Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
dbb4f0d3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
dbb4f0d3
编写于
8月 17, 2018
作者:
T
tangwei12
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of github.com:PaddlePaddle/Paddle into dis_ckpt_fix
上级
7c12c0f8
fd10669e
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
192 addition
and
68 deletion
+192
-68
paddle/fluid/framework/ir/graph_traits.h
paddle/fluid/framework/ir/graph_traits.h
+4
-0
paddle/fluid/inference/analysis/CMakeLists.txt
paddle/fluid/inference/analysis/CMakeLists.txt
+1
-1
paddle/fluid/inference/analysis/node.cc
paddle/fluid/inference/analysis/node.cc
+0
-11
paddle/fluid/inference/analysis/node.h
paddle/fluid/inference/analysis/node.h
+11
-14
paddle/fluid/inference/analysis/node_tester.cc
paddle/fluid/inference/analysis/node_tester.cc
+21
-0
paddle/fluid/operators/recv_op.cc
paddle/fluid/operators/recv_op.cc
+2
-0
paddle/fluid/operators/send_barrier_op.cc
paddle/fluid/operators/send_barrier_op.cc
+5
-9
paddle/fluid/operators/send_op.cc
paddle/fluid/operators/send_op.cc
+2
-0
paddle/fluid/platform/cuda_device_function.h
paddle/fluid/platform/cuda_device_function.h
+11
-4
paddle/fluid/platform/cuda_helper_test.cu
paddle/fluid/platform/cuda_helper_test.cu
+82
-1
paddle/scripts/submit_local.sh.in
paddle/scripts/submit_local.sh.in
+1
-1
python/paddle/dataset/mnist.py
python/paddle/dataset/mnist.py
+0
-1
python/paddle/fluid/layers/io.py
python/paddle/fluid/layers/io.py
+19
-4
python/paddle/fluid/tests/unittests/dist_se_resnext.py
python/paddle/fluid/tests/unittests/dist_se_resnext.py
+0
-1
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+31
-19
tools/manylinux1/Dockerfile.x64
tools/manylinux1/Dockerfile.x64
+1
-1
tools/manylinux1/build_scripts/build.sh
tools/manylinux1/build_scripts/build.sh
+1
-1
未找到文件。
paddle/fluid/framework/ir/graph_traits.h
浏览文件 @
dbb4f0d3
...
...
@@ -12,7 +12,11 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stack>
#include <vector>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/node.h"
...
...
paddle/fluid/inference/analysis/CMakeLists.txt
浏览文件 @
dbb4f0d3
...
...
@@ -8,7 +8,7 @@ cc_library(analysis SRCS pass_manager.cc dot.cc node.cc data_flow_graph.cc graph
helper.cc
model_store_pass.cc
DEPS framework_proto proto_desc
)
cc_test
(
test_node SRCS node_tester.cc DEPS analysis
)
cc_test
(
test_node SRCS node_tester.cc DEPS analysis
gflags glog gtest
)
cc_test
(
test_dot SRCS dot_tester.cc DEPS analysis
)
cc_binary
(
inference_analyzer SRCS analyzer_main.cc DEPS analysis
)
...
...
paddle/fluid/inference/analysis/node.cc
浏览文件 @
dbb4f0d3
...
...
@@ -20,17 +20,6 @@ namespace paddle {
namespace
inference
{
namespace
analysis
{
template
<
>
std
::
string
&
NodeAttr
::
As
<
std
::
string
>
()
{
if
(
data_
.
empty
())
{
type_index_
=
std
::
type_index
(
typeid
(
std
::
string
));
}
PADDLE_ENFORCE_EQ
(
type_index_
,
std
::
type_index
(
typeid
(
std
::
string
)));
return
data_
;
}
std
::
string
&
NodeAttr
::
String
()
{
return
As
<
std
::
string
>
();
}
std
::
vector
<
Dot
::
Attr
>
Value
::
dot_attrs
()
const
{
return
std
::
vector
<
Dot
::
Attr
>
({
Dot
::
Attr
(
"style"
,
"filled,rounded"
),
Dot
::
Attr
(
"shape"
,
"box"
),
...
