Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
dfde0eaa
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
dfde0eaa
编写于
10月 10, 2019
作者:
K
Kaipeng Deng
提交者:
GitHub
10月 10, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[cherry-pick] refine en doc (#20360)
* refine en doc. test=develop. test=document_fix
上级
ddb4b337
变更
7
展开全部
隐藏空白更改
内联
并排
Showing
7 changed file
with
288 addition
and
134 deletion
+288
-134
paddle/fluid/API.spec
paddle/fluid/API.spec
+11
-11
paddle/fluid/operators/kldiv_loss_op.cc
paddle/fluid/operators/kldiv_loss_op.cc
+6
-3
paddle/fluid/operators/pool_op.cc
paddle/fluid/operators/pool_op.cc
+36
-32
paddle/fluid/operators/spectral_norm_op.cc
paddle/fluid/operators/spectral_norm_op.cc
+5
-2
paddle/fluid/operators/temporal_shift_op.cc
paddle/fluid/operators/temporal_shift_op.cc
+4
-2
python/paddle/fluid/layers/learning_rate_scheduler.py
python/paddle/fluid/layers/learning_rate_scheduler.py
+38
-19
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+188
-65
未找到文件。
paddle/fluid/API.spec
浏览文件 @
dfde0eaa
...
...
@@ -145,10 +145,10 @@ paddle.fluid.layers.conv3d (ArgSpec(args=['input', 'num_filters', 'filter_size',
paddle.fluid.layers.sequence_pool (ArgSpec(args=['input', 'pool_type', 'is_test', 'pad_value'], varargs=None, keywords=None, defaults=(False, 0.0)), ('document', '5a709f7ef3fdb8fc819d09dc4fbada9a'))
paddle.fluid.layers.sequence_softmax (ArgSpec(args=['input', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(False, None)), ('document', 'eaa9d0bbd3d4e017c8bc4ecdac483711'))
paddle.fluid.layers.softmax (ArgSpec(args=['input', 'use_cudnn', 'name', 'axis'], varargs=None, keywords=None, defaults=(False, None, -1)), ('document', '7ccaea1b93fe4f7387a6036692986c6b'))
paddle.fluid.layers.pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive', 'data_format'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True, 'NCHW')), ('document', '
630cae697d46b4b575b15d56cf8be25a
'))
paddle.fluid.layers.pool3d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive', 'data_format'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True, 'NCDHW')), ('document', 'd
b0035a3132b1dfb12e53c57591fb9f6
'))
paddle.fluid.layers.adaptive_pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None)), ('document', '
52343203de40afe29607397e13aaf0d2
'))
paddle.fluid.layers.adaptive_pool3d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None)), ('document', '
55db6ae7275fb9678a6814aebab81a9c
'))
paddle.fluid.layers.pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive', 'data_format'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True, 'NCHW')), ('document', '
daf9ae55b2d54bd5f35acb397fd1e1b5
'))
paddle.fluid.layers.pool3d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive', 'data_format'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True, 'NCDHW')), ('document', 'd
f8edcb8dd020fdddf778c9f613dc650
'))
paddle.fluid.layers.adaptive_pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None)), ('document', '
d873fdd73bcd74f9203d347cfb90de75
'))
paddle.fluid.layers.adaptive_pool3d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None)), ('document', '
a94ed07bf4828e318aaaedb8b037579a
'))
paddle.fluid.layers.batch_norm (ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu', 'use_global_stats'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, None, None, None, False, False, False)), ('document', '1400433bae7876d0407ae205be39b7a1'))
paddle.fluid.layers.instance_norm (ArgSpec(args=['input', 'epsilon', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(1e-05, None, None, None)), ('document', '23d6fba8ad8495f67a66d8878be5b0be'))
paddle.fluid.layers.data_norm (ArgSpec(args=['input', 'act', 'epsilon', 'param_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var'], varargs=None, keywords=None, defaults=(None, 1e-05, None, 'NCHW', False, None, None, None, False)), ('document', '5ba4cdb4ea5c03382da545335ffc05b7'))
...
...
