Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
dd5f33e1
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
dd5f33e1
编写于
2月 01, 2023
作者:
W
wangruting
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
original code
上级
3ebc0f73
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
487 addition
and
12 deletion
+487
-12
paddle/fluid/prim/api/auto_code_generated/prim_base.py
paddle/fluid/prim/api/auto_code_generated/prim_base.py
+4
-0
paddle/fluid/prim/api/generated/prim_api/static_prim_api.cc
paddle/fluid/prim/api/generated/prim_api/static_prim_api.cc
+76
-0
paddle/fluid/prim/api/manual/backward/composite_backward_api.h
...e/fluid/prim/api/manual/backward/composite_backward_api.h
+308
-2
paddle/fluid/prim/api/manual/utils/utils.h
paddle/fluid/prim/api/manual/utils/utils.h
+99
-10
未找到文件。
paddle/fluid/prim/api/auto_code_generated/prim_base.py
浏览文件 @
dd5f33e1
...
...
@@ -25,6 +25,10 @@ white_ops_list = [
"divide"
,
"sum"
,
"exp"
,
"matmul"
,
"dot"
,
"transpose"
,
"add"
,
]
inplace_out_type_map
=
{
...
...
paddle/fluid/prim/api/generated/prim_api/static_prim_api.cc
浏览文件 @
dd5f33e1
...
...
@@ -38,6 +38,24 @@
namespace
paddle
{
namespace
prim
{
template
<
>
Tensor
add
<
DescTensor
>
(
const
Tensor
&
x
,
const
Tensor
&
y
)
{
Tensor
out
=
empty
<
DescTensor
>
({},
phi
::
DataType
::
FLOAT32
,
paddle
::
Place
());
framework
::
BlockDesc
*
block
=
StaticCompositeContext
::
Instance
().
GetBlock
();
framework
::
OpDesc
*
op
=
block
->
AppendOp
();
op
->
SetType
(
"elementwise_add"
);
op
->
SetInput
(
"X"
,
{
std
::
static_pointer_cast
<
prim
::
DescTensor
>
(
x
.
impl
())
->
Name
()});
op
->
SetInput
(
"Y"
,
{
std
::
static_pointer_cast
<
prim
::
DescTensor
>
(
y
.
impl
())
->
Name
()});
op
->
SetOutput
(
"Out"
,
{
std
::
static_pointer_cast
<
prim
::
DescTensor
>
(
out
.
impl
())
->
Name
()});
op
->
CheckAttrs
();
op
->
InferVarType
(
block
);
op
->
InferShape
(
*
block
);
return
out
;
}
template
<
>
Tensor
pow
<
DescTensor
>
(
const
Tensor
&
x
,
const
Scalar
&
y
)
{
Tensor
out
=
empty
<
DescTensor
>
({},
phi
::
DataType
::
FLOAT32
,
paddle
::
Place
());
...
...
@@ -77,6 +95,29 @@ Tensor scale<DescTensor>(const Tensor& x,
return
out
;
}
template
<
>
Tensor
matmul
<
DescTensor
>
(
const
Tensor
&
x
,
const
Tensor
&
y
,
bool
transpose_x
,
bool
transpose_y
)
{
Tensor
out
=
empty
<
DescTensor
>
({},
phi
::
DataType
::
FLOAT32
,
paddle
::
Place
());
framework
::
BlockDesc
*
block
=
StaticCompositeContext
::
Instance
().
GetBlock
();
framework
::
OpDesc
*
op
=
block
->
AppendOp
();
op
->
SetType
(
"MatMul"
);
op
->
SetInput
(
"X"
,
{
std
::
static_pointer_cast
<
prim
::
DescTensor
>
(
x
.
impl
())
->
Name
()});
op
->
SetInput
(
"Y"
,
{
std
::
static_pointer_cast
<
prim
::
DescTensor
>
(
y
.
impl
())
->
Name
()});
op
->
SetOutput
(
"Out"
,
{
std
::
static_pointer_cast
<
prim
::
DescTensor
>
(
out
.
impl
())
->
Name
()});
op
->
SetAttr
(
"transpose_X"
,
transpose_x
);
op
->
SetAttr
(
"transpose_Y"
,
transpose_y
);
op
->
CheckAttrs
();
op
->
InferVarType
(
block
);
op
->
InferShape
(
*
block
);
return
out
;
}
template
<
>
Tensor
multiply
<
DescTensor
>
(
const
Tensor
&
x
,
const
Tensor
&
y
)
{
// Grad infershape
...