...
paddle/fluid/inference/analysis/node.h
浏览文件 @
dbb4f0d3
...
...
@@ -29,6 +29,7 @@ limitations under the License. */
#include "paddle/fluid/inference/analysis/device.h"
#include "paddle/fluid/inference/analysis/dot.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/platform/variant.h"
namespace
paddle
{
namespace
inference
{
...
...
@@ -38,39 +39,35 @@ class NodeMap;
// A helper class to maintain the status from Pass.
struct
NodeAttr
{
using
any_t
=
boost
::
variant
<
bool
,
float
,
int32_t
,
int64_t
,
void
*
,
std
::
string
>
;
// NOTE T should be a primary type or a struct combined by several primary
// types.
// NOTE the STL containers should not use here.
// Some usages
// Attr attr;
// attr.Bool() = true;
bool
&
Bool
()
{
return
As
<
bool
>
();
}
float
&
Float
()
{
return
As
<
float
>
();
}
int32_t
&
Int32
()
{
return
As
<
int32_t
>
();
}
int64_t
&
Int64
()
{
return
As
<
int64_t
>
();
}
void
*&
Pointer
()
{
return
As
<
void
*>
();
}
std
::
string
&
String
()
;
std
::
string
&
String
()
{
return
As
<
std
::
string
>
();
}
private:
template
<
typename
T
>
T
&
As
()
{
// init storage in the first usage.
if
(
data_
.
empty
())
{
VLOG
(
4
)
<<
"resize data to "
<<
sizeof
(
T
);
type_index_
=
std
::
type_index
(
typeid
(
T
));
data_
.
resize
(
sizeof
(
T
)
);
if
(
type_index_
==
typeid
(
NodeAttr
))
{
type_index_
=
typeid
(
T
);
any_data_
=
T
(
);
}
else
{
PADDLE_ENFORCE
(
type_index_
==
typeid
(
T
),
"fetch error type"
);
}
PADDLE_ENFORCE
(
framework
::
IsType
<
T
>
(
type_index_
),
"type not matched, origin is %s, want %s"
,
DataTypeNamer
::
Global
().
repr
(
type_index_
),
DataTypeNamer
::
Global
().
repr
<
T
>
());
PADDLE_ENFORCE_EQ
(
data_
.
size
(),
sizeof
(
T
),
"Node attr type recast error"
);
return
*
reinterpret_cast
<
T
*>
(
&
data_
[
0
]);
return
boost
::
get
<
T
>
(
any_data_
);
}
private:
std
::
string
data_
;
any_t
any_
data_
;
std
::
type_index
type_index_
{
typeid
(
NodeAttr
)};
};
...
...
paddle/fluid/inference/analysis/node_tester.cc
浏览文件 @
dbb4f0d3
...
...
@@ -20,6 +20,24 @@ namespace paddle {
namespace
inference
{
namespace
analysis
{
TEST
(
NodeAttr
,
bool
)
{
NodeAttr
x
;
x
.
Bool
()
=
true
;
ASSERT_EQ
(
x
.
Bool
(),
true
);
}
TEST
(
NodeAttr
,
int32
)
{
NodeAttr
x
;
x
.
Int32
()
=
32
;
ASSERT_EQ
(
x
.
Int32
(),
32
);
}
TEST
(
NodeAttr
,
string
)
{
NodeAttr
x
;
x
.
String
()
=
"Hello"
;
ASSERT_EQ
(
x
.
String
(),
"Hello"
);
}
TEST
(
Node
,
Attr
)
{
// Node is an abstract class, use Value instead for they share the same Attr
// logic.
...
...
@@ -27,6 +45,9 @@ TEST(Node, Attr) {
auto
*
node
=
nodes
.
Create
(
Node
::
Type
::
kValue
);
node
->
attr
(
"v0"
).
Int32
()
=
2008
;
ASSERT_EQ
(
node
->
attr
(
"v0"
).
Int32
(),
2008
);
node
->
attr
(
"str"
).