@@ -189,7 +189,7 @@ paddle.fluid.layers.row_conv (ArgSpec(args=['input', 'future_context_size', 'par
paddle.fluid.layers.multiplex (ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None), ('document', '2c4d1ae83da6ed35e3b36ba1b3b51d23'))
paddle.fluid.layers.layer_norm (ArgSpec(args=['input', 'scale', 'shift', 'begin_norm_axis', 'epsilon', 'param_attr', 'bias_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(True, True, 1, 1e-05, None, None, None, None)), ('document', '79797f827d89ae72c77960e9696883a9'))
paddle.fluid.layers.group_norm (ArgSpec(args=['input', 'groups', 'epsilon', 'param_attr', 'bias_attr', 'act', 'data_layout', 'name'], varargs=None, keywords=None, defaults=(1e-05, None, None, None, 'NCHW', None)), ('document', '87dd4b818f102bc1a780e1804c28bd38'))
paddle.fluid.layers.spectral_norm (ArgSpec(args=['weight', 'dim', 'power_iters', 'eps', 'name'], varargs=None, keywords=None, defaults=(0, 1, 1e-12, None)), ('document', '
9461e67095a6fc5d568fb2ce8fef66ff
'))
paddle.fluid.layers.spectral_norm (ArgSpec(args=['weight', 'dim', 'power_iters', 'eps', 'name'], varargs=None, keywords=None, defaults=(0, 1, 1e-12, None)), ('document', '
7b3d14d6707d878923847ec617d7d521
'))
paddle.fluid.layers.softmax_with_cross_entropy (ArgSpec(args=['logits', 'label', 'soft_label', 'ignore_index', 'numeric_stable_mode', 'return_softmax', 'axis'], varargs=None, keywords=None, defaults=(False, -100, True, False, -1)), ('document', '54e1675aa0364f4a78fa72804ec0f413'))
paddle.fluid.layers.smooth_l1 (ArgSpec(args=['x', 'y', 'inside_weight', 'outside_weight', 'sigma'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'ecb75c1b00c4c76c98b482f633b7a10c'))
paddle.fluid.layers.one_hot (ArgSpec(args=['input', 'depth', 'allow_out_of_range'], varargs=None, keywords=None, defaults=(False,)), ('document', 'cdf5dc2078f1e20dc61dd0bec7e28a29'))
...
...
@@ -282,7 +282,7 @@ paddle.fluid.layers.sequence_reverse (ArgSpec(args=['x', 'name'], varargs=None,
paddle.fluid.layers.affine_channel (ArgSpec(args=['x', 'scale', 'bias', 'data_layout', 'name', 'act'], varargs=None, keywords=None, defaults=(None, None, 'NCHW', None, None)), ('document', 'ecc4b1323028bde0518d666882d03515'))
paddle.fluid.layers.similarity_focus (ArgSpec(args=['input', 'axis', 'indexes', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '18ec2e3afeb90e70c8b73d2b71c40fdb'))
paddle.fluid.layers.hash (ArgSpec(args=['input', 'hash_size', 'num_hash', 'name'], varargs=None, keywords=None, defaults=(1, None)), ('document', 'a0b73c21be618cec0281e7903039e5e3'))
paddle.fluid.layers.grid_sampler (ArgSpec(args=['x', 'grid', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
5d16663e096d7f04954c70ce1cc5e195
'))
paddle.fluid.layers.grid_sampler (ArgSpec(args=['x', 'grid', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '
90c74742f48c70b103f1fbb9eb129066
'))
paddle.fluid.layers.log_loss (ArgSpec(args=['input', 'label', 'epsilon', 'name'], varargs=None, keywords=None, defaults=(0.0001, None)), ('document', 'e3993a477c94729526040ff65d95728e'))
paddle.fluid.layers.add_position_encoding (ArgSpec(args=['input', 'alpha', 'beta', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'e399f9436fed5f7ff480d8532e42c937'))
paddle.fluid.layers.bilinear_tensor_product (ArgSpec(args=['x', 'y', 'size', 'act', 'name', 'param_attr', 'bias_attr'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', '45fc3652a8e1aeffbe4eba371c54f756'))
...
...