...
@@ -236,6 +277,41 @@ Tensor reshape<DescTensor>(const Tensor& x, const IntArray& shape) {
return
out
;
}
template
<
>
Tensor
transpose
<
Tensor
>
(
const
Tensor
&
x
,
const
std
::
vector
<
int
>&
perm
)
{
Tensor
out
=
empty
<
DescTensor
>
({},
phi
::
DataType
::
FLOAT32
,
paddle
::
Place
());
framework
::
BlockDesc
*
block
=
StaticCompositeContext
::
Instance
().
GetBlock
();
framework
::
OpDesc
*
op
=
block
->
AppendOp
();
op
->
SetType
(
"transpose"
);
op
->
SetInput
(
"X"
,
{
std
::
static_pointer_cast
<
prim
::
DescTensor
>
(
x
.
impl
())
->
Name
()});
op
->
SetOutput
(
"Out"
,
{
std
::
static_pointer_cast
<
prim
::
DescTensor
>
(
out
.
impl
())
->
Name
()});
op
->
SetAttr
(
"axis"
,
perm
);
op
->
CheckAttrs
();
op
->
InferVarType
(
block
);
op
->
InferShape
(
*
block
);
return
out
;
}
template
<
>
Tensor
dot
<
DescTensor
>
(
const
Tensor
&
x
,
const
Tensor
&
y
)
{
Tensor
out
=
empty
<
DescTensor
>
({},
phi
::
DataType
::
FLOAT32
,
paddle
::
Place
());
framework
::
BlockDesc
*
block
=
StaticCompositeContext
::
Instance
().
GetBlock
();
framework
::
OpDesc
*
op
=
block
->
AppendOp
();
op
->
SetType
(
"dot"
);
op
->
SetInput
(
"X"
,
{
std
::
static_pointer_cast
<
prim
::
DescTensor
>
(
x
.
impl
())
->
Name
()});
op
->
SetInput
(
"Y"
,
{
std
::
static_pointer_cast
<
prim
::
DescTensor
>
(
x
.
impl
())
->
Name
()});
op
->
SetOutput
(
"Out"
,
{
std
::
static_pointer_cast
<
prim
::
DescTensor
>
(
out
.
impl
())
->
Name
()});
op
->
CheckAttrs
();
op
->
InferVarType
(
block
);
op
->
InferShape
(
*
block
);
return
out
;
}
template
<
>
Tensor
exp
<
DescTensor
>
(
const
Tensor
&
x
)
{
Tensor
out
=
empty
<
DescTensor
>
({},
phi
::
DataType
::
FLOAT32
,
paddle
::
Place
());
...
...
paddle/fluid/prim/api/manual/backward/composite_backward_api.h
浏览文件 @
dd5f33e1
...
...
@@ -13,6 +13,7 @@
// limitations under the License.
#pragma once
#include "paddle/fluid/prim/api/generated/prim_api/prim_api.h"
#include "paddle/fluid/prim/api/manual/prim_api/prim_api.h"
#include "paddle/fluid/prim/api/manual/utils/utils.h"
...
...
@@ -170,7 +171,7 @@ void divide_grad(const Tensor& x,
Tensor
*
dx
,
Tensor
*
dy
)
{
if
(
dy
)
{
// dy = -(x/y^2) *
d
out
// dy = -(x/y^2) *
grad_
out
auto
tmp0
=
pow
<
T
>
(
y
,
2.0
);
auto
tmp1
=
divide
<
T
>
(
x
,
tmp0
);
auto
tmp2
=
scale
<
T
>
(
tmp1
,
-
1.0
,
0.0
,
true
);
...
...
