std
=
var_map
.
unaryExpr
(
inv_std_func
);
if
(
scale
&&
bias
)
{
auto
scale_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
scale
->
data
<
T
>
(),
1
,
right
);
auto
bias_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
bias
->
data
<
T
>
(),
1
,
right
);
output_map
=
(
input_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
inv_std
.
replicate
(
1
,
right
))
.
cwiseProduct
(
scale_map
.
replicate
(
left
,
1
))
+
bias_map
.
replicate
(
left
,
1
);
}
else
if
(
scale
)
{
auto
scale_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
scale
->
data
<
T
>
(),
1
,
right
);
output_map
=
(
input_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
inv_std
.
replicate
(
1
,
right
))
.
cwiseProduct
(
scale_map
.
replicate
(
left
,
1
));
}
else
if
(
bias
)
{
auto
bias_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
bias
->
data
<
T
>
(),
1
,
right
);
output_map
=
(
input_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
inv_std
.
replicate
(
1
,
right
))
+
bias_map
.
replicate
(
left
,
1
);
}
else
{
output_map
=
(
input_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
inv_std
.
replicate
(
1
,
right
));
}
}
};
class
LayerNormGradOp
:
public
framework
::
OperatorWithKernel
{
class
LayerNormGradOp
:
public
framework
::
OperatorWithKernel
{
public:
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
@@ -239,115 +161,6 @@ class LayerNormGradOp : public framework::OperatorWithKernel {
...
@@ -239,115 +161,6 @@ class LayerNormGradOp : public framework::OperatorWithKernel {
}
}
};
};
template
<
typename
T
>
class
LayerNormGradKernel
<
platform
::
CPUDeviceContext
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
auto
*
mean
=
ctx
.
Input
<
Tensor
>
(
"Mean"
);
const
auto
*
var
=
ctx
.
Input
<
Tensor
>
(
"Variance"
);
const
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
const
auto
*
d_y
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
auto
&
x_dims
=
x
->
dims
();
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
auto
matrix_dim
=
framework
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
// init output
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
auto
x_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
x
->
data
<
T
>
(),
left
,
right
);
auto
d_y_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
d_y
->
data
<
T
>
(),
left
,
right
);
auto
mean_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
mean
->
data
<
T
>
(),
left
,
1
);
auto
var_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
var
->
data
<
T
>
(),
left
,
1
);
if
(
d_bias
)
{
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
d_bias_map
=
EigenMatrixMapRowMajor
<
T
>
(
d_bias
->
data
<
T
>
(),
1
,
right
);
d_bias_map
=
d_y_map
.
colwise
().
sum
();
}
if
(
d_scale
)
{
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
d_scale_map
=
EigenMatrixMapRowMajor
<
T
>
(
d_scale
->
data
<
T
>
(),
1
,
right
);
auto
inv_std_func
=
[](
T
ele
)
{
return
std
::
sqrt
(
1
/
ele
);
};
// There are two equation to compute d_scale. One uses "Y" and the other
// does not use "Y"
d_scale_map
=
((
x_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
var_map
.
unaryExpr
(
inv_std_func
).
replicate
(
1
,
right
))
.
cwiseProduct
(
d_y_map
))
.
colwise
()
.
sum
();
}
if
(
d_x
)
{
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
d_x_map
=
EigenMatrixMapRowMajor
<
T
>
(
d_x
->
data
<
T
>
(),
left
,
right
);
auto
triple_product_func
=
[](
T
ele
)
{
return
ele
*
ele
*
ele
;
};
auto
inv_std_func
=
[](
T
ele
)
{
return
std
::
sqrt
(
1
/
ele
);
};
auto
inv_std_map
=
var_map
.
unaryExpr
(
inv_std_func
).
eval
();
// TODO(zcd): these code can be refined
if
(
d_scale
)
{
auto
scale_map
=
ConstEigenMatrixMapRowMajor
<
T
>
(
scale
->
data
<
T
>
(),
1
,
right
);
// dy_dx
auto
dx_end
=
inv_std_map
.
replicate
(
1
,
right
).
cwiseProduct
(
d_y_map
).
cwiseProduct
(
scale_map
.
replicate
(
left
,
1
));
// dy_dmean_dx
auto
dx_mean
=
(
T
(
-
1.0
)
/
right
)
*
dx_end
.
rowwise
().
sum
().
replicate
(
1
,
right
);
// dy_var_dx
auto
dvar_end_part
=
(
x_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
scale_map
.
replicate
(
left
,
1
))
.
