Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
dcb3da59
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
dcb3da59
编写于
10月 26, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine code
上级
05239b6f
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
56 addition
and
117 deletion
+56
-117
paddle/operators/math/sequence_project.h
paddle/operators/math/sequence_project.h
+2
-2
paddle/operators/sequence_conv_op.cc
paddle/operators/sequence_conv_op.cc
+7
-7
paddle/operators/sequence_conv_op.h
paddle/operators/sequence_conv_op.h
+13
-14
python/paddle/v2/framework/tests/test_seq_conv.py
python/paddle/v2/framework/tests/test_seq_conv.py
+34
-94
未找到文件。
paddle/operators/math/sequence_project.h
浏览文件 @
dcb3da59
...
@@ -90,8 +90,8 @@ template <typename Place, typename T>
...
@@ -90,8 +90,8 @@ template <typename Place, typename T>
class
SequenceProjectFunctor
{
class
SequenceProjectFunctor
{
public:
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
void
operator
()(
const
platform
::
DeviceContext
&
context
,
framework
::
LoDTensor
&
in
,
framework
::
LoD
Tensor
&
padding_data
,
framework
::
LoDTensor
&
in
,
framework
::
Tensor
&
padding_data
,
framework
::
LoD
Tensor
&
col
,
bool
padding_trainable
,
framework
::
Tensor
&
col
,
bool
padding_trainable
,
int
context_start
,
int
context_length
,
int
context_stride
,
int
context_start
,
int
context_length
,
int
context_stride
,
int
up_pad
,
int
down_pad
,
bool
gradient
,
bool
input_grad
,
int
up_pad
,
int
down_pad
,
bool
gradient
,
bool
input_grad
,
bool
pad_grad
)
{
bool
pad_grad
)
{
...
...
paddle/operators/sequence_conv_op.cc
浏览文件 @
dcb3da59
...
@@ -29,10 +29,6 @@ class SequenceConvOp : public framework::OperatorWithKernel {
...
@@ -29,10 +29,6 @@ class SequenceConvOp : public framework::OperatorWithKernel {
"Input(Filter) of SequenceConvOp should not be null."
);
"Input(Filter) of SequenceConvOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of SequenceConvOp should not be null."
);
"Output(Out) of SequenceConvOp should not be null."
);
// PaddingData mast be not empty. Otherwise(EnforceNotMet: enforce numel() >
// 0 failed, 0 <= 0)
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"PaddingData"
),
"Input(PaddingData) of SequenceConvOp should not be null."
);
int
context_length
=
ctx
->
Attrs
().
Get
<
int
>
(
"context_length"
);
int
context_length
=
ctx
->
Attrs
().
Get
<
int
>
(
"context_length"
);
bool
padding_trainable
=
ctx
->
Attrs
().
Get
<
bool
>
(
"padding_trainable"
);
bool
padding_trainable
=
ctx
->
Attrs
().
Get
<
bool
>
(
"padding_trainable"
);
...
@@ -48,6 +44,9 @@ class SequenceConvOp : public framework::OperatorWithKernel {
...
@@ -48,6 +44,9 @@ class SequenceConvOp : public framework::OperatorWithKernel {
"number_of_input_features)."
);
"number_of_input_features)."
);
if
(
padding_trainable
)
{
if
(
padding_trainable
)
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"PaddingData"
),
"Input(PaddingData) of SequenceConvOp should not be null."
);
framework
::
DDim
padding_dim
=
ctx
->
GetInputDim
(
"PaddingData"
);
framework
::
DDim
padding_dim
=
ctx
->
GetInputDim
(
"PaddingData"
);
int
up_pad
=
std
::
max
(
0
,
-
context_start
);
int
up_pad
=
std
::
max
(
0
,
-
context_start
);
int
down_pad
=
std
::
max
(
0
,
context_start
+
context_length
-
1
);
int
down_pad
=
std
::
max
(
0
,
context_start
+
context_length
-
1
);
...
