Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
de27569e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
de27569e
编写于
6月 30, 2020
作者:
A
Aurelius84
提交者:
GitHub
6月 30, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Dy2Stat] fix diff of cycle GAN model on GPU (#25233)
* fix GPU diff test=develop * refine code test=develop
上级
23a4f54b
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
12 addition
and
13 deletion
+12
-13
python/paddle/fluid/tests/unittests/dygraph_to_static/test_cycle_gan.py
...fluid/tests/unittests/dygraph_to_static/test_cycle_gan.py
+12
-13
未找到文件。
python/paddle/fluid/tests/unittests/dygraph_to_static/test_cycle_gan.py
浏览文件 @
de27569e
...
...
@@ -40,10 +40,13 @@ from paddle.fluid.dygraph.nn import Conv2D, Conv2DTranspose, BatchNorm
# Note: Set True to eliminate randomness.
# 1. For one operation, cuDNN has several algorithms,
# some algorithm results are non-deterministic, like convolution algorithms.
# 2. If include BatchNorm, please set `use_global_stats=True` to avoid using
# cudnnBatchNormalizationBackward which is non-deterministic.
if
fluid
.
is_compiled_with_cuda
():
fluid
.
set_flags
({
'FLAGS_cudnn_deterministic'
:
True
})
use_cudnn
=
True
# set False to speed up training.
use_cudnn
=
False
step_per_epoch
=
10
lambda_A
=
10.0
lambda_B
=
10.0
...
...
@@ -110,7 +113,7 @@ class Cycle_Gan(fluid.dygraph.Layer):
return
fake_A
,
fake_B
,
cyc_A
,
cyc_B
,
g_A_loss
,
g_B_loss
,
idt_loss_A
,
idt_loss_B
,
cyc_A_loss
,
cyc_B_loss
,
g_loss
@
declarative
def
disriminatorA
(
self
,
input_A
,
input_B
):
def
dis
c
riminatorA
(
self
,
input_A
,
input_B
):
"""
Discriminator A of GAN model.
"""
...
...
@@ -326,6 +329,7 @@ class conv2d(fluid.dygraph.Layer):
bias_attr
=
con_bias_attr
)
if
norm
:
self
.
bn
=
BatchNorm
(
use_global_stats
=
True
,
# set True to use deterministic algorithm
num_channels
=
num_filters
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
1.0
,
0.02
)),
...
...
@@ -381,6 +385,7 @@ class DeConv2D(fluid.dygraph.Layer):
bias_attr
=
de_bias_attr
)
if
norm
:
self
.
bn
=
BatchNorm
(
use_global_stats
=
True
,
# set True to use deterministic algorithm
num_channels
=
num_filters
,
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
1.0
,
0.02
)),
...
...
@@ -429,7 +434,6 @@ class ImagePool(object):
def
reader_creater
():
# local_random = np.random.RandomState(SEED)
def
reader
():
while
True
:
fake_image
=
np
.
uint8
(
...
...
@@ -480,13 +484,8 @@ def optimizer_setting(parameters):
def
train
(
args
,
to_static
):
# FIXME(Aurelius84): Found diff just on GPU and it disappears when we remove the BatchNorm layers.
# In dygraph mode, it still exists with different output while executing the every time.
# place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() \
# else fluid.CPUPlace()
place
=
fluid
.
CPUPlace
()
place
=
fluid
.
CUDAPlace
(
0
)
if
fluid
.
is_compiled_with_cuda
()
\
else
fluid
.
CPUPlace
()
program_translator
.
enable
(
to_static
)
...
...
@@ -553,8 +552,8 @@ def train(args, to_static):
fake_pool_A
=
to_variable
(
fake_pool_A
)
# optimize the d_A network
rec_B
,
fake_pool_rec_B
=
cycle_gan
.
disriminatorA
(
data_B
,
fake_pool_B
)
rec_B
,
fake_pool_rec_B
=
cycle_gan
.
dis
c
riminatorA
(
data_B
,
fake_pool_B
)
d_loss_A
=
(
fluid
.
layers
.
square
(
fake_pool_rec_B
)
+
fluid
.
layers
.
square
(
rec_B
-
1
))
/
2.0
d_loss_A
=
fluid
.
layers
.
reduce_mean
(
d_loss_A
)
...
...
@@ -581,7 +580,6 @@ def train(args, to_static):
idt_loss_A
,
g_B_loss
,
cyc_B_loss
,
idt_loss_B
]
cur_batch_loss
=
[
x
.
numpy
()[
0
]
for
x
in
cur_batch_loss
]
loss_data
.
append
(
cur_batch_loss
)
batch_time
=
time
.
time
()
-
s_time
t_time
+=
batch_time
...
...
@@ -593,6 +591,7 @@ def train(args, to_static):
if
batch_id
>
args
.
train_step
:
break
loss_data
.
append
(
cur_batch_loss
)
return
np
.
array
(
loss_data
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录