cwiseProduct
(
d_y_map
)
.
rowwise
()
.
sum
();
auto
dvar_end
=
inv_std_map
.
unaryExpr
(
triple_product_func
)
.
cwiseProduct
(
dvar_end_part
)
.
replicate
(
1
,
right
);
auto
dx_var
=
(
T
(
-
1.0
)
/
right
)
*
(
x_map
-
mean_map
.
replicate
(
1
,
right
)).
cwiseProduct
(
dvar_end
);
d_x_map
=
dx_end
+
dx_mean
+
dx_var
;
}
else
{
// dy_dx
auto
dx_end
=
inv_std_map
.
replicate
(
1
,
right
).
cwiseProduct
(
d_y_map
);
// dy_dmean_dx
auto
dx_mean
=
(
T
(
-
1.0
)
/
right
)
*
dx_end
.
rowwise
().
sum
().
replicate
(
1
,
right
);
// dy_var_dx
auto
dvar_end_part
=
(
x_map
-
mean_map
.
replicate
(
1
,
right
))
.
cwiseProduct
(
d_y_map
)
.
rowwise
()
.
sum
();
auto
dvar_end
=
inv_std_map
.
unaryExpr
(
triple_product_func
)
.
cwiseProduct
(
dvar_end_part
)
.
replicate
(
1
,
right
);
auto
dx_var
=
(
T
(
-
1.0
)
/
right
)
*
(
x_map
-
mean_map
.
replicate
(
1
,
right
)).
cwiseProduct
(
dvar_end
);
d_x_map
=
dx_end
+
dx_mean
+
dx_var
;
}
}
}
};
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
...
...
paddle/operators/layer_norm_op.cu
浏览文件 @
e0333735
...
@@ -12,234 +12,14 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
...
@@ -12,234 +12,14 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#include "paddle/operators/elementwise_op_function.h"
#include "paddle/operators/layer_norm_op.h"
#include "paddle/operators/layer_norm_op.h"
#include "paddle/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
DataLayout
=
framework
::
DataLayout
;
namespace
{
template
<
typename
T
>
struct
SubAndSquareFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
(
a
-
b
)
*
(
a
-
b
);
}
};
template
<
typename
T
>
struct
DivAndSqrtFunctor
{
explicit
DivAndSqrtFunctor
(
T
epsilon
)
{
epsilon_
=
epsilon
;
}
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
a
/
(
sqrt
(
b
)
+
epsilon_
);
}
private:
T
epsilon_
;
};
template
<
typename
T
>
struct
MulFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
a
*
b
;
}
};
template
<
typename
T
>
struct
AddFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
a
+
b
;
}
};
template
<
typename
T
>
struct
SubFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
a
-
b
;
}
};
template
<
typename
T
>
struct
MulInvVarFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
a
*
std
::
sqrt
(
1.0
/
b
);
}
};
}
// namespace
template
<
typename
DeviceContext
,
typename
T
>
class
LayerNormCUDAKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
x
=
*
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
mean
=
ctx
.
Output
<
Tensor
>
(
"Mean"
);
auto
*
var
=
ctx
.
Output
<
Tensor
>
(
"Variance"
);
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
const
auto
&
x_dims
=
x
.
dims
();
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
var
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
matrix_dim
=
framework
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
framework
::
DDim
matrix_shape
({
left
,
right
});
x
.
Resize
(
matrix_shape
);
y
->
Resize
(
matrix_shape
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
math
::
RowwiseMean
<
DeviceContext
,
T
>
row_mean
;
// functor-> get mean
row_mean
(
dev_ctx
,
x
,
mean
);
// functor-> get variance
ElementwiseComputeEx
<
SubAndSquareFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
x
,
mean
,
/*axis*/
0
,
SubAndSquareFunctor
<
T
>
(),
y
);
row_mean
(
dev_ctx
,
*
y
,
var
);
// functor-> get norm_out
ElementwiseComputeEx
<
SubFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
x
,
mean
,
/*axis*/
0
,
SubFunctor
<
T
>
(),
y
);
ElementwiseComputeEx
<
DivAndSqrtFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
y
,
var
,
/*axis*/
0
,
DivAndSqrtFunctor
<
T
>
(
static_cast
<
T
>
(
epsilon
)),
y
);
framework
::
DDim
scale_shape
({
right
});
if
(
scale
)
{
Tensor
scale_matrix
=
*
scale
;
scale_matrix
.
