未验证 提交 dc3c845a 编写于 作者: G Guoxia Wang 提交者: GitHub

support hybrid parallel inference helper class (#35576)

* support hybrid parallel inference helper class
上级 b8c6e180
......@@ -32,6 +32,7 @@ list(APPEND DIST_TEST_OPS test_parallel_dygraph_pipeline_parallel)
list(APPEND DIST_TEST_OPS test_parallel_dygraph_tensor_parallel)
list(APPEND DIST_TEST_OPS test_parallel_dygraph_sharding_parallel)
list(APPEND DIST_TEST_OPS test_parallel_dygraph_mp_layers)
list(APPEND DIST_TEST_OPS test_hybrid_parallel_inference_helper)
list(APPEND DIST_TEST_OPS test_parallel_class_center_sample)
list(APPEND DIST_TEST_OPS test_parallel_margin_cross_entropy)
set(MIXED_DIST_TEST_OPS ${DIST_TEST_OPS})
......@@ -211,6 +212,7 @@ if ((NOT WITH_GPU) AND (NOT WITH_ROCM))
LIST(REMOVE_ITEM TEST_OPS test_mixed_precision)
LIST(REMOVE_ITEM TEST_OPS test_fleet_base_single)
LIST(REMOVE_ITEM TEST_OPS test_dygraph_recompute)
list(REMOVE_ITEM TEST_OPS test_hybrid_parallel_inference_helper)
list(REMOVE_ITEM TEST_OPS test_parallel_class_center_sample)
LIST(REMOVE_ITEM TEST_OPS test_parallel_margin_cross_entropy)
LIST(REMOVE_ITEM TEST_OPS test_auto_parallel_partitioner)
......@@ -610,7 +612,7 @@ if(WITH_DISTRIBUTE)
set(dist_ut_port 20001)
foreach(TEST_OP ${DIST_TEST_OPS})
bash_test_modules(${TEST_OP} START_BASH dist_test.sh SERIAL LABELS "RUN_TYPE=EXCLUSIVE" ENVS "PADDLE_DIST_UT_PORT=${dist_ut_port}")
MATH(EXPR dist_ut_port "${dist_ut_port}+35")
MATH(EXPR dist_ut_port "${dist_ut_port}+30")
if(dist_ut_port GREATER_EQUAL 22998)
message(FATAL_ERROR "available ports have been exhausted:${dist_ut_port}")
endif()
......@@ -958,6 +960,7 @@ if(WITH_DISTRIBUTE AND WITH_GPU AND WITH_NCCL)
set_tests_properties(test_parallel_dygraph_tensor_parallel PROPERTIES TIMEOUT 200)
set_tests_properties(test_parallel_dygraph_sharding_parallel PROPERTIES TIMEOUT 120)
set_tests_properties(test_parallel_dygraph_mp_layers PROPERTIES TIMEOUT 120)
set_tests_properties(test_hybrid_parallel_inference_helper PROPERTIES TIMEOUT 120)
set_tests_properties(test_parallel_class_center_sample PROPERTIES TIMEOUT 120)
set_tests_properties(test_parallel_margin_cross_entropy PROPERTIES TIMEOUT 120)
if(${NCCL_VERSION} VERSION_GREATER_EQUAL 2212)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
from __future__ import print_function
import unittest
import os
import paddle
import numpy as np
import random
import paddle.fluid.layers as layers
import paddle.distributed as dist
import paddle.fluid as fluid
import paddle.distributed.fleet as fleet
from paddle import framework
from paddle.distributed.fleet.utils.hybrid_parallel_inference import HybridParallelInferenceHelper
paddle.enable_static()
def numpy_while(x, w1=1.0, w2=2.0, max_len=2):
data = [x]
weight1 = np.empty([2, 5], dtype='float32')
weight1.fill(w1)
weight2 = np.empty([5, 2], dtype='float32')
weight2.fill(w2)
for i in range(max_len):
input = data[i]
hidden1 = np.matmul(input, weight1)
hidden2 = np.matmul(hidden1, weight2)
data.append(hidden2)
return data
class TestHybridParallelInferenceHelperClass(unittest.TestCase):
def setUp(self):
strategy = fleet.DistributedStrategy()
fleet.init(is_collective=True, strategy=strategy)
np.random.seed(2333)
def test_hybrid_parallel_inference_helper_mp1pp2(self):
nranks = int(os.getenv("PADDLE_TRAINERS_NUM", 1))
