提交 df0c6956 编写于 作者: T tensor-tang

fix fusion gru pass and enable it

上级 c9bd2d50
...@@ -28,7 +28,7 @@ static void BuildPattern(PDPattern* pattern, const std::string& name_scope, ...@@ -28,7 +28,7 @@ static void BuildPattern(PDPattern* pattern, const std::string& name_scope,
auto* fc_out = patterns::FC(pattern, name_scope, x, with_fc_bias); auto* fc_out = patterns::FC(pattern, name_scope, x, with_fc_bias);
fc_out->AsIntermediate(); // fc_out is a tmp var, will be removed after fuse. fc_out->AsIntermediate(); // fc_out is a tmp var, will be removed after fuse.
patterns::GRU(pattern, name_scope, fc_out); patterns::GRU(pattern, name_scope, fc_out);
VLOG(3) << "\n" << pattern->DotString(); VLOG(3) << "fc_gru pattern \n" << pattern->DotString();
} }
static int BuildFusion(Graph* graph, const std::string& name_scope, static int BuildFusion(Graph* graph, const std::string& name_scope,
...@@ -51,65 +51,72 @@ static int BuildFusion(Graph* graph, const std::string& name_scope, ...@@ -51,65 +51,72 @@ static int BuildFusion(Graph* graph, const std::string& name_scope,
OpDesc op_desc; OpDesc op_desc;
op_desc.SetType("fusion_gru"); op_desc.SetType("fusion_gru");
#define NEW_NAME(x) name_scope + "/at." #x ".new"
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__##_n->Name()}); #define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__##_n->Name()});
SET_IN(X, x); SET_IN(X, x);
SET_IN(WeightX, weight_x); SET_IN(WeightX, weight_x);
SET_IN(WeightH, weight_h); SET_IN(WeightH, weight_h);
SET_IN(Bias, bias); if (with_fc_bias) {
op_desc.SetInput("Bias", {NEW_NAME(bias) + bias_n->Name()});
} else {
SET_IN(Bias, bias);
}
#undef SET_IN #undef SET_IN
op_desc.SetInput("H0", {});
op_desc.SetOutput("Hidden", {hidden_n->Name()});
op_desc.SetAttr("is_reverse", gru_n->Op()->GetAttr("is_reverse"));
// TODO(TJ): This should be a option for infer
op_desc.SetAttr("use_seq", true);
#define SET_IMTERMEDIATE_OUT(key) op_desc.SetOutput(#key, {NEW_NAME(key)})
SET_IMTERMEDIATE_OUT(ReorderedH0);
SET_IMTERMEDIATE_OUT(XX);
SET_IMTERMEDIATE_OUT(BatchedInput);
SET_IMTERMEDIATE_OUT(BatchedOut);
#undef SET_IMTERMEDIATE_OUT
auto* op = graph->CreateOpNode(&op_desc);
PADDLE_ENFORCE(graph->Has(kParamScopeAttr));
auto* scope = graph->Get<Scope*>(kParamScopeAttr);
PADDLE_ENFORCE(scope);
if (with_fc_bias) { if (with_fc_bias) {
// Add FC-bias with LSTM-bias and create a new weight // Fusion GRU bias = fcbias + grubias
PADDLE_ENFORCE(scope); auto* fusion_bias_var = scope->Var(NEW_NAME(bias) + bias_n->Name());
const std::string& new_bias_var = name_scope + "_bias.new"; auto* out_bias_tensor =
auto* bias_var = scope->Var(new_bias_var); fusion_bias_var->GetMutable<framework::LoDTensor>();
PADDLE_ENFORCE(bias_var); PADDLE_ENFORCE(fusion_bias_var);
auto* bias_tensor = bias_var->GetMutable<framework::LoDTensor>(); GET_NODE(fc_bias);
PADDLE_ENFORCE(fc_bias_n);
auto* gru_bias_var = scope->FindVar(bias_n->Name()); auto* gru_bias_var = scope->FindVar(bias_n->Name());
auto* fc_bias_var = scope->FindVar(fc_bias_n->Name());
PADDLE_ENFORCE(gru_bias_var); PADDLE_ENFORCE(gru_bias_var);
PADDLE_ENFORCE(fc_bias_var);
const auto& gru_bias_tenosr = gru_bias_var->Get<framework::LoDTensor>(); const auto& gru_bias_tenosr = gru_bias_var->Get<framework::LoDTensor>();
bias_tensor->Resize(gru_bias_tenosr.dims());
GET_NODE(fc_bias);
auto* fc_bias_var = scope->FindVar(fc_bias_n->Name());
const auto& fc_bias_tensor = fc_bias_var->Get<framework::LoDTensor>(); const auto& fc_bias_tensor = fc_bias_var->Get<framework::LoDTensor>();
// new bias = fc bias + gru bias // new bias = fc bias + gru bias
auto* data = bias_tensor->mutable_data<float>(platform::CPUPlace()); out_bias_tensor->Resize(gru_bias_tenosr.dims());
for (int i = 0; i < bias_tensor->numel(); i++) { auto* data = out_bias_tensor->mutable_data<float>(platform::CPUPlace());
for (int i = 0; i < out_bias_tensor->numel(); i++) {
data[i] = data[i] =
fc_bias_tensor.data<float>()[i] + gru_bias_tenosr.data<float>()[i]; fc_bias_tensor.data<float>()[i] + gru_bias_tenosr.data<float>()[i];
} }
op_desc.SetInput("Bias", {new_bias_var});