Resize
(
scale_shape
);
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
y
,
&
scale_matrix
,
/*axis*/
1
,
MulFunctor
<
T
>
(),
y
);
}
if
(
bias
)
{
Tensor
bias_matrix
=
*
bias
;
bias_matrix
.
Resize
(
scale_shape
);
ElementwiseComputeEx
<
AddFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
y
,
&
bias_matrix
,
/*axis*/
1
,
AddFunctor
<
T
>
(),
y
);
}
y
->
Resize
(
x_dims
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
LayerNormCUDAGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
x
=
*
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
mean
=
*
ctx
.
Input
<
Tensor
>
(
"Mean"
);
auto
var
=
*
ctx
.
Input
<
Tensor
>
(
"Variance"
);
auto
scale
=
*
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
d_y
=
*
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
// init output
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
const
auto
&
x_dims
=
x
.
dims
();
auto
matrix_dim
=
framework
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
framework
::
DDim
matrix_shape
({
left
,
right
});
d_y
.
Resize
(
matrix_shape
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
math
::
ColwiseSum
<
DeviceContext
,
T
>
colwise_sum
;
Tensor
temp
;
Tensor
temp_norm
;
if
(
d_scale
||
d_x
)
{
x
.
Resize
(
matrix_shape
);
temp
.
mutable_data
<
T
>
(
matrix_shape
,
ctx
.
GetPlace
());
temp_norm
.
mutable_data
<
T
>
(
matrix_shape
,
ctx
.
GetPlace
());
// get x_norm
ElementwiseComputeEx
<
SubFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
x
,
&
mean
,
/*axis*/
0
,
SubFunctor
<
T
>
(),
&
temp_norm
);
ElementwiseComputeEx
<
DivAndSqrtFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
temp_norm
,
&
var
,
/*axis*/
0
,
DivAndSqrtFunctor
<
T
>
(
static_cast
<
T
>
(
epsilon
)),
&
temp_norm
);
}
if
(
d_bias
)
{
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
colwise_sum
(
dev_ctx
,
d_y
,
d_bias
);
}
if
(
d_scale
)
{
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
temp_norm
,
&
d_y
,
/*axis*/
0
,
MulFunctor
<
T
>
(),
&
temp
);
colwise_sum
(
dev_ctx
,
temp
,
d_scale
);
}
if
(
d_x
)
{
framework
::
DDim
vec_shape
({
left
});
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Tensor
temp_vec
;
temp_vec
.
mutable_data
<
T
>
(
vec_shape
,
ctx
.
GetPlace
());
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
math
::
RowwiseMean
<
DeviceContext
,
T
>
row_mean
;
if
(
d_scale
)
{
// dy_dx
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
d_y
,
&
scale
,
/*axis*/
1
,
MulFunctor
<
T
>
(),
&
temp
);
framework
::
Copy
(
temp
,
ctx
.
GetPlace
(),
ctx
.
device_context
(),
d_x
);
// dy_dmean_dx
row_mean
(
dev_ctx
,
temp
,
&
temp_vec
);
ElementwiseComputeEx
<
SubFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
d_x
,
&
temp_vec
,
/*axis*/
0
,
SubFunctor
<
T
>
(),
d_x
);
// dy_var_dx
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
temp
,
&
temp_norm
,
/*axis*/
0
,
MulFunctor
<
T
>
(),
&
temp
);
}
else
{
// dy_dx
framework
::
Copy
(
d_y
,
ctx
.
GetPlace
(),
ctx
.
device_context
(),
d_x
);
// dy_dmean_dx
row_mean
(
dev_ctx
,
d_y
,
&
temp_vec
);
ElementwiseComputeEx
<
SubFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
d_x
,
&
temp_vec
,
/*axis*/
0
,
SubFunctor
<
T
>
(),
d_x
);
// dy_var_dx
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
d_y
,
&
temp_norm
,
/*axis*/
0
,
MulFunctor
<
T
>
(),
&
temp
);
}
// dy_var_dx
row_mean
(
dev_ctx
,
temp
,
&
temp_vec
);
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
temp_norm
,
&
temp_vec
,
/*axis*/
0
,
MulFunctor
<
T
>
(),
&
temp_norm
);
ElementwiseComputeEx
<
SubFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
d_x
,
&
temp_norm
,
/*axis*/
0
,
SubFunctor
<
T
>
(),
d_x
);
ElementwiseComputeEx
<
DivAndSqrtFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
d_x
,
&
var
,
/*axis*/
0
,
DivAndSqrtFunctor
<
T
>
(
static_cast
<
T
>
(
epsilon
)),
d_x
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
REGISTER_OP_CUDA_KERNEL
(
layer_norm
,
layer_norm
,
ops
::
LayerNorm
CUDA
Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
LayerNormKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
LayerNorm
CUDA
Kernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
ops
::
LayerNormKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
REGISTER_OP_CUDA_KERNEL
(
layer_norm_grad
,
layer_norm_grad
,
ops
::
LayerNorm
CUDA
GradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
LayerNormGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
LayerNorm
CUDA
GradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
ops
::
LayerNormGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/operators/layer_norm_op.h
浏览文件 @
e0333735
...