rank = int(os.getenv("PADDLE_TRAINER_ID", 0))
dev_id = int(os.getenv("FLAGS_selected_gpus", 0))
main_program = paddle.static.Program()
startup_program = paddle.static.Program()
device = "gpu"
with paddle.static.program_guard(main_program, startup_program):
with paddle.fluid.device_guard(f'{device}:0'):
X = paddle.static.data(
name='X', shape=[None, 2], dtype='float32')
with paddle.fluid.device_guard(f'{device}:all'):
max_len = layers.fill_constant(
shape=[1],
dtype="int64",
value=2,
force_cpu=False,
name="n")
step_idx = layers.fill_constant(
shape=[1],
dtype="int64",
value=0,
force_cpu=False,
name="i")
data = layers.array_write(X, step_idx)
cond_int = layers.fill_constant(
shape=[1],
dtype="int64",
value=0,
force_cpu=False,
name="cond_int")
cond = layers.less_than(x=step_idx, y=max_len)
while_op = layers.While(cond, is_test=True)
with while_op.block():
with paddle.fluid.device_guard(f'{device}:all'):
input = layers.array_read(array=data, i=step_idx)
layers.increment(x=step_idx, value=1.0, in_place=True)
layers.array_write(input, i=step_idx, array=data)
with paddle.fluid.device_guard(f'{device}:0'):
param_attr = paddle.ParamAttr(
initializer=paddle.nn.initializer.Constant(1.0))
weight1 = paddle.static.create_parameter(
shape=[2, 5],
dtype='float32',
attr=param_attr,
is_bias=False)
hidden1 = paddle.matmul(input, weight1)
with paddle.fluid.device_guard(f'{device}:1'):
param_attr = paddle.ParamAttr(
initializer=paddle.nn.initializer.Constant(2.0))
weight2 = paddle.static.create_parameter(
shape=[5, 2],
dtype='float32',
attr=param_attr,
is_bias=False)
hidden2 = paddle.matmul(hidden1, weight2)
layers.array_write(hidden2, i=step_idx, array=data)
# update cond and assign to cond_int, we will sync cond_int
layers.less_than(x=step_idx, y=max_len, cond=cond)
layers.assign(layers.cast(cond, dtype="int32"), cond_int)
with paddle.fluid.device_guard(f'{device}:all'):
# the code below must at end of while block and exists in device:all
layers.assign(layers.cast(cond_int, dtype='bool'), cond)
with paddle.fluid.device_guard(f'{device}:all'):
out = layers.create_array(data.dtype)
layers.assign(data, out)
with paddle.fluid.device_guard(f'{device}:all'):
# use a empty lod_tensor_array to clear lod_tensor_array
layers.assign(layers.create_array(data.dtype), data)
helper = HybridParallelInferenceHelper(
startup_program,
main_program,
micro_batch_size=2,
num_mp=1,
num_pp=2,
init_comm=nranks > 1, )
helper.gen_infer_program(
['array_write_0.out'], ['cond_int.tmp_0'], debug=True)
exe = paddle.static.Executor(paddle.CUDAPlace(dev_id))
exe.run(startup_program)
for step in range(2):
init_data = np.random.uniform(
low=0.0, high=1.0, size=[2, 2]).astype('float32')
[res] = exe.run(main_program,
feed={"X": init_data},
fetch_list=[out])
res_np = numpy_while(init_data)
assert len(res) == len(res_np)
for d1, d2 in zip(res, res_np):
np.testing.assert_allclose(d1, d2)
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import paddle.fluid as fluid
from test_parallel_dygraph_dataparallel import TestMultipleGpus
class TestHybridParallelInferenceHelper(TestMultipleGpus):
def test_hybrid_parallel_inference_helper(self):
self.run_mnist_2gpu('hybrid_parallel_inference_helper.py')
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册