String
()
=
"hello world"
;
ASSERT_EQ
(
node
->
attr
(
"str"
).
String
(),
"hello world"
);
}
}
// namespace analysis
...
...
paddle/fluid/operators/recv_op.cc
浏览文件 @
dbb4f0d3
...
...
@@ -57,6 +57,8 @@ class RecvOp : public framework::OperatorBase {
class
RecvOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
{
AddInput
(
"X"
,
"(Any) Dummy inputs, used for control dependency"
)
.
AsDuplicable
();
AddOutput
(
"Out"
,
"(Tensor) Variables to get from server."
).
AsDuplicable
();
AddComment
(
R"DOC(
Recv operator
...
...
paddle/fluid/operators/send_barrier_op.cc
浏览文件 @
dbb4f0d3
...
...
@@ -37,22 +37,19 @@ class SendBarrierOp : public framework::OperatorBase {
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
std
::
vector
<
std
::
string
>
eps
=
Attr
<
std
::
vector
<
std
::
string
>>
(
"endpoints"
);
bool
sync_mode
=
Attr
<
bool
>
(
"sync_mode"
);
distributed
::
RPCClient
*
rpc_client
=
distributed
::
RPCClient
::
GetInstance
<
RPCCLIENT_T
>
();
VLOG
(
3
)
<<
"SendBarrierOp sync
_mode:"
<<
sync_mode
;
VLOG
(
3
)
<<
"SendBarrierOp sync
"
;
// need to wait before sending send_barrier message
PADDLE_ENFORCE
(
rpc_client
->
Wait
(),
"internal error in RPCClient"
);
if
(
sync_mode
)
{
for
(
auto
&
ep
:
eps
)
{
VLOG
(
3
)
<<
"send barrier, ep: "
<<
ep
;
rpc_client
->
AsyncSendBatchBarrier
(
ep
);
}
PADDLE_ENFORCE
(
rpc_client
->
Wait
(),
"internal error in RPCClient"
);
for
(
auto
&
ep
:
eps
)
{
VLOG
(
3
)
<<
"send barrier, ep: "
<<
ep
;
rpc_client
->
AsyncSendBatchBarrier
(
ep
);
}
PADDLE_ENFORCE
(
rpc_client
->
Wait
(),
"internal error in RPCClient"
);
}
};
...
...
@@ -70,7 +67,6 @@ the Parameter Server would knew all variables have been sent.
"(string vector, default 127.0.0.1:6164)"
"Server endpoints to send variables to."
)
.
SetDefault
({
"127.0.0.1:6164"
});
AddAttr
<
bool
>
(
"sync_mode"
,
"work in sync_mode or not"
).
SetDefault
(
true
);
}
};
...
...
paddle/fluid/operators/send_op.cc
浏览文件 @
dbb4f0d3
...
...
@@ -66,6 +66,8 @@ class SendOpMaker : public framework::OpProtoAndCheckerMaker {
void
Make
()
{
AddInput
(
"X"
,
"(Tensor, SelectedRows) Input variables to be sent"
)
.
AsDuplicable
();
AddOutput
(
"Out"
,
"(Any) Dummy outputs, used for control dependency"
)
.
AsDuplicable
();
AddComment
(
R"DOC(
Send operator
...
...
paddle/fluid/platform/cuda_device_function.h
浏览文件 @
dbb4f0d3
...
...
@@ -36,7 +36,7 @@ __forceinline__ __device__ T CudaShuffleDownSync(unsigned mask, T val,
#if CUDA_VERSION < 9000
return
__shfl_down
(
val
,
delta
,
width
);
#else
return
__shfl_down_sync
(
mask
,
val
,
delta
,
width
);
return
__shfl_down_sync
(
mask
,
val
,
static_cast
<
unsigned
>
(
delta
)
,
width
);
#endif
}
...
...