@@ -16,19 +16,219 @@ limitations under the License. */
...
@@ -16,19 +16,219 @@ limitations under the License. */
#include "paddle/framework/eigen.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/elementwise_op_function.h"
#include "paddle/operators/math/math_function.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
template
<
typename
T
>
struct
SubAndSquareFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
(
a
-
b
)
*
(
a
-
b
);
}
};
template
<
typename
T
>
struct
DivAndSqrtFunctor
{
explicit
DivAndSqrtFunctor
(
T
epsilon
)
{
epsilon_
=
epsilon
;
}
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
a
/
(
sqrt
(
b
)
+
epsilon_
);
}
private:
T
epsilon_
;
};
template
<
typename
T
>
struct
MulFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
a
*
b
;
}
};
template
<
typename
T
>
struct
AddFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
a
+
b
;
}
};
template
<
typename
T
>
struct
SubFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
a
-
b
;
}
};
template
<
typename
T
>
struct
MulInvVarFunctor
{
inline
HOSTDEVICE
T
operator
()(
T
a
,
T
b
)
const
{
return
a
*
std
::
sqrt
(
1.0
/
b
);
}
};
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
DataLayout
=
framework
::
DataLayout
;
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
LayerNormKernel
:
public
framework
::
OpKernel
<
T
>
{
class
LayerNormKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
*
scale
=
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
*
bias
=
ctx
.
Input
<
Tensor
>
(
"Bias"
);
auto
x
=
*
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
auto
*
mean
=
ctx
.
Output
<
Tensor
>
(
"Mean"
);
auto
*
var
=
ctx
.
Output
<
Tensor
>
(
"Variance"
);
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
const
auto
&
x_dims
=
x
.
dims
();
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
mean
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
var
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
matrix_dim
=
framework
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
framework
::
DDim
matrix_shape
({
left
,
right
});
x
.
Resize
(
matrix_shape
);
y
->
Resize
(
matrix_shape
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
math
::
RowwiseMean
<
DeviceContext
,
T
>
row_mean
;
// functor-> get mean
row_mean
(
dev_ctx
,
x
,
mean
);
// functor-> get variance
ElementwiseComputeEx
<
SubAndSquareFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
x
,
mean
,
/*axis*/
0
,
SubAndSquareFunctor
<
T
>
(),
y
);
row_mean
(
dev_ctx
,
*
y
,
var
);
// functor-> get norm_out
ElementwiseComputeEx
<
SubFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
x
,
mean
,
/*axis*/
0
,
SubFunctor
<
T
>
(),
y
);
ElementwiseComputeEx
<
DivAndSqrtFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
y
,
var
,
/*axis*/
0
,
DivAndSqrtFunctor
<
T
>
(
static_cast
<
T
>
(
epsilon
)),
y
);
framework
::
DDim
scale_shape
({
right
});
if
(
scale
)
{
Tensor
scale_matrix
=
*
scale
;
scale_matrix
.
Resize
(
scale_shape
);
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
y
,
&
scale_matrix
,
/*axis*/
1
,
MulFunctor
<
T
>
(),
y
);
}
if
(
bias
)
{
Tensor
bias_matrix
=
*
bias
;
bias_matrix
.
Resize
(
scale_shape
);
ElementwiseComputeEx
<
AddFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
y
,
&
bias_matrix
,
/*axis*/
1
,
AddFunctor
<
T
>
(),
y
);
}
y
->
Resize
(
x_dims
);
}
};
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
LayerNormGradKernel
:
public
framework
::
OpKernel
<
T
>
{
class
LayerNormGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
const
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
auto
x
=
*
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
mean
=
*
ctx
.
Input
<
Tensor
>
(
"Mean"
);
auto
var
=
*
ctx
.
Input
<
Tensor
>
(
"Variance"
);
auto
scale
=
*
ctx
.
Input
<
Tensor
>
(
"Scale"
);
auto
d_y
=
*
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
auto
begin_norm_axis
=
ctx
.