@@ -290,13 +290,13 @@ paddle.fluid.layers.merge_selected_rows (ArgSpec(args=['x', 'name'], varargs=Non
paddle.fluid.layers.get_tensor_from_selected_rows (ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '2c568321feb4d16c41a83df43f95089d'))
paddle.fluid.layers.lstm (ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1)), ('document', 'baa7327ed89df6b7bdd32f9ffdb62f63'))
paddle.fluid.layers.shuffle_channel (ArgSpec(args=['x', 'group', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '276a1213dd431228cefa33c3146df34a'))
paddle.fluid.layers.temporal_shift (ArgSpec(args=['x', 'seg_num', 'shift_ratio', 'name'], varargs=None, keywords=None, defaults=(0.25, None)), ('document', '
13b1cdcb01f5ffdc26591ff9a2ec4669
'))
paddle.fluid.layers.temporal_shift (ArgSpec(args=['x', 'seg_num', 'shift_ratio', 'name'], varargs=None, keywords=None, defaults=(0.25, None)), ('document', '
d5945431cdcae3cda21914db5bbf383e
'))
paddle.fluid.layers.py_func (ArgSpec(args=['func', 'x', 'out', 'backward_func', 'skip_vars_in_backward_input'], varargs=None, keywords=None, defaults=(None, None)), ('document', '8404e472ac12b4a30a505d3d3a3e5fdb'))
paddle.fluid.layers.psroi_pool (ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '42d5155374f69786300d90d751956998'))
paddle.fluid.layers.prroi_pool (ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(1.0, 1, 1, None)), ('document', '454c7ea8c73313dd41513929d7526303'))
paddle.fluid.layers.teacher_student_sigmoid_loss (ArgSpec(args=['input', 'label', 'soft_max_up_bound', 'soft_max_lower_bound'], varargs=None, keywords=None, defaults=(15.0, -15.0)), ('document', 'b0e07aa41caae04b07a8e8217cc96020'))
paddle.fluid.layers.huber_loss (ArgSpec(args=['input', 'label', 'delta'], varargs=None, keywords=None, defaults=None), ('document', '9d93ee81f7a3e526d68bb280bc695d6c'))
paddle.fluid.layers.kldiv_loss (ArgSpec(args=['x', 'target', 'reduction', 'name'], varargs=None, keywords=None, defaults=('mean', None)), ('document', '
18bc95c62d3300456c3c7da5278b47bb
'))
paddle.fluid.layers.kldiv_loss (ArgSpec(args=['x', 'target', 'reduction', 'name'], varargs=None, keywords=None, defaults=('mean', None)), ('document', '
45f3ebbcb766fca84cb2fe6307086573
'))
paddle.fluid.layers.npair_loss (ArgSpec(args=['anchor', 'positive', 'labels', 'l2_reg'], varargs=None, keywords=None, defaults=(0.002,)), ('document', '3828c4bd81c25af0ab955f52d453c587'))
paddle.fluid.layers.pixel_shuffle (ArgSpec(args=['x', 'upscale_factor'], varargs=None, keywords=None, defaults=None), ('document', '7e5cac851fd9bad344230e1044b6a565'))
paddle.fluid.layers.fsp_matrix (ArgSpec(args=['x', 'y'], varargs=None, keywords=None, defaults=None), ('document', '3a4eb7cce366f5fd8bc38b42b6af5ba1'))
...
...
@@ -438,9 +438,9 @@ paddle.fluid.layers.box_decoder_and_assign (ArgSpec(args=['prior_box', 'prior_bo
paddle.fluid.layers.collect_fpn_proposals (ArgSpec(args=['multi_rois', 'multi_scores', 'min_level', 'max_level', 'post_nms_top_n', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'ff4a651d65a9a9f9da71349ba6a2dc1f'))
paddle.fluid.layers.accuracy (ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None)), ('document', 'b691b7be425e281bd36897b514b2b064'))
paddle.fluid.layers.auc (ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1)), ('document', 'c36ac7125da977c2bd1b192bee301f75'))
paddle.fluid.layers.exponential_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '
eaf430c5a0380fb11bfe9a8922cd6295
'))
paddle.fluid.layers.natural_exp_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '
aa3146f64d5d508e4e50687603aa7b15
'))
paddle.fluid.layers.inverse_time_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '
ea37a3a8a0b3ce2254e7bc49a0951dbe
'))
paddle.fluid.layers.exponential_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '
48c7b2563a6fc11f23030cde8d7a5c80
'))
paddle.fluid.layers.natural_exp_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '
63edb712ab4ca837049f24a9421dfe30
'))
paddle.fluid.layers.inverse_time_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)), ('document', '
ff553aa6546eeb1bc692fadb3df78370
'))
paddle.fluid.layers.polynomial_decay (ArgSpec(args=['learning_rate', 'decay_steps', 'end_learning_rate', 'power', 'cycle'], varargs=None, keywords=None, defaults=(0.0001, 1.0, False)), ('document', 'a343254c36c2e89512cd8cd8a1960ead'))
paddle.fluid.layers.piecewise_decay (ArgSpec(args=['boundaries', 'values'], varargs=None, keywords=None, defaults=None), ('document', 'd9f654117542c6b702963dda107a247f'))
paddle.fluid.layers.noam_decay (ArgSpec(args=['d_model', 'warmup_steps'], varargs=None, keywords=None, defaults=None), ('document', 'fd57228fb76195e66bbcc8d8e42c494d'))
...