@@ -46,9 +46,16 @@ template <>
__forceinline__
__device__
float16
CudaShuffleDownSync
(
unsigned
mask
,
float16
val
,
int
delta
,
int
width
)
{
half
tmp
=
static_cast
<
half
>
(
val
);
__shfl_down
(
tmp
,
static_cast
<
unsigned
>
(
delta
),
width
);
return
float16
(
tmp
);
return
float16
(
__shfl_down
(
static_cast
<
half
>
(
val
),
static_cast
<
unsigned
>
(
delta
),
width
));
}
#else
template
<
>
__forceinline__
__device__
float16
CudaShuffleDownSync
(
unsigned
mask
,
float16
val
,
int
delta
,
int
width
)
{
return
float16
(
__shfl_down_sync
(
mask
,
static_cast
<
half
>
(
val
),
static_cast
<
unsigned
>
(
delta
),
width
));
}
#endif
...
...
paddle/fluid/platform/cuda_helper_test.cu
浏览文件 @
dbb4f0d3
...
...
@@ -13,6 +13,7 @@
// limitations under the License.
#include <gtest/gtest.h>
#include <algorithm>
#include <iostream>
#include <random>
...
...
@@ -123,7 +124,7 @@ void TestUnalign(size_t num, const int shift_bit) {
cudaMemcpy
(
out
,
d_in2
,
array_size
,
cudaMemcpyDeviceToHost
);
cudaDeviceSynchronize
();
for
(
size_t
i
=
0
;
i
<
num
/
2
;
++
i
)
{
// NOTE(dzhwinter): the float16 add has small
underflow/overflow
// NOTE(dzhwinter): the float16 add has small
truncate error.
// so we use EXPECT_NEAR to check the result.
EXPECT_NEAR
(
static_cast
<
float
>
(
out
[
i
]),
static_cast
<
float
>
(
AddFunctor
<
float16
>
()(
r_in1
[
i
],
r_in2
[
i
])),
...
...
@@ -151,3 +152,83 @@ TEST(CudaAtomic, float16Unalign) {
TestUnalign
(
static_cast
<
size_t
>
(
1024
),
/*shift_bit*/
3
);
TestUnalign
(
static_cast
<
size_t
>
(
1024
*
1024
),
/*shift_bit*/
3
);
}
// https://devblogs.nvidia.com/faster-parallel-reductions-kepler/
template
<
typename
T
>
static
__forceinline__
__device__
T
WarpReduceSum
(
T
val
)
{
unsigned
mask
=
0u
;
CREATE_SHFL_MASK
(
mask
,
true
);
for
(
int
offset
=
warpSize
/
2
;
offset
>
0
;
offset
/=
2
)
{
val
+=
paddle
::
platform
::
CudaShuffleDownSync
(
mask
,
val
,
offset
);
}
return
val
;
}
template
<
typename
T
>
__forceinline__
__device__
T
BlockReduce
(
T
val
)
{
static
__shared__
T
shared
[
32
];
// Shared mem for 32 partial sums
int
lane
=
threadIdx
.
x
%
warpSize
;
int
wid
=
threadIdx
.
x
/
warpSize
;
val
=
WarpReduceSum
(
val
);
// Each warp performs partial reduction
if
(
lane
==
0
)
shared
[
wid
]
=
val
;
// Write reduced value to shared memory
__syncthreads
();
// Wait for all partial reductions
// read from shared memory only if that warp existed
val
=
(
threadIdx
.
x
<
blockDim
.
x
/
warpSize
)
?
shared
[
lane
]
:
static_cast
<
T
>
(
0
);
if
(
wid
==
0
)
val
=
WarpReduceSum
(
val
);
// Final reduce within first warp
return
val
;
}
template
<
typename
T
>
__global__
void
DeviceReduceSum
(
T
*
in
,
T
*
out
,
size_t
N
)
{
T
sum
(
0
);
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
N
;
i
+=
blockDim
.
x
*
gridDim
.
x
)
{
sum
+=
in
[
i
];
}
sum
=
BlockReduce
<
T
>
(
sum
);
__syncthreads
();
if
(
threadIdx
.
x
==
0
)
out
[
blockIdx
.