@@ -191,7 +192,7 @@ void divide_grad(const Tensor& x,
}
}
// indicate we will compute dy
if
(
dx
)
{
// dx = (1/y) *
d
out
// dx = (1/y) *
grad_
out
auto
one_tensor
=
full
<
T
>
(
phi
::
vectorize
(
y
.
dims
()),
1.0
,
y
.
dtype
());
auto
tmp0
=
divide
<
T
>
(
one_tensor
,
y
);
auto
dx_res
=
multiply
<
T
>
(
tmp0
,
out_grad
);
...
...
@@ -303,5 +304,310 @@ void exp_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
}
}
template
<
typename
T
>
void
matmul_double_grad
(
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
grad_out
,
const
paddle
::
optional
<
Tensor
>&
grad_x_grad
,
const
paddle
::
optional
<
Tensor
>&
grad_y_grad
,
bool
transpose_x
,
bool
transpose_y
,
Tensor
*
x_grad
,
Tensor
*
y_grad
,
Tensor
*
grad_out_grad
)
{
// Get dims from the input x, y, output_grad
std
::
vector
<
std
::
int64_t
>
x_dims
=
vectorize
(
x
.
dims
());
std
::
vector
<
std
::
int64_t
>
y_dims
=
vectorize
(
y
.
dims
());
std
::
vector
<
std
::
int64_t
>
grad_out_dims
=
vectorize
(
grad_out
.
dims
());
int
x_ndim
=
x_dims
.
size
();
int
y_ndim
=
y_dims
.
size
();
int
ndim
=
grad_out_dims
.
size
();
// Case1 : x's or y's dim = 1
bool
is_broadcast
=
true
;
if
(
x_ndim
<=
2
||
y_ndim
<=
2
)
{
is_broadcast
=
false
;
}
else
if
(
x_ndim
!=
y_ndim
)
{
is_broadcast
=
true
;
}
else
{
is_broadcast
=
!
std
::
equal
(
x_dims
.
cbegin
(),
x_dims
.
cbegin
()
+
x_ndim
-
2
,
y_dims
.
cbegin
());
}
if
(
!
is_broadcast
)
{
// Case2: no broadcast or no batch size
Tensor
x_help
=
x
;
Tensor
y_help
=
y
;
Tensor
grad_out_help
=
grad_out
;
reshape_xyout_to_matrixsequence
<
T
>
(
x_help
,
y_help
,
grad_out_help
,
transpose_x
,
transpose_y
);
phi
::
DDim
x_grad_dims
;
if
(
x_grad
)
{
x_grad_dims
=
x_grad
->
dims
();
if
(
x_grad_dims
!=
x_help
.
dims
())
{
*
x_grad
=
reshape
<
T
>
(
*
x_grad
,
IntArray
(
phi
::
vectorize
(
x_help
.
dims
())));
}
}
phi
::
DDim
y_grad_dims
;
if
(
y_grad
)
{
y_grad_dims
=
y_grad
->
dims
();
if
(
y_grad_dims
!=
y_help
.
dims
())
{
*
y_grad
=
reshape
<
T
>
(
*
y_grad
,
IntArray
(
phi
::
vectorize
(
y_help
.
dims
())));
}
}
phi
::
DDim
dgrad_out_dims
;
if
(
grad_out_grad
)
{
dgrad_out_dims
=
grad_out_grad
->
dims
();
if
(
dgrad_out_dims
!=
grad_out_help
.
dims
())
{
*
grad_out_grad
=
reshape
<
T
>
(
*
grad_out_grad
,
IntArray
(
phi
::
vectorize
(
grad_out_help
.
dims
())));
}
}
bool
dgrad_out_flag
=
false
;
if
(
grad_x_grad
)
{
auto
grad_x_grad_mat
=
grad_x_grad
.
get
();
if
(
grad_x_grad_mat
.
dims
()
!=
x_help
.
dims
())
{
grad_x_grad_mat
=
reshape
<
T
>
(
grad_x_grad_mat
,
IntArray
(
phi
::
vectorize
(
x_help
.