@@ -106,11 +105,12 @@ class SequenceConvOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -106,11 +105,12 @@ class SequenceConvOpMaker : public framework::OpProtoAndCheckerMaker {
"(A float LoDTensor) the input of SequenceConvOp, a vector of "
"(A float LoDTensor) the input of SequenceConvOp, a vector of "
"2-D matrix of size (minibatch, number_of_input_features)."
);
"2-D matrix of size (minibatch, number_of_input_features)."
);
AddInput
(
"PaddingData"
,
AddInput
(
"PaddingData"
,
"(
A float LoD
Tensor) the input of SequenceConvOp, a vector of "
"(Tensor) the input of SequenceConvOp, a vector of "
"2-D matrix of size (up_pad + down_pad, "
"2-D matrix of size (up_pad + down_pad, "
"number_of_input_features). "
);
"number_of_input_features). "
)
.
AsDispensable
();
AddInput
(
"Filter"
,
AddInput
(
"Filter"
,
"(
A float LoD
Tensor) the input of SequenceConvOp, a vector of "
"(Tensor) the input of SequenceConvOp, a vector of "
"2-D matrix of size (context_length x number_of_input_features)."
);
"2-D matrix of size (context_length x number_of_input_features)."
);
AddOutput
(
"Out"
,
AddOutput
(
"Out"
,
"(A float LoDTensor) the output of SequenceConvOp, a vector "
"(A float LoDTensor) the output of SequenceConvOp, a vector "
...
...
paddle/operators/sequence_conv_op.h
浏览文件 @
dcb3da59
...
@@ -36,7 +36,7 @@ class SequenceConvKernel : public framework::OpKernel<T> {
...
@@ -36,7 +36,7 @@ class SequenceConvKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
auto
filter
=
*
context
.
Input
<
LoD
Tensor
>
(
"Filter"
);
auto
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
// out->set_lod(in->lod());
// out->set_lod(in->lod());
...
@@ -50,9 +50,9 @@ class SequenceConvKernel : public framework::OpKernel<T> {
...
@@ -50,9 +50,9 @@ class SequenceConvKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_EQ
(
in
->
lod
().
size
(),
1UL
,
PADDLE_ENFORCE_EQ
(
in
->
lod
().
size
(),
1UL
,
"Only support one level sequence now."
);
"Only support one level sequence now."
);
const
LoD
Tensor
*
padding_data
=
nullptr
;
const
Tensor
*
padding_data
=
nullptr
;
if
(
padding_trainable
)
{
if
(
padding_trainable
)
{
padding_data
=
context
.
Input
<
LoD
Tensor
>
(
"PaddingData"
);
padding_data
=
context
.
Input
<
Tensor
>
(
"PaddingData"
);
}
}
int
up_pad
=
std
::
max
(
0
,
-
context_start
);
int
up_pad
=
std
::
max
(
0
,
-
context_start
);
...
@@ -63,7 +63,7 @@ class SequenceConvKernel : public framework::OpKernel<T> {
...
@@ -63,7 +63,7 @@ class SequenceConvKernel : public framework::OpKernel<T> {
// use col_shape in the im2col calculation
// use col_shape in the im2col calculation
framework
::
DDim
col_shape
=
{
in
->
dims
()[
0
],
framework
::
DDim
col_shape
=
{
in
->
dims
()[
0
],
sequence_width
*
context_length
};
sequence_width
*
context_length
};
LoD
Tensor
col
;
Tensor
col
;
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
// Because if padding_trainable is false, padding data should be zeros.
// Because if padding_trainable is false, padding data should be zeros.
auto
temp
=
framework
::
EigenVector
<
T
>::
Flatten
(
col
);
auto
temp
=
framework
::
EigenVector
<
T
>::
Flatten
(
col
);
...
@@ -73,7 +73,7 @@ class SequenceConvKernel : public framework::OpKernel<T> {
...