x
]
=
sum
;
}
template
<
typename
T
>
void
TestReduce
(
size_t
num
,
float
atol
=
0.01
)
{
T
*
in1
;
T
*
d_in1
,
*
d_in2
;
size_t
size
=
sizeof
(
T
)
*
num
;
cudaMalloc
(
reinterpret_cast
<
void
**>
(
&
d_in1
),
size
);
cudaMalloc
(
reinterpret_cast
<
void
**>
(
&
d_in2
),
sizeof
(
T
));
in1
=
reinterpret_cast
<
T
*>
(
malloc
(
size
));
std
::
minstd_rand
engine
;
std
::
uniform_real_distribution
<
double
>
dist
(
0.0
,
1.0
);
for
(
size_t
i
=
0
;
i
<
num
;
++
i
)
{
in1
[
i
]
=
static_cast
<
T
>
(
dist
(
engine
));
}
auto
out
=
std
::
accumulate
(
in1
,
in1
+
num
,
static_cast
<
T
>
(
0
));
cudaMemcpy
(
d_in1
,
in1
,
size
,
cudaMemcpyHostToDevice
);
cudaDeviceSynchronize
();
DeviceReduceSum
<
T
><<<
1
,
PADDLE_CUDA_NUM_THREADS
>>>
(
d_in1
,
d_in2
,
num
);
cudaMemcpy
(
in1
,
d_in2
,
sizeof
(
T
),
cudaMemcpyDeviceToHost
);
cudaDeviceSynchronize
();
// NOTE(dzhwinter): the float16 add has small underflow/overflow
// so we use EXPECT_NEAR to check the result.
EXPECT_NEAR
(
static_cast
<
float
>
(
in1
[
0
]),
static_cast
<
float
>
(
out
),
atol
);
free
(
in1
);
cudaFree
(
d_in1
);
cudaFree
(
d_in2
);
}
TEST
(
CudaShuffleSync
,
float16
)
{
TestReduce
<
float
>
(
10
);
TestReduce
<
float
>
(
1000
);
// float16 will overflow or accumulate truncate errors in big size.
TestReduce
<
float16
>
(
10
);
TestReduce
<
float16
>
(
100
,
/*atol error*/
1.0
);
}
paddle/scripts/submit_local.sh.in
浏览文件 @
dbb4f0d3
...
...
@@ -54,7 +54,7 @@ function cpu_config() {
if
[
$platform
==
"Linux"
]
;
then
ht
=
`
lscpu |grep
"per core"
|awk
-F
':'
'{print $2}'
|xargs
`
elif
[
$platform
==
"Darwin"
]
;
then
if
[
`
sysctl
-n
hw.physicalcpu
`
-eq
`
sysctl
-n
hw.logicalcpu
`
]
;
then
if
[
`
sysctl
-n
hw.physicalcpu
`
-eq
`
sysctl
-n
hw.logicalcpu
`
]
;
then
# HT is OFF
ht
=
1
fi
...
...
python/paddle/dataset/mnist.py
浏览文件 @
dbb4f0d3
...
...
@@ -24,7 +24,6 @@ import paddle.dataset.common
import
subprocess
import
numpy
import
platform
import
six
import
tempfile
from
six.moves
import
range
__all__
=
[
'train'
,
'test'
,
'convert'
]
...
...
python/paddle/fluid/layers/io.py
浏览文件 @
dbb4f0d3
...
...
@@ -24,7 +24,7 @@ from .layer_function_generator import templatedoc
from
..
import
core
from
..executor
import
global_scope
from
..framework
import
convert_np_dtype_to_dtype_
,
default_main_program
,
\
default_startup_program
,
program_guard
,
Program
default_startup_program
,
program_guard
,
Program
,
Variable
from
..layer_helper
import
LayerHelper
from
..unique_name
import
generate
as
unique_name
...
...
@@ -209,7 +209,7 @@ class ListenAndServ(object):
})
def
Send
(
endpoints
,
send_vars
,
sync
=
True
):
def
Send
(
endpoints
,
send_vars
,
dummy_output
=
None
,
sync
=
True
):
"""
Send variables to the server side, and get vars from server
side when server have finished running server side program.