dims
())));
}
if
(
y_grad
)
{
Tensor
y_grad_tmp
;
if
(
transpose_x
&&
transpose_y
)
{
// y_grad = grad_out' * grad_x_grad'
auto
tmp
=
modify_dim_for_matmul
<
T
>
(
grad_out
,
true
,
grad_x_grad_mat
,
false
);
y_grad_tmp
=
matmul
<
T
>
(
std
::
get
<
0
>
(
tmp
),
std
::
get
<
1
>
(
tmp
),
true
,
true
);
}
else
if
(
transpose_x
)
{
// y_grad = grad_x_grad * grad_out
auto
tmp
=
modify_dim_for_matmul
<
T
>
(
grad_x_grad_mat
,
false
,
grad_out
,
true
);
y_grad_tmp
=
matmul
<
T
>
(
std
::
get
<
0
>
(
tmp
),
std
::
get
<
1
>
(
tmp
),
false
,
false
);
}
else
if
(
transpose_y
)
{
// y_grad = grad_out' * grad_x_grad
auto
tmp
=
modify_dim_for_matmul
<
T
>
(
grad_out
,
true
,
grad_x_grad_mat
,
true
);
y_grad_tmp
=
matmul
<
T
>
(
std
::
get
<
0
>
(
tmp
),
std
::
get
<
1
>
(
tmp
),
true
,
false
);
}
else
{
// y_grad = grad_x_grad' * grad_out
auto
tmp
=
modify_dim_for_matmul
<
T
>
(
grad_x_grad_mat
,
true
,
grad_out
,
true
);
y_grad_tmp
=
matmul
<
T
>
(
std
::
get
<
0
>
(
tmp
),
std
::
get
<
1
>
(
tmp
),
true
,
false
);
}
set_output
<
T
>
(
y_grad_tmp
,
y_grad
);
}
if
(
grad_out_grad
)
{
auto
tmp
=
modify_dim_for_matmul
<
T
>
(
grad_x_grad_mat
,
true
,
y
,
false
);
auto
grad_out_grad_tmp
=
matmul
<
T
>
(
std
::
get
<
0
>
(
tmp
),
std
::
get
<
1
>
(
tmp
),
transpose_x
,
transpose_y
);
set_output
<
T
>
(
grad_out_grad_tmp
,
grad_out_grad
);
}
}
else
if
(
!
grad_x_grad
&&
y_grad
)
{
auto
y_grad_tmp
=
full
<
T
>
(
phi
::
vectorize
(
y
.
dims
()),
Scalar
(
0.0
));
set_output
<
T
>
(
y_grad_tmp
,
y_grad
);
}
if
(
grad_y_grad
)
{
auto
grad_y_grad_mat
=
grad_y_grad
.
get
();
if
(
grad_y_grad_mat
.
dims
()
!=
y_help
.
dims
())
{
grad_y_grad_mat
=
reshape
<
T
>
(
grad_y_grad_mat
,
IntArray
(
phi
::
vectorize
(
y_help
.
dims
())));
}
if
(
x_grad
)
{
Tensor
x_grad_tmp
;
if
(
transpose_x
&&
transpose_y
)
{
// x_grad = grad_y_grad' * grad_out'
auto
tmp
=
modify_dim_for_matmul
<
T
>
(
grad_y_grad_mat
,
true
,
grad_out
,
false
);
x_grad_tmp
=
matmul
<
T
>
(
std
::
get
<
0
>
(
tmp
),
std
::
get
<
1
>
(
tmp
),
true
,
true
);
}
else
if
(
transpose_x
)
{
// x_grad = grad_y_grad * grad_out'
auto
tmp
=
modify_dim_for_matmul
<
T
>
(
grad_y_grad_mat
,
false
,
grad_out
,
false
);
x_grad_tmp
=
matmul
<
T
>
(
std
::
get
<
0
>
(
tmp
),
std
::
get
<
1
>
(
tmp
),
false
,
true
);
}
else
if
(
transpose_y
)
{
// x_grad = grad_out * grad_y_grad
auto
tmp
=
modify_dim_for_matmul
<
T
>
(
grad_out
,
false
,
grad_y_grad_mat
,
true
);
x_grad_tmp
=
matmul
<
T
>
(
std
::
get
<
0
>
(
tmp
),
std
::
get
<
1
>
(
tmp
),
false
,
false
);
}
else
{
// x_grad = grad_out * grad_y_grad'
auto
tmp
=
modify_dim_for_matmul
<
T
>
(
grad_out
,
false
,
grad_y_grad_mat
,
false
);
x_grad_tmp
=
matmul
<
T
>
(
std
::
get
<
0
>
(
tmp
),
std
::
get
<
1
>
(
tmp
),
false
,
true
);
}
set_output
<
T
>
(
x_grad_tmp
,
x_grad
);
}
if
(
grad_out_grad
)
{
auto
tmp
=
modify_dim_for_matmul
<
T
>
(
x
,
true
,
grad_y_grad_mat
,
false
);
auto
grad_out_grad_tmp
=
matmul
<
T
>
(
std
::
get
<
0
>
(
tmp
),
std
::
get
<
1
>
(
tmp
),
transpose_x
,
transpose_y
);
auto
output_tmp
=
add
<
T
>
(
grad_out_grad_tmp
,
*
grad_out_grad
);
set_output
<
T
>
(
output_tmp
,
grad_out_grad
);
}
}
else
if
(
!