Attr
<
int
>
(
"begin_norm_axis"
);
// init output
auto
*
d_x
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_scale
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Scale"
));
auto
*
d_bias
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Bias"
));
const
auto
&
x_dims
=
x
.
dims
();
auto
matrix_dim
=
framework
::
flatten_to_2d
(
x_dims
,
begin_norm_axis
);
int
left
=
static_cast
<
int
>
(
matrix_dim
[
0
]);
int
right
=
static_cast
<
int
>
(
matrix_dim
[
1
]);
framework
::
DDim
matrix_shape
({
left
,
right
});
d_y
.
Resize
(
matrix_shape
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
math
::
ColwiseSum
<
DeviceContext
,
T
>
colwise_sum
;
Tensor
temp
;
Tensor
temp_norm
;
if
(
d_scale
||
d_x
)
{
x
.
Resize
(
matrix_shape
);
temp
.
mutable_data
<
T
>
(
matrix_shape
,
ctx
.
GetPlace
());
temp_norm
.
mutable_data
<
T
>
(
matrix_shape
,
ctx
.
GetPlace
());
// get x_norm
ElementwiseComputeEx
<
SubFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
x
,
&
mean
,
/*axis*/
0
,
SubFunctor
<
T
>
(),
&
temp_norm
);
ElementwiseComputeEx
<
DivAndSqrtFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
temp_norm
,
&
var
,
/*axis*/
0
,
DivAndSqrtFunctor
<
T
>
(
static_cast
<
T
>
(
epsilon
)),
&
temp_norm
);
}
if
(
d_bias
)
{
d_bias
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
colwise_sum
(
dev_ctx
,
d_y
,
d_bias
);
}
if
(
d_scale
)
{
d_scale
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
temp_norm
,
&
d_y
,
/*axis*/
0
,
MulFunctor
<
T
>
(),
&
temp
);
colwise_sum
(
dev_ctx
,
temp
,
d_scale
);
}
if
(
d_x
)
{
framework
::
DDim
vec_shape
({
left
});
d_x
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
Tensor
temp_vec
;
temp_vec
.
mutable_data
<
T
>
(
vec_shape
,
ctx
.
GetPlace
());
math
::
RowwiseMean
<
DeviceContext
,
T
>
row_mean
;
if
(
d_scale
)
{
// dy_dx
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
d_y
,
&
scale
,
/*axis*/
1
,
MulFunctor
<
T
>
(),
&
temp
);
framework
::
Copy
(
temp
,
ctx
.
GetPlace
(),
ctx
.
device_context
(),
d_x
);
// dy_dmean_dx
row_mean
(
dev_ctx
,
temp
,
&
temp_vec
);
ElementwiseComputeEx
<
SubFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
d_x
,
&
temp_vec
,
/*axis*/
0
,
SubFunctor
<
T
>
(),
d_x
);
// dy_var_dx
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
temp
,
&
temp_norm
,
/*axis*/
0
,
MulFunctor
<
T
>
(),
&
temp
);
}
else
{
// dy_dx
framework
::
Copy
(
d_y
,
ctx
.
GetPlace
(),
ctx
.
device_context
(),
d_x
);
// dy_dmean_dx
row_mean
(
dev_ctx
,
d_y
,
&
temp_vec
);
ElementwiseComputeEx
<
SubFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
d_x
,
&
temp_vec
,
/*axis*/
0
,
SubFunctor
<
T
>
(),
d_x
);
// dy_var_dx
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
d_y
,
&
temp_norm
,
/*axis*/
0
,
MulFunctor
<
T
>
(),
&
temp
);
}
// dy_var_dx
row_mean
(
dev_ctx
,
temp
,
&
temp_vec
);
ElementwiseComputeEx
<
MulFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
&
temp_norm
,
&
temp_vec
,
/*axis*/
0
,
MulFunctor
<
T
>
(),
&
temp_norm
);
ElementwiseComputeEx
<
SubFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
d_x
,
&
temp_norm
,
/*axis*/
0
,
SubFunctor
<
T
>
(),
d_x
);
ElementwiseComputeEx
<
DivAndSqrtFunctor
<
T
>
,
DeviceContext
,
T
>
(
ctx
,
d_x
,
&
var
,
/*axis*/
0
,
DivAndSqrtFunctor
<
T
>
(
static_cast
<
T
>
(
epsilon
)),
d_x
);
}
}
};
};
}
// namespace operators
}
// namespace operators
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录