...
...
@@ -223,6 +223,13 @@ def Send(endpoints, send_vars, sync=True):
"""
assert
(
type
(
send_vars
)
==
list
)
if
dummy_output
is
None
:
dummy_output
=
[]
elif
isinstance
(
dummy_output
,
Variable
):
dummy_output
=
[
dummy_output
]
assert
(
type
(
dummy_output
)
==
list
)
epmap
=
endpoints
.
split
(
","
)
endpoints
=
list
(
set
(
epmap
))
...
...
@@ -232,6 +239,7 @@ def Send(endpoints, send_vars, sync=True):
helper
.
append_op
(
type
=
"send"
,
inputs
=
{
"X"
:
send_vars
},
outputs
=
{
"Out"
:
dummy_output
},
attrs
=
{
"endpoints"
:
endpoints
,
"epmap"
:
epmap
,
...
...
@@ -241,7 +249,7 @@ def Send(endpoints, send_vars, sync=True):
helper
.
append_op
(
type
=
"send_barrier"
,
attrs
=
{
"endpoints"
:
endpoints
})
def
Recv
(
endpoints
,
get_vars
,
sync
=
True
):
def
Recv
(
endpoints
,
get_vars
,
dummy_input
=
None
,
sync
=
True
):
"""
Receive variables from server side
...
...
@@ -256,13 +264,20 @@ def Recv(endpoints, get_vars, sync=True):
"""
assert
(
type
(
get_vars
)
==
list
)
if
dummy_input
is
None
:
dummy_input
=
[]
elif
isinstance
(
dummy_input
,
Variable
):
dummy_input
=
[
dummy_input
]
assert
(
type
(
dummy_input
)
==
list
)
epmap
=
endpoints
.
split
(
","
)
endpoints
=
list
(
set
(
epmap
))
helper
=
LayerHelper
(
"Recv"
,
**
locals
())
helper
.
append_op
(
type
=
"recv"
,
inputs
=
{
"X"
:
get_vars
},
inputs
=
{
"X"
:
dummy_input
},
outputs
=
{
"Out"
:
get_vars
},
attrs
=
{
"endpoints"
:
endpoints
,
"epmap"
:
epmap
})
...
...
python/paddle/fluid/tests/unittests/dist_se_resnext.py
浏览文件 @
dbb4f0d3
...
...
@@ -16,7 +16,6 @@ from __future__ import print_function
import
numpy
as
np
import
argparse
import
six
import
time
import
math
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
dbb4f0d3
...
...
@@ -34,6 +34,7 @@ import math
import
random
import
numpy
as
np
import
collections
import
six
from
.ps_dispatcher
import
RoundRobin
,
HashName
,
PSDispatcher
from
..
import
core
,
framework
...
...
@@ -210,6 +211,9 @@ class DistributeTranspiler(object):
ps_dispatcher
=
self
.
config
.
split_method
(
self
.
pserver_endpoints
)
self
.
has_distributed_lookup_table
=
self
.
_has_distributed_lookup_table
()
self
.
param_name_to_grad_name
=
dict
()
for
param_var
,
grad_var
in
self
.
params_grads
:
self
.
param_name_to_grad_name
[
param_var
.
name
]
=
grad_var
.
name
# add distributed attrs to program
self
.
origin_program
.
_is_distributed
=
True
...
...
@@ -236,34 +240,39 @@ class DistributeTranspiler(object):
random
.
seed
(
self
.
origin_program
.
random_seed
)
random
.
shuffle
(
grad_var_mapping_items
)
for
orig_varname
,
splited_vars
in
grad_var_mapping_items
:
grad_name_to_send_dummy_out
=
dict
()
for
grad_varname
,
splited_vars
in
grad_var_mapping_items
:
eplist
=
ps_dispatcher
.
dispatch
(
splited_vars
)
if
not
self
.
config
.
slice_var_up
:
assert
(
len
(
splited_vars
)
==
1
)
splited_grad_varname
=
grad_varname
if
len
(
splited_vars
)
==
1
:
orig
_varname
=
splited_vars
[
0
].