grad_y_grad
&&
x_grad
)
{
auto
x_grad_tmp
=
full
<
T
>
(
phi
::
vectorize
(
x
.
dims
()),
Scalar
(
0.0
));
set_output
<
T
>
(
x_grad_tmp
,
x_grad
);
}
if
(
grad_out_grad
&&
!
grad_x_grad
&&
!
grad_y_grad
)
{
auto
grad_out_grad_tmp
=
full
<
T
>
(
phi
::
vectorize
(
grad_out
.
dims
()),
Scalar
(
0.0
));
set_output
<
T
>
(
grad_out_grad_tmp
,
grad_out_grad
);
}
if
(
x_grad
)
{
if
(
x_grad_dims
!=
x_help
.
dims
())
{
*
x_grad
=
reshape
<
T
>
(
*
x_grad
,
IntArray
(
phi
::
vectorize
(
x_grad_dims
)));
}
}
if
(
y_grad
)
{
if
(
y_grad_dims
!=
y_help
.
dims
())
{
*
y_grad
=
reshape
<
T
>
(
*
y_grad
,
IntArray
(
phi
::
vectorize
(
y_grad_dims
)));
}
}
if
(
grad_out_grad
)
{
if
(
dgrad_out_dims
!=
grad_out_help
.
dims
())
{
*
grad_out_grad
=
reshape
<
T
>
(
*
grad_out_grad
,
IntArray
(
phi
::
vectorize
(
dgrad_out_dims
)));
}
}
}
else
{
// Case3: broadcast. It need cost much time to reduce sum for the
// broadcast and wastes the memory.
// So we should avoid the case in reality.
VLOG
(
3
)
<<
"It need cost much time to reduce sum for the broadcast and "
"wastes the memory. So we should avoid the case in reality"
;
Tensor
x_grad_help
;
Tensor
y_grad_help
;
Tensor
grad_out_grad_help
;
if
(
transpose_x
)
{
if
(
transpose_y
)
{
if
(
x_grad
&&
grad_y_grad
)
{
x_grad_help
=
matmul
<
T
>
(
grad_y_grad
.
get
(),
grad_out
,
true
,
true
);
}
if
(
y_grad
&&
grad_x_grad
)
{
y_grad_help
=
matmul
<
T
>
(
grad_out
,
grad_x_grad
.
get
(),
true
,
true
);
}
}
else
{
if
(
x_grad
&&
grad_y_grad
)
{
x_grad_help
=
matmul
<
T
>
(
grad_y_grad
.
get
(),
grad_out
,
false
,
true
);
}
if
(
y_grad
&&
grad_x_grad
)
{
y_grad_help
=
matmul
<
T
>
(
grad_x_grad
.
get
(),
grad_out
,
false
,
false
);
}
}
}
else
{
if
(
transpose_y
)
{
if
(
x_grad
&&
grad_y_grad
)
{
x_grad_help
=
matmul
<
T
>
(
grad_out
,
grad_y_grad
.