@@ -73,7 +73,7 @@ class SequenceConvKernel : public framework::OpKernel<T> {
paddle
::
operators
::
math
::
SequenceProjectFunctor
<
Place
,
T
>
paddle
::
operators
::
math
::
SequenceProjectFunctor
<
Place
,
T
>
seq_project_functor
;
seq_project_functor
;
LoDTensor
*
input
=
const_cast
<
LoDTensor
*>
(
in
);
LoDTensor
*
input
=
const_cast
<
LoDTensor
*>
(
in
);
LoDTensor
*
pad_data
=
const_cast
<
LoD
Tensor
*>
(
padding_data
);
Tensor
*
pad_data
=
const_cast
<
Tensor
*>
(
padding_data
);
seq_project_functor
(
context
.
device_context
(),
*
input
,
*
pad_data
,
col
,
seq_project_functor
(
context
.
device_context
(),
*
input
,
*
pad_data
,
col
,
padding_trainable
,
context_start
,
context_length
,
padding_trainable
,
context_start
,
context_length
,
...
@@ -91,12 +91,11 @@ class SequenceConvGradKernel : public framework::OpKernel<T> {
...
@@ -91,12 +91,11 @@ class SequenceConvGradKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
out_g
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
out_g
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
in_g
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
in_g
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
filter_g
=
auto
*
filter_g
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Filter"
));
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"Filter"
));
auto
*
padding_data_g
=
auto
*
padding_data_g
=
context
.
Output
<
LoD
Tensor
>
(
framework
::
GradVarName
(
"PaddingData"
));
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"PaddingData"
));
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
in
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
filter
=
context
.
Input
<
LoD
Tensor
>
(
"Filter"
);
auto
*
filter
=
context
.
Input
<
Tensor
>
(
"Filter"
);
int
context_start
=
context
.
Attr
<
int
>
(
"context_start"
);
int
context_start
=
context
.
Attr
<
int
>
(
"context_start"
);
int
context_length
=
context
.
Attr
<
int
>
(
"context_length"
);
int
context_length
=
context
.
Attr
<
int
>
(
"context_length"
);
...
@@ -115,7 +114,7 @@ class SequenceConvGradKernel : public framework::OpKernel<T> {
...
@@ -115,7 +114,7 @@ class SequenceConvGradKernel : public framework::OpKernel<T> {
// use col_shape in the im2col calculation
// use col_shape in the im2col calculation
framework
::
DDim
col_shape
=
{
in
->
dims
()[
0
],
framework
::
DDim
col_shape
=
{
in
->
dims
()[
0
],
sequence_width
*
context_length
};
sequence_width
*
context_length
};
LoD
Tensor
col
;
Tensor
col
;
if
(
in_g
||
filter_g
||
(
padding_trainable
&&
padding_data_g
))
{
if
(
in_g
||
filter_g
||
(
padding_trainable
&&
padding_data_g
))
{
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
...
@@ -161,17 +160,17 @@ class SequenceConvGradKernel : public framework::OpKernel<T> {
...
@@ -161,17 +160,17 @@ class SequenceConvGradKernel : public framework::OpKernel<T> {
functor
(
context
.
device_context
(),
filter_g
,
0
);
functor
(
context
.
device_context
(),
filter_g
,
0
);
Tensor
filter_grad_
=
*
filter_g
;
Tensor
filter_grad_
=
*
filter_g
;
Tensor
out_grad_
=
*
out_g
;
LoD
Tensor
out_grad_
=
*
out_g
;
const
LoD
Tensor
*
padding_data
=
nullptr
;
const
Tensor
*
padding_data
=
nullptr
;
if
(
padding_trainable
)
{
if
(
padding_trainable
)
{
padding_data
=
context
.
Input
<
LoD
Tensor
>
(
"PaddingData"
);
padding_data
=
context
.