...
paddle/fluid/operators/kldiv_loss_op.cc
浏览文件 @
dfde0eaa
...
...
@@ -69,10 +69,12 @@ class KLDivLossOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"The input tensor of KL divergence loss operator. "
"This is a tensor with shape of [N, *], where N is the "
"batch size, * means any number of additional dimensions."
);
"batch size, * means any number of additional dimensions. "
"The data type is float32 or flaot64"
);
AddInput
(
"Target"
,
"The tensor of KL divergence loss operator. "
"This is a tensor with shape of Input(X)."
);
"This is a tensor with shape of Input(X). "
"The data type is same as Input(X)"
);
AddOutput
(
"Loss"
,
"The output KL divergence loss tensor. if Attr(reduction) is "
...
...
@@ -90,7 +92,8 @@ class KLDivLossOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
This operator calculates the Kullback-Leibler divergence loss
between Input(X) and Input(Target).
between Input(X) and Input(Target). Notes that Input(X) is the
log-probability and Input(Target) is the probability.
KL divergence loss is calculated as follows:
...
...
paddle/fluid/operators/pool_op.cc
浏览文件 @
dfde0eaa
...
...
@@ -200,8 +200,9 @@ void Pool2dOpMaker::Make() {
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"global_pooling"
,
"(bool, default false) Whether to use the global pooling. "
"If global_pooling = true, kernel size and paddings will be ignored."
)
"(bool) Whether to use the global pooling. "
"If global_pooling = true, kernel size and paddings will be ignored. "
"Default False."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector<int>, default {1, 1}), strides(height, "
...
...
@@ -217,36 +218,38 @@ void Pool2dOpMaker::Make() {
.
SetDefault
({
0
,
0
});
AddAttr
<
bool
>
(
"exclusive"
,
"(bool
, default True
) When true, will exclude the zero-padding in the "
"(bool) When true, will exclude the zero-padding in the "
"averaging calculating, otherwise, include the zero-padding. Note, it "
"is only used when pooling_type is avg. The default is True."
)
"is only used when pooling_type is avg. The default is True. "
"Default True."
)
.
SetDefault
(
true
);
AddAttr
<
bool
>
(
"adaptive"
,
"(bool
, default False
) When true, will perform adaptive pooling instead, "
"(bool) When true, will perform adaptive pooling instead, "
"output shape in H and W dimensions will be same as ksize, input data "
"will be divided into grids specify by ksize averagely and perform "
"pooling in each grid area to get output pooling value."
)
"pooling in each grid area to get output pooling value. "
"Default False."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"use_cudnn"
,
"(bool
, default false) Only used in cudnn kernel, need install cudnn.
"
)
"(bool
) Only used in cudnn kernel, need install cudnn. Default False
"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"ceil_mode"
,
"(bool
, default false
) Whether to use the ceil function to calculate "
"(bool) Whether to use the ceil function to calculate "
"output height and width. False is the default. If it is set to False, "
"the floor function will be used."
)
"the floor function will be used.
Default False
"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool
, default false) Only used in mkldnn kernel.
"
)
"(bool
) Only used in mkldnn kernel. Default False
"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"use_quantizer"
,
"(bool
, default false
) "
"(bool) "
"Set to true for operators that should be quantized and use "
"int8 kernel. "
"Only used on CPU."
)
"Only used on CPU.
Default False
"
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"data_format"
,
...
...
@@ -269,11 +272,11 @@ void Pool2dOpMaker::Make() {
// TODO(dzhwinter): need to registered layout transform function
AddComment
(
R"DOC(
Th
e pooling2d operation calculates the
output based on
the input, pooling_type and
ksize, strides, paddings
parameters.
Input(X) and
o
utput(Out) are in NCHW or NHWC format, where N is batch size, C is the
Th
is operation calculates the pooling
output based on
the input, pooling_type and
pool_size, pool_stride, pool_padding
parameters.
Input(X) and
O
utput(Out) are in NCHW or NHWC format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
Parameters(
ksize, strides, paddings) are two
elements.
Parameters(
pool_size, pool_stride, pool_padding) hold two integer
elements.
These two elements represent height and width, respectively.
The input(X) size and output(Out) size may be different.
...
...