get
(),
false
,
false
);
}
if
(
y_grad
&&
grad_x_grad
)
{
y_grad_help
=
matmul
<
T
>
(
grad_out
,
grad_x_grad
.
get
(),
true
,
false
);
}
}
else
{
if
(
x_grad
&&
grad_y_grad
)
{
x_grad_help
=
matmul
<
T
>
(
grad_out
,
grad_y_grad
.
get
(),
false
,
true
);
}
if
(
y_grad
&&
grad_x_grad
)
{
y_grad_help
=
matmul
<
T
>
(
grad_x_grad
.
get
(),
grad_out
,
true
,
false
);
}
}
}
// get help dims
const
std
::
vector
<
std
::
int64_t
>
x_grad_help_dims
=
vectorize
(
x_grad_help
.
dims
());
const
std
::
vector
<
std
::
int64_t
>
y_grad_help_dims
=
vectorize
(
y_grad_help
.
dims
());
std
::
vector
<
std
::
int64_t
>
x_grad_broadcast_dims
(
ndim
);
std
::
vector
<
std
::
int64_t
>
y_grad_broadcast_dims
(
ndim
);
std
::
fill
(
x_grad_broadcast_dims
.
data
(),
x_grad_broadcast_dims
.
data
()
+
ndim
-
x_ndim
,
1
);
std
::
fill
(
y_grad_broadcast_dims
.
data
(),
y_grad_broadcast_dims
.
data
()
+
ndim
-
y_ndim
,
1
);
std
::
copy
(
x_dims
.
data
(),
x_dims
.
data
()
+
x_ndim
,
x_grad_broadcast_dims
.
data
()
+
ndim
-
x_ndim
);
std
::
copy
(
y_dims
.
data
(),
y_dims
.
data
()
+
y_ndim
,
y_grad_broadcast_dims
.
data
()
+
ndim
-
y_ndim
);
std
::
vector
<
int
>
x_grad_reduce_dims
;
std
::
vector
<
int
>
y_grad_reduce_dims
;
for
(
int
ix_grad
=
0
;
ix_grad
<=
ndim
-
3
;
ix_grad
++
)
{
if
(
x_grad_help_dims
[
ix_grad
]
!=
1
&&
x_grad_broadcast_dims
[
ix_grad
]
==
1
)
{
x_grad_reduce_dims
.
push_back
(
ix_grad
);
}
if
(
y_grad_help_dims
[
ix_grad
]
!=
1
&&
y_grad_broadcast_dims
[
ix_grad
]
==
1
)
{
y_grad_reduce_dims
.
push_back
(
ix_grad
);
}
}
// Reduce sum to get grad by ReduceSum
if
(
x_grad
&&
x_grad_help
.
initialized
())
{
if
(
x_grad_reduce_dims
.
empty
())
{
x_grad_help
=
std
::
move
(
x_grad_help
);
}
else
{
x_grad_help
=
sum
<
T
>
(
x_grad_help
,
IntArray
(
x_grad_reduce_dims
));
}
reshape
<
T
>
(
x_grad_help
,
IntArray
(
phi
::
vectorize
(
x
.
dims
())));
}
else
if
(
x_grad
&&
!
x_grad_help
.
initialized
())
{
x_grad_help
=
full
<
T
>
(
phi
::
vectorize
(
x
.
dims
()),
Scalar
(
0.0
));
}
set_output
<
T
>
(
x_grad_help
,
x_grad
);
if
(
y_grad
&&
y_grad_help
.
initialized
())
{
if
(
y_grad_reduce_dims
.
empty
())
{
y_grad_help
=
std
::
move
(
y_grad_help
);
}
else
{
y_grad_help
=
sum
<
T
>
(
y_grad_help
,
IntArray
(
y_grad_reduce_dims
));
}
reshape
<
T
>
(
y_grad_help
,
IntArray
(
phi
::
vectorize
(
y
.
dims
())));
}
else
if
(
y_grad
&&
!
y_grad_help
.
initialized
())
{
y_grad_help
=
full
<
T
>
(
phi
::
vectorize
(
y
.