Input
<
Tensor
>
(
"PaddingData"
);
}
}
sequence_width
=
static_cast
<
int
>
(
in
->
dims
()[
1
]);
sequence_width
=
static_cast
<
int
>
(
in
->
dims
()[
1
]);
LoDTensor
*
input
=
const_cast
<
LoDTensor
*>
(
in
);
LoDTensor
*
input
=
const_cast
<
LoDTensor
*>
(
in
);
LoDTensor
*
pad_data
=
const_cast
<
LoD
Tensor
*>
(
padding_data
);
Tensor
*
pad_data
=
const_cast
<
Tensor
*>
(
padding_data
);
seq_project_functor
(
context
.
device_context
(),
*
input
,
*
pad_data
,
col
,
seq_project_functor
(
context
.
device_context
(),
*
input
,
*
pad_data
,
col
,
padding_trainable
,
context_start
,
context_length
,
padding_trainable
,
context_start
,
context_length
,
...
...
python/paddle/v2/framework/tests/test_seq_conv.py
浏览文件 @
dcb3da59
...
@@ -20,24 +20,29 @@ class TestSeqProject(OpTest):
...
@@ -20,24 +20,29 @@ class TestSeqProject(OpTest):
# one level, batch size
# one level, batch size
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
self
.
input_size
[
0
],
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
self
.
input_size
[
0
],
self
.
input_size
[
1
]]).
astype
(
'float32'
)
self
.
input_size
[
1
]]).
astype
(
'float32'
)
self
.
begin_pad
=
np
.
max
([
0
,
-
self
.
context_start
])
self
.
end_pad
=
np
.
max
([
0
,
self
.
context_start
+
self
.
context_length
-
1
])
self
.
total_pad
=
self
.
begin_pad
+
self
.
end_pad
if
self
.
total_pad
==
0
:
self
.
total_pad
=
1
# PaddingData mast be not empty.
# Otherwise(EnforceNotMet: enforce numel() > 0 failed, 0 <= 0)
padding_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
self
.
total_pad
,
self
.
input_size
[
1
]]).
astype
(
'float32'
)
w
=
np
.
random
.
uniform
(
w
=
np
.
random
.
uniform
(
0.1
,
1
,
[
self
.
context_length
,
self
.
input_size
[
1
]]).
astype
(
'float32'
)
0.1
,
1
,
[
self
.
context_length
,
self
.
input_size
[
1
]]).
astype
(
'float32'
)
begin_pad
=
np
.
max
([
0
,
-
self
.
context_start
])
end_pad
=
np
.
max
([
0
,
self
.
context_start
+
self
.
context_length
-
1
])
total_pad
=
begin_pad
+
end_pad
padding_data
=
np
.
random
.
uniform
(
0.1
,
1
,
[
total_pad
,
self
.
input_size
[
1
]]).
astype
(
'float32'
)
self
.
pad_data
=
padding_data
self
.
inputs
=
{
self
.
inputs
=
{
'X'
:
(
x
,
self
.
lod
),
'X'
:
(
x
,
self
.
lod
),
'PaddingData'
:
(
padding_data
,
[[
0
,
self
.
total_pad
]]),
'Filter'
:
w
,
'Filter'
:
(
w
,
[[
0
,
self
.
context_length
]])
}
}
self
.
inputs_val
=
[
'X'
,
'Filter'
]
self
.
inputs_val_no_x
=
[
'Filter'
]
self
.
inputs_val_no_f
=
[
'X'
]
if
total_pad
!=
0
:
self
.
inputs
[
'PaddingData'
]
=
padding_data
self
.
inputs_val
=
[
'X'
,
'PaddingData'
,
'Filter'
]
self
.
inputs_val_no_x
=
[
'PaddingData'
,
'Filter'
]
self
.
inputs_val_no_f
=
[
'PaddingData'
,
'X'
]
self
.
attrs
=
{
self
.
attrs
=
{
'context_start'
:
self
.
context_start
,
'context_start'
:
self
.
context_start
,
'context_length'
:
self
.
context_length
,
'context_length'
:
self
.
context_length
,
...
@@ -51,7 +56,7 @@ class TestSeqProject(OpTest):
...