name
splited_grad
_varname
=
splited_vars
[
0
].
name
index
=
find_op_by_output_arg
(
program
.
global_block
(),
orig
_varname
)
splited_grad
_varname
)
elif
len
(
splited_vars
)
>
1
:
orig_var
=
program
.
global_block
().
vars
[
orig
_varname
]
orig_var
=
program
.
global_block
().
vars
[
splited_grad
_varname
]
index
=
find_op_by_output_arg
(
program
.
global_block
(),
orig
_varname
)
splited_grad
_varname
)
self
.
_insert_split_op
(
program
,
orig_var
,
index
,
splited_vars
)
index
+=
1
else
:
AssertionError
(
"Can not insert the send op by original "
"variable name :"
,
orig
_varname
)
"variable name :"
,
splited_grad
_varname
)
dummy_output
=
program
.
global_block
().
create_var
()
grad_name_to_send_dummy_out
[
grad_varname
]
=
dummy_output
program
.
global_block
().
_insert_op
(
index
=
index
+
1
,
type
=
"send"
,
inputs
=
{
"X"
:
splited_vars
},
outputs
=
{},
outputs
=
{
"Out"
:
dummy_output
},
attrs
=
{
"epmap"
:
eplist
,
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
,
"sync_mode"
:
not
self
.
sync_mode
,
})
for
_
,
var
in
enumerate
(
splited_vars
):
send_vars
.
append
(
var
)
...
...
@@ -275,7 +284,6 @@ class DistributeTranspiler(object):
outputs
=
{},
attrs
=
{
"endpoints"
:
pserver_endpoints
,
"sync_mode"
:
self
.
sync_mode
,
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
})
...
...
@@ -291,19 +299,21 @@ class DistributeTranspiler(object):
self
.
param_grad_ep_mapping
[
ep
][
"grads"
].
append
(
send_vars
[
i
])
# step4: Concat the parameters splits together after recv.
for
varname
,
splited_var
in
six
.
iteritems
(
self
.
param_var_mapping
):
for
param_
varname
,
splited_var
in
six
.
iteritems
(
self
.
param_var_mapping
):
eps
=
[]
for
var
in
splited_var
:
index
=
[
v
.
name
for
v
in
recv_vars
].
index
(
var
.
name
)
eps
.
append
(
eplist
[
index
])
grad_send_dummy_out
=
grad_name_to_send_dummy_out
[
self
.
param_name_to_grad_name
[
param_varname
]]
program
.
global_block
().
append_op
(
type
=
"recv"
,
inputs
=
{},
inputs
=
{
"X"
:
[
grad_send_dummy_out
]
},
outputs
=
{
"Out"
:
splited_var
},
attrs
=
{
"epmap"
:
eps
,
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
,
"sync_mode"
:
not
self
.
sync_mode
})
if
self
.
sync_mode
:
...
...
@@ -316,10 +326,10 @@ class DistributeTranspiler(object):
RPC_OP_ROLE_ATTR_NAME
:
RPC_OP_ROLE_ATTR_VALUE
})
for
varname
,
splited_var
in
six
.
iteritems
(
self
.
param_var_mapping
):
for
param_
varname
,
splited_var
in
six
.
iteritems
(
self
.
param_var_mapping
):
if
len
(
splited_var
)
<=
1
:
continue
orig_param
=
program
.
global_block
().
vars
[
varname
]
orig_param
=
program
.
global_block
().
vars
[
param_
varname
]
program
.
global_block
().
append_op
(
type
=
"concat"
,
inputs
=
{
"X"
:
splited_var
},
...
...
@@ -387,7 +397,7 @@ class DistributeTranspiler(object):
op
=
startup_program
.
global_block
().
append_op
(
type
=
"recv"
,
inputs
=
{},
inputs
=
{
"X"
:
[]
},
outputs
=
{
"Out"
:
splited_var
},
attrs
=
{
"epmap"
:
eps
,
...
...