@@ -393,8 +396,9 @@ void Pool3dOpMaker::Make() {
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"global_pooling"
,
"(bool, default false) Whether to use the global pooling. "
"If global_pooling = true, kernel size and paddings will be ignored."
)
"(bool) Whether to use the global pooling. "
"If global_pooling = true, kernel size and paddings will be ignored. "
"Default False"
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
...
...
@@ -413,30 +417,32 @@ void Pool3dOpMaker::Make() {
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"exclusive"
,
"(bool
, default True
) When true, will exclude the zero-padding in the "
"(bool) When true, will exclude the zero-padding in the "
"averaging calculating, otherwise, include the zero-padding. Note, it "
"is only used when pooling_type is avg. The default is True."
)
"is only used when pooling_type is avg. The default is True. "
"Default True"
)
.
SetDefault
(
true
);
AddAttr
<
bool
>
(
"adaptive"
,
"(bool
, default False
) When true, will perform adaptive pooling instead, "
"(bool) When true, will perform adaptive pooling instead, "
"output shape in H and W dimensions will be same as ksize, input data "
"will be divided into grids specify by ksize averagely and perform "
"pooling in each grid area to get output pooling value."
)
"pooling in each grid area to get output pooling value. "
"Default False"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"use_cudnn"
,
"(bool
, default false) Only used in cudnn kernel, need install cudnn.
"
)
"(bool
) Only used in cudnn kernel, need install cudnn. Default False
"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"ceil_mode"
,
"(bool
, default false
) Whether to use the ceil function to calculate "
"(bool) Whether to use the ceil function to calculate "
"output height and width. False is the default. If it is set to False, "
"the floor function will be used."
)
"the floor function will be used.
Default False
"
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool
, default false) Only used in mkldnn kernel
"
)
"(bool
) Only used in mkldnn kernel. Default False
"
)
.
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"data_format"
,
...
...
@@ -454,14 +460,12 @@ void Pool3dOpMaker::Make() {
// TODO(dzhwinter): need to registered layout transform function
AddComment
(
R"DOC(
Pool3d Operator.
The pooling3d operation calculates the output based on
the input, pooling_type, ksize, strides, and paddings parameters.
This operation calculates the output based on
the input, pooling_type, pool_size, pool_stride, and pool_padding parameters.
Input(X) and output(Out) are in NCDHW or NDHWC format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. Parameters(
ksize, strides, paddings
)
are three
elements. These three elements represent depth, height and
width of the feature, respectively. Parameters(
pool_size, pool_stride, pool_padding
)
hold three integer
elements. These three elements represent depth, height and
width, respectively. The input(X) size and output(Out) size may be different.
Example:
...
...
paddle/fluid/operators/spectral_norm_op.cc
浏览文件 @
dfde0eaa
...
...
@@ -88,7 +88,8 @@ class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Weight"
,
"The input weight tensor of spectral_norm operator, "
"This can be a 2-D, 3-D, 4-D, 5-D tensor which is the "
"weights of fc, conv1d, conv2d, conv3d layer."
);
"weights of fc, conv1d, conv2d, conv3d layer. "
"The data type is float32 or float64."
);
AddInput
(
"U"
,
"The weight_u tensor of spectral_norm operator, "
"This can be a 1-D tensor in shape [H, 1],"
...
...
@@ -123,7 +124,9 @@ class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
1
);
AddAttr
<
float
>
(
"eps"
,
"epsilon for numerical stability in "
"calculating norms"
)
"calculating norms, it will be added to "
"the denominator to aviod divide zero. "
"Default 1e-12."
)
.
SetDefault
(
1e-12
);
AddComment
(
R"DOC(
...
...
paddle/fluid/operators/temporal_shift_op.cc
浏览文件 @
dfde0eaa
...
...
@@ -69,7 +69,8 @@ class TemporalShiftOpMaker : public framework::OpProtoAndCheckerMaker {
"This is a 4-D tensor with shape of [N*T, C, H, W]. "
"While N is the batch size, T is the temporal segment "
"number, C is the channel number, H is the height of "
"features and W is the width of features."
);
"features and W is the width of features. "
"The data type is float32 and float64"
);
AddOutput
(
"Out"
,
"The output tensor of temporal shift operator. "
"This is a 4-D tensor in the same shape with Input(X)."
);
...
...