@@ -51,7 +56,7 @@ class TestSeqProject(OpTest):
def
compute
(
self
):
def
compute
(
self
):
x
,
lod
=
self
.
inputs
[
'X'
]
x
,
lod
=
self
.
inputs
[
'X'
]
filter
=
self
.
inputs
[
'Filter'
]
filter
=
self
.
inputs
[
'Filter'
]
pading_data
,
_
=
self
.
inputs
[
'PaddingData'
]
pading_data
=
self
.
pad_data
out
=
np
.
zeros
((
self
.
input_size
[
0
],
self
.
context_length
*
out
=
np
.
zeros
((
self
.
input_size
[
0
],
self
.
context_length
*
self
.
input_size
[
1
])).
astype
(
'float32'
)
self
.
input_size
[
1
])).
astype
(
'float32'
)
lod
=
lod
[
0
]
lod
=
lod
[
0
]
...
@@ -90,12 +95,12 @@ class TestSeqProject(OpTest):
...
@@ -90,12 +95,12 @@ class TestSeqProject(OpTest):
out
[
out_begin
:
out_end
,
j
*
self
.
input_size
[
1
]:(
j
+
1
)
*
out
[
out_begin
:
out_end
,
j
*
self
.
input_size
[
1
]:(
j
+
1
)
*
self
.
input_size
[
1
]]
+=
in_sub
self
.
input_size
[
1
]]
+=
in_sub
filter_dim
=
filter
[
0
]
.
shape
filter_dim
=
filter
.
shape
output_dim
=
self
.
outputs
[
'Out'
].
shape
output_dim
=
self
.
outputs
[
'Out'
].
shape
filter
[
0
]
.
shape
=
filter_dim
[
0
]
*
filter_dim
[
1
]
filter
.
shape
=
filter_dim
[
0
]
*
filter_dim
[
1
]
self
.
outputs
[
'Out'
].
shape
=
(
output_dim
[
0
],
)
self
.
outputs
[
'Out'
].
shape
=
(
output_dim
[
0
],
)
np
.
dot
(
out
,
filter
[
0
]
,
out
=
self
.
outputs
[
'Out'
])
np
.
dot
(
out
,
filter
,
out
=
self
.
outputs
[
'Out'
])
filter
[
0
]
.
shape
=
filter_dim
filter
.
shape
=
filter_dim
self
.
outputs
[
'Out'
].
shape
=
output_dim
self
.
outputs
[
'Out'
].
shape
=
output_dim
def
test_check_output
(
self
):
def
test_check_output
(
self
):
...
@@ -104,16 +109,14 @@ class TestSeqProject(OpTest):
...
@@ -104,16 +109,14 @@ class TestSeqProject(OpTest):
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
if
self
.
padding_trainable
:
if
self
.
padding_trainable
:
self
.
check_grad
(
self
.
check_grad
(
set
([
'X'
,
'PaddingData'
,
'Filter'
]),
set
(
self
.
inputs_val
),
'Out'
,
max_relative_error
=
0.05
)
'Out'
,
max_relative_error
=
0.05
)
def
test_check_grad_input
(
self
):
def
test_check_grad_input
(
self
):
self
.
check_grad
(
self
.
check_grad
(
[
'X'
],
[
'X'
],
'Out'
,
'Out'
,
max_relative_error
=
0.05
,
max_relative_error
=
0.05
,
no_grad_set
=
set
(
[
'PaddingData'
,
'Filter'
]
))
no_grad_set
=
set
(
self
.
inputs_val_no_x
))
def
test_check_grad_padding_data
(
self
):
def
test_check_grad_padding_data
(
self
):
if
self
.
padding_trainable
:
if
self
.
padding_trainable
:
...
@@ -128,19 +131,20 @@ class TestSeqProject(OpTest):
...
