Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
defbaff2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
defbaff2
编写于
5月 24, 2018
作者:
K
Kexin Zhao
提交者:
GitHub
5月 24, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #10886 from kexinzhao/label_semantic_roles_lod
Simplify label_semantic_roles book example using new LoDTensor API
上级
b3f650d1
6133728a
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
58 addition
and
58 deletion
+58
-58
python/paddle/fluid/tests/book/high-level-api/label_semantic_roles/test_label_semantic_roles_newapi.py
.../label_semantic_roles/test_label_semantic_roles_newapi.py
+29
-18
python/paddle/fluid/tests/book/test_label_semantic_roles.py
python/paddle/fluid/tests/book/test_label_semantic_roles.py
+29
-40
未找到文件。
python/paddle/fluid/tests/book/high-level-api/label_semantic_roles/test_label_semantic_roles_newapi.py
浏览文件 @
defbaff2
...
@@ -202,24 +202,35 @@ def infer(use_cuda, inference_program, save_path):
...
@@ -202,24 +202,35 @@ def infer(use_cuda, inference_program, save_path):
inferencer
=
fluid
.
Inferencer
(
inferencer
=
fluid
.
Inferencer
(
inference_program
,
param_path
=
save_path
,
place
=
place
)
inference_program
,
param_path
=
save_path
,
place
=
place
)
def
create_random_lodtensor
(
lod
,
place
,
low
,
high
):
# Setup inputs by creating LoDTensors to represent sequences of words.
data
=
np
.
random
.
random_integers
(
low
,
high
,
# Here each word is the basic element of these LoDTensors and the shape of
[
lod
[
-
1
],
1
]).
astype
(
"int64"
)
# each word (base_shape) should be [1] since it is simply an index to
res
=
fluid
.
LoDTensor
()
# look up for the corresponding word vector.
res
.
set
(
data
,
place
)
# Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
res
.
set_lod
([
lod
])
# which has only one lod level. Then the created LoDTensors will have only
return
res
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# Create an input example
# length 3, 4 and 2, respectively.
lod
=
[
0
,
4
,
10
]
# Note that lod info should be a list of lists.
word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
WORD_DICT_LEN
-
1
)
lod
=
[[
3
,
4
,
2
]]
pred
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
PRED_DICT_LEN
-
1
)
base_shape
=
[
1
]
ctx_n2
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
WORD_DICT_LEN
-
1
)
# The range of random integers is [low, high]
ctx_n1
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
WORD_DICT_LEN
-
1
)
word
=
fluid
.
create_random_int_lodtensor
(
ctx_0
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
WORD_DICT_LEN
-
1
)
lod
,
base_shape
,
place
,
low
=
0
,
high
=
WORD_DICT_LEN
-
1
)
ctx_p1
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
WORD_DICT_LEN
-
1
)
pred
=
fluid
.
create_random_int_lodtensor
(
ctx_p2
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
WORD_DICT_LEN
-
1
)
lod
,
base_shape
,
place
,
low
=
0
,
high
=
PRED_DICT_LEN
-
1
)
mark
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
MARK_DICT_LEN
-
1
)
ctx_n2
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
WORD_DICT_LEN
-
1
)
ctx_n1
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
WORD_DICT_LEN
-
1
)
ctx_0
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
WORD_DICT_LEN
-
1
)
ctx_p1
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
WORD_DICT_LEN
-
1
)
ctx_p2
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
WORD_DICT_LEN
-
1
)
mark
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
MARK_DICT_LEN
-
1
)
results
=
inferencer
.
infer
(
results
=
inferencer
.
infer
(
{
{
...
...
python/paddle/fluid/tests/book/test_label_semantic_roles.py
浏览文件 @
defbaff2
...
@@ -116,29 +116,6 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
...
@@ -116,29 +116,6 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
return
feature_out
return
feature_out
def
to_lodtensor
(
data
,
place
):
seq_lens
=
[
len
(
seq
)
for
seq
in
data
]
cur_len
=
0
lod
=
[
cur_len
]
for
l
in
seq_lens
:
cur_len
+=
l
lod
.
append
(
cur_len
)
flattened_data
=
np
.
concatenate
(
data
,
axis
=
0
).
astype
(
"int64"
)
flattened_data
=
flattened_data
.
reshape
([
len
(
flattened_data
),
1
])
res
=
fluid
.
LoDTensor
()
res
.
set
(
flattened_data
,
place
)
res
.
set_lod
([
lod
])
return
res
def
create_random_lodtensor
(
lod
,
place
,
low
,
high
):
data
=
np
.
random
.
random_integers
(
low
,
high
,
[
lod
[
-
1
],
1
]).
astype
(
"int64"
)
res
=
fluid
.
LoDTensor
()
res
.
set
(
data
,
place
)
res
.
set_lod
([
lod
])
return
res
def
train
(
use_cuda
,
save_dirname
=
None
,
is_local
=
True
):
def
train
(
use_cuda
,
save_dirname
=
None
,
is_local
=
True
):
# define network topology
# define network topology
word
=
fluid
.
layers
.
data
(
word
=
fluid
.
layers
.
data
(
...
@@ -271,23 +248,35 @@ def infer(use_cuda, save_dirname=None):
...
@@ -271,23 +248,35 @@ def infer(use_cuda, save_dirname=None):
[
inference_program
,
feed_target_names
,
[
inference_program
,
feed_target_names
,
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
fetch_targets
]
=
fluid
.
io
.
load_inference_model
(
save_dirname
,
exe
)
lod
=
[
0
,
4
,
10
]
# Setup inputs by creating LoDTensors to represent sequences of words.
word
=
create_random_lodtensor
(
# Here each word is the basic element of these LoDTensors and the shape of
lod
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
# each word (base_shape) should be [1] since it is simply an index to
pred
=
create_random_lodtensor
(
# look up for the corresponding word vector.
lod
,
place
,
low
=
0
,
high
=
pred_dict_len
-
1
)
# Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
ctx_n2
=
create_random_lodtensor
(
# which has only one lod level. Then the created LoDTensors will have only
lod
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
# one higher level structure (sequence of words, or sentence) than the basic
ctx_n1
=
create_random_lodtensor
(
# element (word). Hence the LoDTensor will hold data for three sentences of
lod
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
# length 3, 4 and 2, respectively.
ctx_0
=
create_random_lodtensor
(
# Note that lod info should be a list of lists.
lod
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
lod
=
[[
3
,
4
,
2
]]
ctx_p1
=
create_random_lodtensor
(
base_shape
=
[
1
]
lod
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
# The range of random integers is [low, high]
ctx_p2
=
create_random_lodtensor
(
word
=
fluid
.
create_random_int_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
lod
,
base_shape
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
mark
=
create_random_lodtensor
(
pred
=
fluid
.
create_random_int_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
mark_dict_len
-
1
)
lod
,
base_shape
,
place
,
low
=
0
,
high
=
pred_dict_len
-
1
)
ctx_n2
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
ctx_n1
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
ctx_0
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
ctx_p1
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
ctx_p2
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
word_dict_len
-
1
)
mark
=
fluid
.
create_random_int_lodtensor
(
lod
,
base_shape
,
place
,
low
=
0
,
high
=
mark_dict_len
-
1
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
# and results will contain a list of data corresponding to fetch_targets.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录