未验证 提交 dc0ec667 编写于 作者: W wenbin 提交者: GitHub

UT for TestAdaptivePool2dConvertGlobalPass (#37764)

* adaptive_pool2d

* timeout

* merge develop

* rename ut

* new test

* remove old file
上级 c042d8f2
......@@ -79,6 +79,7 @@ if (WITH_MKLDNN AND TENSORRT_FOUND AND WITH_GPU)
set_tests_properties(test_emb_eltwise_layernorm_fuse_pass PROPERTIES TIMEOUT 120)
set_tests_properties(test_fc_fuse_pass PROPERTIES TIMEOUT 240)
set_tests_properties(test_simplify_with_basic_ops_pass_autoscan PROPERTIES TIMEOUT 60)
set_tests_properties(test_adaptive_pool2d_convert_global_pass_autoscan PROPERTIES TIMEOUT 60)
endif()
if (WITH_MKLDNN)
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from auto_scan_test import PassAutoScanTest, IgnoreReasons
from program_config import TensorConfig, ProgramConfig, OpConfig
import numpy as np
import paddle.inference as paddle_infer
from functools import partial
from typing import Optional, List, Callable, Dict, Any, Set
import unittest
import hypothesis
from hypothesis import given, settings, seed, example, assume
import hypothesis.strategies as st
class TestAdaptivePool2dConvertGlobalPass(PassAutoScanTest):
def is_program_valid(self, program_config: ProgramConfig) -> bool:
return True
def sample_program_config(self, draw):
x_shape = draw(
st.lists(
st.integers(
min_value=1, max_value=4), min_size=4, max_size=4))
pooling_type = draw(st.sampled_from(["max", "avg"]))
data_format = "NCHW" #trt support this format only
strides = draw(
st.lists(
st.integers(
min_value=1, max_value=4), min_size=2, max_size=2))
paddings = [0, 0] # only 0 0 is right
ceil_mode = draw(st.booleans())
exclusive = draw(st.booleans())
global_pooling = False #only false is right
padding_algorithm = draw(st.sampled_from(["EXPLICIT", "SAME", "VAILD"]))
pool_op = OpConfig(
"pool2d",
inputs={"X": ["input_data"]},
outputs={"Out": ["pool_output"]},
ksize=[1, 1],
adaptive=True,
pooling_type=pooling_type,
data_format=data_format,
strides=strides,
paddings=paddings,
ceil_mode=ceil_mode,
global_pooling=global_pooling,
padding_algorithm=padding_algorithm,
exclusive=exclusive)
ops = [pool_op]
program_config = ProgramConfig(
ops=ops,
weights={},
inputs={"input_data": TensorConfig(shape=x_shape), },
outputs=["pool_output"])
return program_config
def sample_predictor_configs(self, program_config):
config = self.create_trt_inference_config()
config.enable_tensorrt_engine(
max_batch_size=4,
workspace_size=102400,
min_subgraph_size=0,
precision_mode=paddle_infer.PrecisionType.Float32,
use_static=False,
use_calib_mode=False)
yield config, ['pool2d'], (1e-5, 1e-5)
def add_ignore_pass_case(self):
# Here we put some skip rules to avoid known bugs
def teller1(program_config, predictor_config):
if program_config.ops[0].attrs["pooling_type"] == "max":
x_shape = list(program_config.inputs["input_data"].shape)
if x_shape[-1] != 1 or x_shape[-2] != 1:
return True
return False
def teller2(program_config, predictor_config):
if program_config.ops[0].attrs["padding_algorithm"] == "SAME":
return True
return False
self.add_ignore_check_case(
teller1,
IgnoreReasons.PASS_ACCURACY_ERROR,
"max pooling has diff if H or W is not equals to 1", )
self.add_ignore_check_case(
teller2,
IgnoreReasons.PASS_ACCURACY_ERROR,
"output has wrong result if padding_algorithm equals to SAME", )
def test(self):
self.run_and_statis(
quant=False,
max_examples=100,
passes=["adaptive_pool2d_convert_global_pass"],
min_success_num=40)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册