@@ -82,7 +83,8 @@ class TemporalShiftOpMaker : public framework::OpProtoAndCheckerMaker {
"The shift ratio of the channels, the first :attr:`shift_ratio` part "
"of channels will be shifted by -1 along the temporal dimension, "
"and the second :attr:`shift_ratio` part of channels will be shifted "
"by 1 along the temporal dimension. Default 0.25."
)
"by 1 along the temporal dimension. :attr:`shift_ratio` should be in "
"range [0, 0.5]. Default 0.25."
)
.
SetDefault
(
0.25
);
AddComment
(
R"DOC(
...
...
python/paddle/fluid/layers/learning_rate_scheduler.py
浏览文件 @
dfde0eaa
...
...
@@ -109,20 +109,25 @@ def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
training progresses. By using this function, the learning rate will be decayed by
'decay_rate' every 'decay_steps' steps.
Decayed learning rate calcualtes as follows:
>>> if staircase == True:
>>> decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
>>> else:
>>> decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
Args:
learning_rate(Variable|float): The initial learning rate.
decay_steps(int): See the decay computation above.
decay_rate(float): The decay rate. See the decay computation above.
staircase(Boolean): If True, decay the learning rate at discrete intervals.
Default: False
learning_rate(Variable|float): The initial learning rate. It should be a Variable
or a float
decay_steps(int): The learning rate decay steps. See the decay computation above.
decay_rate(float): The learning rate decay rate. See the decay computation above.
staircase(bool): If True, decay the learning rate at discrete intervals, which
means the learning rate will be decayed by `decay_rate` every
`decay_steps`. If False, learning rate will be decayed continuously
and following the formula above. Default: False
Returns:
Variable: The decayed learning rate
Variable: The decayed learning rate
. The data type is float32.
Examples:
.. code-block:: python
...
...
@@ -156,20 +161,29 @@ def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
def
natural_exp_decay
(
learning_rate
,
decay_steps
,
decay_rate
,
staircase
=
False
):
"""Applies natural exponential decay to the initial learning rate.
When training a model, it is often recommended to lower the learning rate as the
training progresses. By using this function, the learning rate will be decayed by
natural exponential power 'decay_rate' every 'decay_steps' steps.
Decayed learning rate calcualtes as follows:
>>> if not staircase:
>>> decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
>>> else:
>>> decayed_learning_rate = learning_rate * exp(- decay_rate * floor(global_step / decay_steps))
Args:
learning_rate: A scalar float32 value or a Variable. This
will be the initial learning rate during training
decay_steps: A Python `int32` number.
decay_rate: A Python `float` number.
staircase: Boolean. If set true, decay the learning rate every decay_steps.
learning_rate(Variable|float): The initial learning rate. It should be a Variable
or a float
decay_steps(int): The learning rate decay steps. See the decay computation above.
decay_rate(float): The learning rate decay rate. See the decay computation above.
staircase(bool): If True, decay the learning rate at discrete intervals, which
means the learning rate will be decayed by natual exponential power
`decay_rate` every `decay_steps`. If False, learning rate will be
decayed continuously and following the formula above. Default: False
Returns:
The decayed learning rate
The decayed learning rate
. The data type is float32.
Examples:
.. code-block:: python
...
...
@@ -208,20 +222,25 @@ def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
training progresses. By using this function, an inverse decay function will be
applied to the initial learning rate.
Decayed learning rate calcualtes as follows:
>>> if staircase == True:
>>> decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
>>> else:
>>> decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)
Args:
learning_rate(Variable|float): The initial learning rate.
decay_steps(int): See the decay computation above.
decay_rate(float): The decay rate. See the decay computation above.
staircase(Boolean): If True, decay the learning rate at discrete intervals.
Default: False
learning_rate(Variable|float): The initial learning rate. It should be a Variable
or a float
decay_steps(int): The learning rate decay steps. See the decay computation above.
decay_rate(float): The learning rate decay rate. See the decay computation above.
staircase(bool): If True, decay the learning rate at discrete intervals, which
means the learning rate will be decayed by `decay_rate` times
every `decay_steps`. If False, learning rate will be decayed
continuously and following the formula above. Default: False
Returns:
Variable: The decayed learning rate
Variable: The decayed learning rate
. The data type is float32.
Examples:
.. code-block:: python
...
...
@@ -229,7 +248,7 @@ def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
import paddle.fluid as fluid
base_lr = 0.1
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.layers.
natural_exp
_decay(
learning_rate=fluid.layers.
inverse_time
_decay(
learning_rate=base_lr,
decay_steps=10000,
decay_rate=0.5,
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
dfde0eaa
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录