Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
de42d193
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
de42d193
编写于
2月 01, 2021
作者:
G
gongweibao
提交者:
GitHub
2月 01, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add paddle ascend distribution training supported (#30796)
Add paddle ascend distribution training supported
上级
ebb5d181
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
51 addition
and
21 deletion
+51
-21
python/paddle/distributed/fleet/meta_optimizers/ascend/ascend_optimizer.py
...tributed/fleet/meta_optimizers/ascend/ascend_optimizer.py
+29
-14
python/paddle/distributed/fleet/meta_optimizers/ascend/ascend_parser.py
...distributed/fleet/meta_optimizers/ascend/ascend_parser.py
+22
-7
未找到文件。
python/paddle/distributed/fleet/meta_optimizers/ascend/ascend_optimizer.py
浏览文件 @
de42d193
...
...
@@ -26,10 +26,12 @@ HcomGroupConfig = namedtuple('HcomGroupConfig', ['name', 'nranks', 'rank_ids'])
class
AscendIRParser
(
object
):
def
__init__
(
self
):
def
__init__
(
self
,
auto_dp
=
False
,
world_rank_size
=
1
):
self
.
graph_idx
=
0
self
.
hcom_endpoints
=
{}
self
.
groups_to_create
=
[]
self
.
_auto_dp
=
auto_dp
self
.
_world_rank_size
=
world_rank_size
def
_construct_input_map
(
self
,
input_varlist
):
ret_map
=
{}
...
...
@@ -91,13 +93,12 @@ class AscendIRParser(object):
print
(
"append to create group: %s, with rank_ids: %s"
%
(
group_name
,
global_rank_ids
))
elif
op
.
type
in
ascend_parser
.
registerd_op
:
print
(
"Op[%s] has been registered, begin to parse it"
%
(
op
.
type
))
op_parser
=
self
.
parser_factory
.
create_parse
(
ascend_parser
.
registerd_op
[
op
.
type
])
op_parser
.
apply
(
op
)
else
:
print
(
"Op[%s] has not been registered, so we have to skip it"
%
(
op
.
type
)
)
assert
False
,
"Op[%s] has not been registered, so we have to skip it"
%
(
op
.
type
)
def
_parse_program
(
self
,
graph_name
,
...
...
@@ -161,6 +162,17 @@ class AscendIRParser(object):
startup_graph
=
self
.
_parse_program
(
"startup"
,
startup_program
)
main_graph
=
self
.
_parse_program
(
"main"
,
main_program
,
input_varlist
,
fetch_list
)
if
self
.
_auto_dp
and
self
.
_world_rank_size
>
1
:
assert
len
(
self
.
groups_to_create
)
==
0
,
"can't parse program under auto_dp mode"
from
paddle.distributed
import
fleet
self
.
groups_to_create
.
append
(
HcomGroupConfig
(
name
=
"hcom_group_0"
,
nranks
=
fleet
.
world_size
(),
rank_ids
=
[
x
for
x
in
range
(
fleet
.
world_size
())]))
return
startup_graph
,
main_graph
...
...
@@ -196,7 +208,8 @@ class AscendOptimizer(Optimizer):
startup_program
=
None
,
parameter_list
=
None
,
no_grad_set
=
None
,
auto_dp
=
False
):
auto_dp
=
False
,
rank_table_file
=
None
):
minimized
=
None
if
self
.
inner_opt
:
minimized
=
self
.
inner_opt
.
minimize
(
...
...
@@ -205,24 +218,25 @@ class AscendOptimizer(Optimizer):
self
.
ascend_instance
=
core
.
AscendInstance
()
from
paddle.distributed
import
fleet
if
auto_dp
and
fleet
.
wor
ker_num
()
>
1
:
if
auto_dp
and
fleet
.
wor
ld_size
()
>
1
:
from
paddle.fluid.transpiler
import
ascend_transpiler
t
=
ascend_transpiler
.