} }
#undef GET_NODE #undef GET_NODE
op_desc.SetInput("H0", {}); #define NEW_IMTERMEDIATE_OUT(key) \
op_desc.SetOutput("Hidden", {hidden_n->Name()}); scope->Var(NEW_NAME(key))->GetMutable<framework::LoDTensor>()
op_desc.SetAttr("is_reverse", gru_n->Op()->GetAttr("is_reverse")); NEW_IMTERMEDIATE_OUT(ReorderedH0);
// TODO(TJ): This should be a option for infer NEW_IMTERMEDIATE_OUT(XX);
op_desc.SetAttr("use_seq", true); NEW_IMTERMEDIATE_OUT(BatchedInput);
NEW_IMTERMEDIATE_OUT(BatchedOut);
// Create temp variables. #undef NEW_NAME
// TODO(TJ): clean code #undef NEW_IMTERMEDIATE_OUT
scope->Var(name_scope + "/ReorderedH0.new")
->GetMutable<framework::LoDTensor>();
scope->Var(name_scope + "/XX.new")->GetMutable<framework::LoDTensor>();
scope->Var(name_scope + "/BatchedInput.new")
->GetMutable<framework::LoDTensor>();
scope->Var(name_scope + "/BatchedOut.new")
->GetMutable<framework::LoDTensor>();
op_desc.SetOutput("ReorderedH0", {name_scope + "/ReorderedH0.new"});
op_desc.SetOutput("XX", {name_scope + "/XX.new"});
op_desc.SetOutput("BatchedInput", {name_scope + "/BatchedInput.new"});
op_desc.SetOutput("BatchedOut", {name_scope + "/BatchedOut.new"});
auto* op = graph->CreateOpNode(&op_desc);
PADDLE_ENFORCE(graph->Has(kParamScopeAttr));
// auto* scope = graph->Get<Scope*>(kParamScopeAttr);
IR_NODE_LINK_TO(x_n, op); IR_NODE_LINK_TO(x_n, op);
IR_NODE_LINK_TO(weight_x_n, op); IR_NODE_LINK_TO(weight_x_n, op);
IR_NODE_LINK_TO(weight_h_n, op); IR_NODE_LINK_TO(weight_h_n, op);
IR_NODE_LINK_TO(bias_n, op); IR_NODE_LINK_TO(bias_n, op); // actually should link to new bias if have
IR_NODE_LINK_TO(op, hidden_n); IR_NODE_LINK_TO(op, hidden_n);
// h0? // h0?
return op; return op;
...@@ -127,26 +134,33 @@ static int BuildFusion(Graph* graph, const std::string& name_scope, ...@@ -127,26 +134,33 @@ static int BuildFusion(Graph* graph, const std::string& name_scope,
int name__ __attribute__((unused)) = name__##_n->id(); int name__ __attribute__((unused)) = name__##_n->id();
GET_NODE(x); GET_NODE(x);
GET_NODE(w); GET_NODE(w); // fc weight
GET_NODE(mul); GET_NODE(mul);
GET_NODE(fc_out); GET_NODE(fc_out);
GET_NODE(Weight); GET_NODE(Weight);
GET_NODE(gru); GET_NODE(gru);
GET_NODE(Bias); GET_NODE(Bias);
GET_NODE(Hidden); GET_NODE(Hidden);
// nodes need be removed
GET_NODE(BatchGate);
GET_NODE(BatchResetHiddenPrev);
GET_NODE(BatchHidden);
if (with_fc_bias) { if (with_fc_bias) {
GET_NODE(mul_out);
GET_NODE(fc_bias); GET_NODE(fc_bias);
GET_NODE(elementwise_add); GET_NODE(elementwise_add);
gru_creater(gru, x, w, Weight, Bias, Hidden, fc_bias); gru_creater(gru, x, w, Weight, Bias, Hidden, fc_bias);
// Remove unneeded nodes. // Remove unneeded nodes.
std::unordered_set<const Node*> marked_nodes( std::unordered_set<const Node*> marked_nodes(
{mul_n, gru_n, elementwise_add_n}); {mul_n, gru_n, elementwise_add_n, fc_bias_n, fc_out_n, mul_out_n,
BatchGate_n, BatchResetHiddenPrev_n, BatchHidden_n});
GraphSafeRemoveNodes(graph, marked_nodes); GraphSafeRemoveNodes(graph, marked_nodes);
} else { } else {
gru_creater(gru, x, w, Weight, Bias, Hidden, -1); gru_creater(gru, x, w, Weight, Bias, Hidden, -1);
// Remove unneeded nodes. // Remove unneeded nodes.
std::unordered_set<const Node*> marked_nodes({mul_n, gru_n}); std::unordered_set<const Node*> marked_nodes(
{mul_n, gru_n, BatchGate_n, BatchResetHiddenPrev_n, BatchHidden_n});
GraphSafeRemoveNodes(graph, marked_nodes); GraphSafeRemoveNodes(graph, marked_nodes);
} }
#undef GET_NODE #undef GET_NODE
......
...@@ -171,7 +171,6 @@ void TestLACPrediction(const std::string &model_path, ...@@ -171,7 +171,6 @@ void TestLACPrediction(const std::string &model_path,
cfg.device = 0; cfg.device = 0;
cfg.specify_input_name = true; cfg.specify_input_name = true;
cfg.enable_ir_optim = true; cfg.enable_ir_optim = true;
cfg.ir_passes.push_back("fc_gru_fuse_pass");
predictor = predictor =
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(cfg); CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(cfg);
} else { } else {
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册