@@ -826,19 +836,21 @@ class DistributeTranspiler(object):
self
.
config
.
min_block_size
)
assert
(
len
(
grad_blocks
)
==
len
(
param_blocks
))
# origin_
varname -> [splited_var
]
# origin_
param_name -> [splited_param_vars
]
self
.
param_var_mapping
=
self
.
_create_vars_from_blocklist
(
self
.
origin_program
,
param_blocks
)
# origin_grad_name -> [splited_grad_vars]
self
.
grad_var_mapping
=
self
.
_create_vars_from_blocklist
(
self
.
origin_program
,
grad_blocks
,
add_trainer_suffix
=
self
.
trainer_num
>
1
)
# dict(grad_splited_var -> param_splited_var)
self
.
grad_param_mapping
=
collections
.
OrderedDict
()
for
g
,
p
in
zip
(
grad_blocks
,
param_blocks
):
g_name
,
g_bid
,
_
=
g
.
split
(
":"
)
p_name
,
p_bid
,
_
=
p
.
split
(
":"
)
self
.
grad_param_mapping
[
self
.
grad_var_mapping
[
g_name
][
int
(
g_bid
)]]
=
\
self
.
param_var_mapping
[
p_name
][
int
(
p_bid
)]
self
.
param_var_mapping
[
p_name
][
int
(
p_bid
)]
# create mapping of endpoint -> split var to create pserver side program
self
.
param_grad_ep_mapping
=
collections
.
OrderedDict
()
...
...
@@ -959,7 +971,7 @@ class DistributeTranspiler(object):
index
=
op_index
+
2
,
type
=
"send"
,
inputs
=
{
'X'
:
self
.
trainer_side_table_grad_list
},
outputs
=
{},
outputs
=
{
'Out'
:
[]
},
attrs
=
{
"sync_mode"
:
True
,
"epmap"
:
pserver_endpoints
,
...
...
tools/manylinux1/Dockerfile.x64
浏览文件 @
dbb4f0d3
...
...
@@ -13,7 +13,7 @@ ENV PATH /opt/rh/devtoolset-2/root/usr/bin:$PATH
ENV LD_LIBRARY_PATH /opt/rh/devtoolset-2/root/usr/lib64:/opt/rh/devtoolset-2/root/usr/lib:/usr/local/lib64:/usr/local/lib:${LD_LIBRARY_PATH}
ENV PKG_CONFIG_PATH=/usr/local/lib/pkgconfig
RUN yum install -y sqlite-devel zlib-devel openssl-devel pcre-devel vim tk-devel tkinter libtool xz
freetype-devel libpng-devel
graphviz
RUN yum install -y sqlite-devel zlib-devel openssl-devel pcre-devel vim tk-devel tkinter libtool xz graphviz
COPY build_scripts /build_scripts
RUN bash build_scripts/build.sh && \
bash build_scripts/install_nccl2.sh && rm -r build_scripts
...
...
tools/manylinux1/build_scripts/build.sh
浏览文件 @
dbb4f0d3
...
...
@@ -28,7 +28,7 @@ AUTOCONF_HASH=954bd69b391edc12d6a4a51a2dd1476543da5c6bbf05a95b59dc0dd6fd4c2969
PYTHON_COMPILE_DEPS
=
"zlib-devel bzip2-devel ncurses-devel sqlite-devel readline-devel tk-devel gdbm-devel db4-devel libpcap-devel xz-devel"
# Libraries that are allowed as part of the manylinux1 profile
MANYLINUX1_DEPS
=
"glibc-devel libstdc++-devel glib2-devel libX11-devel libXext-devel libXrender-devel mesa-libGL-devel libICE-devel libSM-devel ncurses-devel"
MANYLINUX1_DEPS
=
"glibc-devel libstdc++-devel glib2-devel libX11-devel libXext-devel libXrender-devel mesa-libGL-devel libICE-devel libSM-devel ncurses-devel
freetype-devel libpng-devel
"
# Get build utilities
MY_DIR
=
$(
dirname
"
${
BASH_SOURCE
[0]
}
"
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录