AscendTranspiler
(
startup_program
,
loss
.
block
.
program
)
t
.
transpile
()
print
(
loss
.
block
.
program
)
#
print(loss.block.program)
# Config about Graph Engine can be found in https://support.huaweicloud.com/
config
=
{
"ge.exec.deviceId"
:
str
(
fleet
.
local_device_ids
()),
"ge.graphRunMode"
:
"1"
,
"ge.exec.precision_mode"
:
"must_keep_origin_dtype"
,
# if multi mode
"ge.exec.rankTableFile"
:
os
.
getenv
(
"RANK_TABLE_FILE"
),
"ge.exec.rankId"
:
str
(
fleet
.
worker_index
()),
"ge.exec.isUseHcom"
:
"1"
,
"ge.exec.deployMode"
:
"0"
,
}
# if multi trainers
if
rank_table_file
and
fleet
.
world_size
()
>
1
:
config
[
"ge.exec.rankTableFile"
]
=
rank_table_file
config
[
"ge.exec.rankId"
]
=
str
(
fleet
.
worker_index
())
config
[
"ge.exec.isUseHcom"
]
=
"1"
config
[
"ge.exec.deployMode"
]
=
"0"
print
(
"ge_initialize config:"
,
config
)
core
.
ge_initialize
(
config
)
...
...
@@ -230,7 +244,8 @@ class AscendOptimizer(Optimizer):
self
.
ascend_instance
.
init_global_resources
()
main_block
=
loss
.
block
self
.
parser
=
AscendIRParser
()
self
.
parser
=
AscendIRParser
(
auto_dp
=
auto_dp
,
world_rank_size
=
fleet
.
world_size
())
input_varlist
=
self
.
_get_input_varlist
(
main_block
.
program
)
...
...
@@ -238,9 +253,9 @@ class AscendOptimizer(Optimizer):
startup_program
,
main_block
.
program
,
input_varlist
,
self
.
fetch_list
)
for
cfg
in
self
.
parser
.
groups_to_create
:
hccl
.
create_group
(
cfg
.
name
,
cfg
.
nranks
,
cfg
.
rank_ids
)
print
(
"create group (%s), nranks: %d, rank_ids: %s"
%
(
cfg
.
name
,
cfg
.
nranks
,
cfg
.
rank_ids
))
hccl
.
create_group
(
cfg
.
name
,
cfg
.
nranks
,
cfg
.
rank_ids
)
self
.
ascend_instance
.
add_ascend_subgraph
(
0
,
startup_graph
)
self
.
ascend_instance
.
add_ascend_subgraph
(
1
,
main_graph
)
...
...
python/paddle/distributed/fleet/meta_optimizers/ascend/ascend_parser.py
浏览文件 @
de42d193
...
...
@@ -170,6 +170,7 @@ class AscendParserBase(object):
self
.
parser_name
,
len
(
index_list
),
output_num
)
for
output_id
in
range
(
output_num
):
arguments
=
self
.
op
.
output
(
self
.
op
.
output_names
[
output_id
])
#print("%d argument: %s" % (output_id, str(arguments)))
if
len
(
arguments
)
>
0
:
assert
len
(
arguments
)
==
len
(
index_list
[
output_id
]
...
...
@@ -177,6 +178,8 @@ class AscendParserBase(object):
self
.
parser_name
,
output_id
,
len
(
index_list
[
output_id
]),
len
(
arguments
))
for
i
in
range
(
len
(
arguments
)):
#print("assgin index_list[%d][%d] to %s" %
# (output_id, i, arguments[i]))
self
.
var2geop
[
arguments
[
i
]]
=
geop_list
[
index_list
[
output_id
][
i
]]
...
...
@@ -789,6 +792,8 @@ class FillConstantParser(AscendParserBase):
"Const"
).
set_attr_tensor
(
"value"
,
tensor
)
self
.
_mark_as_input
(
const
)
if
self
.
op
.
block
.
var
(
self
.
op
.
output
(
'Out'
)[
0
]).
persistable
:
#print("%s is Persistable in fill_constant" %
# (self.op.output('Out')[0]))
var
=
core
.
GEOperatorFactory
.
create_operator
(
self
.
op
.
output
(
'Out'
)[
0
],
"Variable"
)
var
.
update_output_desc
(
"y"
,
...
...