dims
()),
Scalar
(
0.0
));
}
set_output
<
T
>
(
y_grad_help
,
y_grad
);
if
(
grad_out_grad
)
{
// Calculate the gradient of OutputGrad(Out)
if
(
grad_x_grad
)
{
grad_out_grad_help
=
matmul
<
T
>
(
grad_x_grad
.
get
(),
y
,
transpose_x
,
transpose_y
);
}
if
(
grad_y_grad
)
{
auto
grad_out_grad_help_2
=
matmul
<
T
>
(
x
,
grad_y_grad
.
get
(),
transpose_x
,
transpose_y
);
grad_out_grad_help
=
add
<
T
>
(
grad_out_grad_help
,
grad_out_grad_help_2
);
}
set_output
<
T
>
(
grad_out_grad_help
,
grad_out_grad
);
}
}
}
}
// namespace prim
}
// namespace paddle
paddle/fluid/prim/api/manual/utils/utils.h
浏览文件 @
dd5f33e1
...
...
@@ -17,30 +17,34 @@
#include <vector>
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/operators/common_infer_shape_functions.h"
#include "paddle/fluid/prim/api/generated/prim_api/prim_api.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/int_array.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
namespace
paddle
{
namespace
prim
{
// We put some api like utils here
using
Tensor
=
paddle
::
experimental
::
Tensor
;
template
<
typename
T
>
paddle
::
experimental
::
Tensor
empty
(
const
paddle
::
experimental
::
IntArray
&
shape
,
paddle
::
experimental
::
DataType
dype
,
const
paddle
::
Place
&
place
);
Tensor
empty
(
const
paddle
::
experimental
::
IntArray
&
shape
,
paddle
::
experimental
::
DataType
dype
,
const
paddle
::
Place
&
place
);
template
<
typename
T
>
paddle
::
experimental
::
Tensor
empty_like
(
const
paddle
::
experimental
::
Tensor
&
x
,
paddle
::
experimental
::
DataType
dtype
,
const
paddle
::
Place
&
place
);
Tensor
empty_like
(
const
Tensor
&
x
,
paddle
::
experimental
::
DataType
dtype
,
const
paddle
::
Place
&
place
);
// copy tensor for output ptr, in static need use assigh op
template
<
typename
T
>
void
by_pass
(
const
paddle
::
experimental
::
Tensor
&
x
,
paddle
::
experimental
::
Tensor
*
out
);
void
by_pass
(
const
Tensor
&
x
,
Tensor
*
out
);
// set output ptr impl with tmp ptr impl,in dygraph OutGradMeta should be set
template
<
typename
T
>
void
set_output
(
const
paddle
::
experimental
::
Tensor
&
x_tmp
,
paddle
::
experimental
::
Tensor
*
x
);
void
set_output
(
const
Tensor
&
x_tmp
,
Tensor
*
x
);
// These method don't need to be specified
static
phi
::
DDim
get_reduce_dims_from_out
(
const
phi
::
DDim
&
dout_dims
,
...
...
@@ -78,5 +82,90 @@ static phi::DDim get_reduce_dims(const phi::DDim& x_dims,
return
get_reduce_dims_from_out
(
out_dims
,
x_dims
);
}
template
<
typename
T
>
std
::
tuple
<
Tensor
,
Tensor
>
modify_dim_for_matmul
(
const
Tensor
&
a
,
bool
is_fold_init_dims_a
,
const
Tensor
&
b
,
const
Tensor
*
out
,
bool
is_fold_init_dims_b
)
{
Tensor
a_out
=
a
;
Tensor
b_out
=
b
;
bool
need_combine
=
(
a
.
dims
().
size
()
==
3
||
b
.
dims
().
size
()
==
3
)
&&
out
->
dims
().
size
()
==
2
;
if
(
need_combine
)
{
auto
a_dims
=
a
.
dims
();
auto
b_dims
=
b
.
dims
();
if
(
is_fold_init_dims_a
)
{
if
(
a_dims
.
size
()
==
3
)
{
std
::
vector
<
int64_t
>
a_shape
=
{
a_dims
[
0
]
*
a_dims
[
1
],
a_dims
[
2
]};
a_out
=
reshape
<
T
>
(
a_out
,
IntArray
(
a_shape
));
}
}
else
{
if
(
a_dims
.