@@ -128,19 +131,20 @@ class TestSeqProject(OpTest):
[
'Filter'
],
[
'Filter'
],
'Out'
,
'Out'
,
max_relative_error
=
0.05
,
max_relative_error
=
0.05
,
no_grad_set
=
set
(
[
'X'
,
'PaddingData'
]
))
no_grad_set
=
set
(
self
.
inputs_val_no_f
))
def
test_check_grad_input_filter
(
self
):
def
test_check_grad_input_filter
(
self
):
self
.
check_grad
(
if
self
.
padding_trainable
:
[
'X'
,
'Filter'
],
self
.
check_grad
(
'Out'
,
[
'X'
,
'Filter'
],
max_relative_error
=
0.05
,
'Out'
,
no_grad_set
=
set
([
'PaddingData'
]))
max_relative_error
=
0.05
,
no_grad_set
=
set
([
'PaddingData'
]))
def
test_check_grad_padding_input
(
self
):
def
test_check_grad_padding_input
(
self
):
if
self
.
padding_trainable
:
if
self
.
padding_trainable
:
self
.
check_grad
(
self
.
check_grad
(
[
'X'
,
'PaddingData'
]
,
self
.
inputs_val_no_f
,
'Out'
,
'Out'
,
max_relative_error
=
0.05
,
max_relative_error
=
0.05
,
no_grad_set
=
set
([
'Filter'
]))
no_grad_set
=
set
([
'Filter'
]))
...
@@ -148,7 +152,7 @@ class TestSeqProject(OpTest):
...
@@ -148,7 +152,7 @@ class TestSeqProject(OpTest):
def
test_check_grad_padding_filter
(
self
):
def
test_check_grad_padding_filter
(
self
):
if
self
.
padding_trainable
:
if
self
.
padding_trainable
:
self
.
check_grad
(
self
.
check_grad
(
[
'PaddingData'
,
'Filter'
]
,
self
.
inputs_val_no_x
,
'Out'
,
'Out'
,
max_relative_error
=
0.05
,
max_relative_error
=
0.05
,
no_grad_set
=
set
([
'X'
]))
no_grad_set
=
set
([
'X'
]))
...
@@ -191,69 +195,5 @@ class TestSeqProjectCase2(TestSeqProject):
...
@@ -191,69 +195,5 @@ class TestSeqProjectCase2(TestSeqProject):
[
self
.
input_size
[
0
]]]
[
self
.
input_size
[
0
]]]
'''
class TestSeqProjectCases(TestSeqProject):
def setUp(self):
self.init_test_case()
self.op_type = 'sequence_project'
num = 0
for context_start in [-5, -3, -1, 0, 3]:
for context_length in [1, 2, 5, 7]:
for batch_size in [1, 2, 5, 7]:
for padding_trainable in [False, True]:
if context_length == 1 and context_start == 0 and padding_trainable:
continue
self.context_start = context_start
self.context_length = context_length
self.padding_trainable = padding_trainable
self.input_size = [batch_size, 23]
x = np.random.uniform(0.1, 1,
self.input_size).astype('float32')
self.lod = [[0, self.input_size[0]]]
if self.input_size[0] > 2:
idx = range(self.input_size[0])
del idx[0]
self.lod = [
[0] + np.sort(random.sample(idx, 2)).tolist() +
[self.input_size[0]]
]
self.begin_pad = np.max([0, -self.context_start])
self.end_pad = np.max([0, self.context_start + self.context_length - 1])
self.total_pad = self.begin_pad + self.end_pad
if self.total_pad == 0:
self.total_pad = 1
# PaddingData mast be not empty. Otherwise(EnforceNotMet: enforce numel() > 0 failed, 0 <= 0)
padding_data = np.random.uniform(
0.1, 1, [self.total_pad, self.input_size[1]]).astype('float32')
self.inputs = {
'X': (x, self.lod),
'PaddingData': (padding_data, [[0, self.total_pad]])
}
self.attrs = {
'context_start': self.context_start,
'context_length': self.context_length,
'padding_trainable': self.padding_trainable,
'context_stride': self.context_stride
}
out = np.zeros((self.input_size[0], self.input_size[1] *
self.context_length)).astype('float32')
self.outputs = {'Out': out}
print num
print self.attrs
print batch_size
print padding_trainable
print "$$$$$$$$$$$$$"
self.compute()
self.test_check_output()
num += 1
'''
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录