@@ -800,6 +805,10 @@ class FillConstantParser(AscendParserBase):
"assign"
+
self
.
_accumulated_op_id
(),
"Assign"
).
set_input
(
"value"
,
const
).
set_input
(
"ref"
,
var
)
return
[
const
],
[[
0
]]
#else:
# print(
# "self.op.output('Out')[0]: %s is not persistable in fill_constant"
# % (self.op.output('Out')[0]))
return
[
const
],
[[
0
]]
...
...
@@ -853,6 +862,8 @@ class TruncatedNormalParser(AscendParserBase):
## wirte the output of truncatedNormal from startup_program to main_program
if
self
.
op
.
block
.
var
(
self
.
op
.
output
(
'Out'
)[
0
]).
persistable
:
#print("%s is Persistable in truncated_normal" %
# (self.op.output('Out')[0]))
var
=
core
.
GEOperatorFactory
.
create_operator
(
self
.
op
.
output
(
'Out'
)[
0
],
"Variable"
)
var
.
update_output_desc
(
"y"
,
...
...
@@ -867,6 +878,10 @@ class TruncatedNormalParser(AscendParserBase):
shape_tensor
,
mean_tensor
,
std_tensor
,
min_tensor
,
max_tensor
,
truncated_normal
],
[[
-
1
]]
#else:
# print(
# "self.op.output('Out')[0] is not persistable in truncated_noraml"
# )
return
[
truncated_normal
],
[[
0
]]
...
...
@@ -1366,7 +1381,7 @@ class UniformRandomParser(AscendParserBase):
tensor1
=
self
.
_create_ge_tensor
([
len
(
shape
)],
2
,
shape
)
shape_tensor
=
core
.
GEOperatorFactory
.
create_operator
(
"const"
+
self
.
_accumulated_op_id
(),
"const"
+
self
.
_accumulated_op_id
(),
"Const"
).
set_attr_tensor
(
"value"
,
tensor1
)
ge_ur
=
core
.
GEOperatorFactory
.
create_operator
(
...
...
@@ -1379,9 +1394,9 @@ class UniformRandomParser(AscendParserBase):
scale
=
max_v
-
min_v
scale_value
=
core
.
GEOperatorFactory
.
create_operator
(
"scale"
+
self
.
_accumulated_op_id
(),
"Power"
).
set_input
(
"x"
,
ge_ur
).
set_attr_float
(
"power"
,
1.0
).
set_attr_float
(
"scale"
,
scale
).
set_attr_float
(
"shift"
,
min_v
)
"scale"
+
self
.
_accumulated_op_id
(),
"Power"
).
set_input
(
"x"
,
ge_ur
).
set_attr_float
(
"power"
,
1.0
).
set_attr_float
(
"scale"
,
scale
).
set_attr_float
(
"shift"
,
min_v
)
return
[
scale_value
],
[[
0
]]
...
...
@@ -1429,14 +1444,15 @@ class SqueezeParser(AscendParserBase):
def
_apply
(
self
):
tensor
=
self
.
_get_ge_input
(
self
.
op
.
input_arg_names
[
0
])
axes
=
self
.
op
.
attr
(
"axes"
)
axes
=
self
.
op
.
attr
(
"axes"
)
data_squeezed
=
core
.
GEOperatorFactory
\
.
create_operator
(
"squeeze"
+
self
.
_accumulated_op_id
(),
"Squeeze"
)
\
.
set_input
(
"x"
,
tensor
)
\
.
set_attr_vec_int32
(
"axes"
,
axes
)
shape
=
core
.
GEOperatorFactory
.
create_operator
(
"shape"
+
self
.
_accumulated_op_id
(),
"Shape"
).
set_input
(
"x"
,
data_squeezed
)
"shape"
+
self
.
_accumulated_op_id
(),
"Shape"
).
set_input
(
"x"
,
data_squeezed
)
return
[
shape
,
data_squeezed
],
[[
1
],
[
0
]]
...
...
@@ -2172,4 +2188,3 @@ class AdamParser(AscendParserBase):
"epsilon"
,
epsilon
).
set_input
(
"grad"
,
grad
)
return
[
adam
],
[[
0
]]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录