size
()
==
3
)
{
a_out
=
transpose
<
T
>
(
a
,
IntArray
(
std
::
vector
<
int
>
({
1
,
0
,
2
})));
std
::
vector
<
int64_t
>
a_shape
=
{
a_dims
[
0
],
a_dims
[
1
]
*
a_dims
[
2
]};
a_out
=
reshape
<
T
>
(
a_out
,
IntArray
(
a_shape
));
}
}
if
(
is_fold_init_dims_b
)
{
if
(
b_dims
.
size
()
==
3
)
{
std
::
vector
<
int64_t
>
b_shape
=
{
b_dims
[
0
]
*
b_dims
[
1
],
b_dims
[
2
]};
b_out
=
reshape
<
T
>
(
b_out
,
IntArray
(
b_shape
));
}
}
else
{
if
(
b_dims
.
size
()
==
3
)
{
b_out
=
transpose
<
T
>
(
b
,
IntArray
(
std
::
vector
<
int
>
({
1
,
0
,
2
})));
std
::
vector
<
int64_t
>
b_shape
=
{
b_dims
[
0
],
b_dims
[
1
]
*
b_dims
[
2
]};
b_out
=
reshape
<
T
>
(
b_out
,
IntArray
(
b_shape
));
}
}
}
std
::
tuple
<
Tensor
,
Tensor
>
output
(
a_out
,
b_out
);
return
output
;
}
template
<
typename
T
>
void
reshape_tensor_to_matrixsequence
(
Tensor
*
x
,
const
phi
::
funcs
::
MatDescriptor
&
descriptor
)
{
int64_t
h
,
w
;
h
=
descriptor
.
height_
;
w
=
descriptor
.
width_
;
if
(
descriptor
.
trans_
)
{
std
::
swap
(
w
,
h
);
}
if
(
descriptor
.
batch_size_
)
{
*
x
=
reshape
<
T
>
(
*
x
,
std
::
vector
<
int64_t
>
({
descriptor
.
batch_size_
,
h
,
w
}));
}
else
{
*
x
=
reshape
<
T
>
(
*
x
,
std
::
vector
<
int64_t
>
({
h
,
w
}));
}
}
template
<
typename
T
>
void
reshape_xyout_to_matrixsequence
(
Tensor
*
x
,
Tensor
*
y
,
Tensor
*
out
,
bool
trans_x
,
bool
trans_y
)
{
if
(
x
->
dims
().
size
()
==
1
)
{
*
x
=
reshape
<
T
>
(
*
x
,
std
::
vector
<
int64_t
>
({
1
,
x
->
dims
()[
0
]}));
}
if
(
y
->
dims
().
size
()
==
1
)
{
*
y
=
reshape
<
T
>
(
*
y
,
std
::
vector
<
int64_t
>
({
y
->
dims
()[
0
],
1
}));
}
auto
mat_dim_x
=
phi
::
funcs
::
CreateMatrixDescriptor
(
x
->
dims
(),
0
,
trans_x
);
auto
mat_dim_y
=
phi
::
funcs
::
CreateMatrixDescriptor
(
y
->
dims
(),
0
,
trans_y
);
if
(
mat_dim_x
.
batch_size_
==
0
&&
mat_dim_y
.
batch_size_
==
0
)
{
*
out
=
reshape
<
T
>
(
*
out
,
std
::
vector
<
int64_t
>
({
mat_dim_x
.
height_
,
mat_dim_y
.
width_
}));
}
else
{
*
out
=
reshape
<
T
>
(
*
out
,
std
::
vector
<
int64_t
>
({(
std
::
max
)(
mat_dim_x
.
batch_size_
,
mat_dim_y
.
batch_size_
),
mat_dim_x
.
height_
,
mat_dim_y
.
width_
}));
}
reshape_tensor_to_matrixsequence
<
T
>
(
x
,
mat_dim_x
);
reshape_tensor_to_matrixsequence
<
T
>
(
y
,
mat_dim_y
);
}
}
// namespace prim
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录